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Abstract

A Ramsey theory problem, that can be seen as a 2 dimensional exten-
sion of the Van der Waerden theorem, was posed by Martin J. Erickson
in his book [1]: “find the minimum n such that if the lattice points of
[n] × [n] are two-colored, there exist four points of one color lying on the
vertices of a square with sides parallel to the axes”. This was solved re-
cently by Bacher and Eliahou in 2009 [2], who showed that n = 15. In
this paper we tackle a derived version of this problem, searching for the
minimum n that forces the existence of a monochromatic [3]× [3] subgrid
of [n]× [n] of the form {i, i+t, i+2t}×{j, j+t, j+2t} for any 2-coloring of
[n]× [n]. We use meta-heuristics on this open problem to find instances of
2-colorations without monochromatic [3] × [3] subgrid of the above form,
setting a lower bound on n. In particular we found such a binary square
grid of size 662, implying that n > 662.

1 Introduction

Ramsey theory is a branch of mathematics that studies the existence of orderly
substructures in large chaotic structures. In fact, the existence of orderly sub-
structures is guaranteed by the theory: “complete disorder is impossible1”. The
central question Ramsey theorists struggle to answer is: how large must be the
structure such that it contains orderly substructures?

For example, consider a sequence of symbols, colored randomly using a fixed
number of colors. Although this sequence may be generated as randomly as
possible, if the sequence is sufficiently long there must exist a sub-sequence of a
given length that is in arithmetic progression whose symbols are all colored the
same.

More formally Van der Waerden’s theorem states that considering k > 1
symbols (or colors), there exist an integer N such that any k-colored sequence
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of length at least N contains a sub-sequence of length l > 1 in arithmetic
progression (at indices i, i + t, · · · , i + (l − 1) t) that is monochromatic (i.e.
contains only one repeated color). The smallest N for which this holds is called
the Van der Waerden number W (k, l). Such numbers are known only for few
values of k and l [3]. The 6th, and, largest known, Van der Waerden number for
2 colors was found in 2008 by Kouril et al. [4] and is W (2, 6) = 1132.

Tibor Gallai [5] extended the above theorem to the d-dimensional case.
Within this framework, M. J. Erickson[1] posed the following problem:

Problem 1 “Find the minimum n such that if the n2 lattice points of [n]× [n]
are two-colored, there exist four points of one color lying on the vertices of a
square with sides parallel to the coordinate axes.”

This problem can be slightly rephrased as the following: “find the smallest
n such that there are no monochromatic 2-squares in a binary matrix of size
n×n”. A monochromatic 2-square is a sub-matrix S with row indices {i, i+ t}
and column indexes {j, j + t} with t ≥ 1 whose 4 corners are colored the same.
Following [2] we pose the following definition:

Definition 1 An Erickson matrix is a binary matrix containing no monochro-
matic (or constant) 2-squares.

In the following, we will use the term matrices to refer to binary square
matrices.

In [2] the authors give the exact value of n = 15 for the above problem. This
value was determined by computational means and a clever exploration of the
search space, represented as a binary tree and using a special data structure that
prevents from storing the tree nodes. Furthermore the authors list all Erickson
matrices for n = 14.

Similarly to the Van der Waerden numbers, one can search for higher order
Erickson matrices i.e. that are free of constant s-squares, where an s-square in
[n] × [n] is any square subgrid of the form {i, i + l, . . . , i + (s − 1) l} × {j, j +
l, . . . , j + (s− 1) l} with s2 points.

Definition 2 For any positive integer k > 1, let us denote by n(k, s) the small-
est integer n for which any k-coloring of the grid [n]× [n] contains a monochro-
matic s-square.

It follows from a theorem of Gallai [5] that n(k, s) is finite. The actual
order of magnitude of n(k, s) is completely unknown at the time of this writing.
For instance, before the result n(2, 2) = 15 of [2], it was only known that:

13 ≤ n(2, 2) ≤ min(W (2, 8), 5 · 22
40

) (where W (2, 8) is a still unknown Van
der Waerden number). Following their discovery of n(2, 2) = 15, Bacher and
Eliahou proposed as open problems the cases n(3, 2) and n(2, 3).

In the present work, our main goal is to find the largest possible lower
bound for n(2, 3). More precisely, we aim to provide a lower bound n0 such
that n(2, 3) ≥ n0 + 1 by constructing a specific matrix of size n0 which is free
of monochromatic 3-squares of the form {i, i + l, i + 2 l} × {j, j + l, j + 2 l}.

In Section 2, we first focus our interest on the closed n(2, 2) problem for which
we have the exact bound, in order to compare different search methods on this
closely related problem. The algorithm proposed by Bacher and Eliahou in [2]
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explores the search space exhaustively starting from a 2×2 matrix constructing
successively larger matrices by adding a so-called “elbow” (a column at the right
and a row on the bottom). In [4] Kouril and Paul used a dedicated SAT solver
to find W (2, 6), a method which could also be used for Erickson matrices, as
we show in Section 2.1. However these methods reach their limits when dealing
with large matrices. That is why we choose to test heuristic methods. In doing
so, we observe that for sizes 13 and 14, the problem of finding Erickson matrices
could be of some interest for the evolutionary and meta-heuristics communities
as a benchmark problem. Even though the problem is easy for a SAT solver,
we found that for these sizes the problem can be difficult for different meta-
heuristics within a limited number of evaluations.

Related heuristics have also been applied on similar problems (binary con-
straint satisfaction problems), such as [6] in a GA framework, or [7] that uses ant
colony optimization. In the first case, it was only applied to rather small ran-
dom instances with a few dozens of variables. In the second case, the pheromone
matrix is of size n2, n being the number of variables. However, in the prob-
lem treated in Section 3, we are dealing with matrices of size greater than 600,
thus more than 6002 binary variables. Therefore it seems difficult to use these
methods efficiently.

In Section 3, we tackle the problem of finding a largest possible lower bound
to n(2, 3). Due to the large computing cost we only apply the best heuristic from
the previous experiments. We proceed in an incremental way: once a matrix
free of monochromatic 3-squares of a given size is found, we increase the size
and run the heuristic again.

2 Searching for Erickson matrices

As our goal is to find lower bounds, we consider a question derived from prob-
lem 1, defined as follows:

Problem 2 “Let n < 15 an integer, find a square Erickson matrix of size n.”

This provides us with a range of problems of increasing difficulty, depending
on n. From [2] we know the number of solutions2 to problem 2, denoted Er(n):

2This is indeed the number of matrices with upper left coefficient equal to 0: the exact

number of solutions is doubled.
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n Er(n)
2 7
3 138
4 5490
5 390856
6 29169574
7 1533415720
8 29085496072
9 156515895928
10 54978562276
11 2510360996
12 1990028
13 570132
14 116114
≥ 15 0

For the smallest values of n, the problem is overly easy due to the small size
of the search space, but the density of optimal solutions decreases when n gets
closer to 15. For instance, when n = 14, which is the largest size for which there
exist Erickson matrices, the number of solutions is slightly less than 218 while
the search space is of dimension 2196.

2.1 Exact resolution with a SAT solver

Problem 2 can be easily expressed as a boolean satisfiability problem in con-
jonctive normal form, where the variables are the coefficients of the matrix.
For each possible 2-square, we define two clauses that forbid the 2-square to be
monochromatic:

(xi,j ∨ xi+t,j ∨ xi,j+t ∨ xi+t,j+t)

(¬xi,j ∨ ¬xi+t,j ∨ ¬xi,j+t ∨ ¬xi+t,j+t)

where xi,j denotes the matrix coefficient at indices (i, j), and t is the size of the
2-square.

We used the march_pl SAT solver developped at Delft University3. For the
hardest instance, where the matrix size equals 14, the problem was expressed as
1638 clauses on 196 variables, and a solution was found in about 2.5 minutes on a
standard PC (this obviously yields solutions for smaller instances). Furthermore
we verified the non existence of monochromatic 2-squares on matrices of size 15,
where the problem was expressed as 2030 clauses on 225 variables, which could
be done in roughly 20 minutes.

However this method cannot be applied on matrices as large as those consid-
ered in Section 3. For example, if we express the problem of finding a 300× 300
matrix free of monochromatic 3-squares, we obtain 8732592 clauses on 90000
variables, which is untractable with standard SAT solvers. This is why we in-
vestigate the performance of heuristic search methods whose behaviour is less
dependent on the size of the problem.

3http://www.st.ewi.tudelft.nl/sat
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2.2 Heuristics search methods

We used different search techniques to solve problem 2 that can be classified
as either single point search or population based search. On the one hand we
applied a local search hybridized with path relinking, a simulated annealing
algorithm, and a simulated annealing hybridized with local search. All these
heuristics update a search point (a matrix) using a neighborhood operator.
Depending on the fitness of the newly generated point and the algorithm used,
the new point replaces or not the original one. On the other hand we also applied
an evolutionary algorithm, evolving a population of matrices with mutation and
crossover. The exact algorithms will be presented shortly, after discussing the
features that are common to all of them.

2.2.1 Common features

Initialization method Let us consider the range of possible square binary
matrices of any given size, ordered by increasing number of 1 coefficients. Clearly
Erickson matrices cannot be located far from the middle of this range: at the
extremes, a matrix contains almost only 0’s or 1’s and thus contains many
constant 2-squares. In other words the ratio of 0 coefficients over 1 coefficients
in an Erickson matrix cannot be far from 1, i.e. Erickson matrices are almost
balanced in 0 and 1. As an example, in size 14 the proportion of balanced
matrices is given by the ratio of the binomial coefficient (142, (142)/2) over the

number of matrices 214
2

, which represents 5.7% of the search space but happens
to include about 20% of Erickson matrices [8].

Thus, in order to speedup the search, we chose random balanced matrices
as initial solutions for all our algorithms.

Fitness function and neighborhood operator The fitness function re-
turns the number of monochromatic 2-squares present in the matrix, thus we
work in a minimization context. Our basic neighborhood operator is the simple
bit flip. It is also our mutation operator for the genetic algorithm. When a bit
flip is performed we only compute the fitness adjustment based on the 2-squares
to which the flipped bit belongs. This is more efficient than recomputing the
fitness over the whole matrix.

2.2.2 Algorithms details

Local search and the GRASP framework Our local search operator is a
hill-climber defined in the following way: if a single bit flip improves the fitness
then it is performed, otherwise we search for a second bit-flip such that the com-
bined two flips improve the fitness. Only the bits belonging to monochromatic
2-squares of the current search point (matrix) are considered, since flipping other
bits cannot improve the fitness.

On this local search we apply a path relinking heuristic similar to the GRASP
(Greedy Randomized Adaptive Search Procedure) method proposed by [9]. We
perform the local search on an initial solution, then we explore the path linking
this solution to one picked randomly in an elite archive. At each step of the
linking path we choose to flip a bit such that the hamming distance to the
archive solution is reduced (by one) and the bit-flip yields the better (lowest)
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fitness. We tested four archive sizes: 5, 25, 50 and 100. A new elite solution
replaces the closest one (with respect to the Hamming distance) with a worse
fitness, if any in the archive. Further details about the algorithm can be found
in [9].

Simulated Annealing Our Simulated Annealing algorithm (SA) is quite
standard (see [10]). We use a static cooling schedule, defined by the follow-
ing temperature formula:

tk = A/log(1 + (k/B)C) (1)

where k is the iteration counter and A, B, C are constants. This formula
provides the initial temperature for k = 1. The values for A, B and C are
given further in Section 2.3 for the 2-squares problem and in Section 3 for the
3-squares problem. After each decrease of the temperature, we perform 4 × n2

(where n is the size of the matrix) iterations at constant temperature. This
number of iterations was chosen by trial and error, in order to allow a potential
visit of any point in the search space (potentially flipping any of the n2 bits of the
matrix) as required by the SA equilibrium theory, while not spending too much
computations at homogeneous temperature. We remind that the probability of
acceptance of a worse search point x′ when current point is x is given by:

Pr(x← x′) = exp

(

fitness(x)− fitness(x′)

tk

)

We test three variants of the perturbation operator:

• in the first one, a new search point is generated by randomly flipping one
bit of the matrix

• in the second one, we explore only the set of balanced matrices, thus we
flip randomly two bits maintaining the matrix balanced

• in the last one, we randomly flip two bits of the matrix.

Large Step Markov Chain (or LSMC) Our third algorithm is inspired
from [11]. It can be viewed as a variant of simulated annealing, where a new
search point is constructed by:

• first, applying a medium size partly random perturbation (named “kick”
in the original article from Martin et al.) to the current point; at this
stage the fitness of the new point is probably worse than its predecessor;

• then, optimizing the resulting point with a local search heuristic, here we
use the same hill-climbing as in GRASP (see above).

The final point is accepted or rejected as in the simulated annealing method.
Thus the main difference with simulated annealing is that we focus on local
optima of the local search heuristic. This general framework is also known as
memetic algorithms [12, 13].

The original algorithm is described in [11], and in our implementation we
used the same cooling schedule as in our previous SA method and we tested
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two variants. One where the “kick” perturbation was the inversion of 3 random
bits belonging to monochromatic 2-squares; and the other where the 3 inverted
bits were chosen randomly in the whole matrix. Such “kick” perturbations
unfortunately do not guarantee that the loss of fitness remains limited, because
of the high level of dependency between coefficients of the matrix. Thus we
are not in a context as favourable as in the case of the euclidean TSP studied
in [11].

Genetic Algorithm (GA) Our population-based evolutionary algorithm was
initially a standard λ+µ Evolution Strategy [14], with deterministic, rank-based,
selection. This revealed that such an elitist strategy does not allow the popula-
tion to escape from local optima. We therefore opted for a Genetic Algorithm
framework (see [15, 16]) to explore various selection pressures with tournament
selection ranging in size from 4 to 10. The genetic operators are 1-bit mutation
as explained above, and three matrix crossovers which we detail now.

The first crossover is the uniform crossover: we create two offspring, each
bit of the first offspring has a 1/2 chance of being taken either from the first of
the second parent. The remaining bits from the parents are given to the second
offspring.

The second crossover is rather standard in its principle, we choose randomly
either a column or a row number and we cut two matrices in two parts along
that column or row, and then recombine the parts to create two new offspring.
Each one combines one part of each parent.

Our third crossover operator creates an offspring (see Figure 1) by taking
neighbouring bits alternatively from the two parents. Any given bit originating
from one parent has its four neighbours (under the Von Neumann neighbour-
hood) originating from the other parent. The first offspring takes its upper left
corner from the first parent, and the second offspring takes it from the sec-
ond parent. Notice that two given parents can only produce exactly one pair
of offspring. Using this scheme, we intend to preserve all squares of the form
{i, i + 2t} × {j, j + 2t} with t ≥ 1.

2.3 Experiments

In this section we compare the performance of the different search methods.
Experiments were conducted with the following setting:

• matrices of size 10 ≤ n ≤ 14,

• maximum number of evaluations 5 · 107,

• and 30 independent runs.

The SA and LSMC algorithms used parameters A = 1.5, B = 1 · 105 and
C = 1. This cooling schedule is illustrated in Figure 2 and was worked out such
that the SA stays above t = 0.2. We found experimentally that the probability
of escaping local extrema was very low when the temperature dropped below
0.2.

The results from the simulated annealing algorithm are in Table 1, those from
LSMC are in Table 2 and those from the GRASP method are given in Table 3.
We provide only a subset of the GA results for the best population size, 10000,

7



Figure 1: The crossover operator based on the Von Neumann neighbourhood.
Two matrices (on the top) generate two offspring (on the bottom).

Figure 2: Temperature evolution for SA and LSMC algorithms, according to
Equation 1, either for 2-squares labeled “coolingMat2x2” or 3-squares labeled
“coolingMat3x3”.
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Figure 3: An Erickson matrix of size 14 found by simulated annealing.

and the best set of genetic operators, which turned out to be mutation only (see
Table 4). Our experiments showed that all our crossover operators were less
efficient than mutation only. We think that these crossovers are probably too
disruptive: even though they maintain part of the parent solutions structure, the
interdependence of bits is such that this is not enough to prevent the creation
of many new constant squares.

From these experiments we can observe that:
• Size 10 is a fairly simple instance, all algorithms found optimal solutions at
each run, however with different evaluation cost, LSMC and GA dominating
the others, and SA being the most costly.
• In size 11 only the GA fails to find optimal solutions at each run.
• For size 12 an optimal solution is no more found at each run except by the
simulated annealing. However some runs of the other algorithms are able to
find an optimal solution, GA being the weakest.
• For sizes 13 and 14, only the simulated annealing is able to find optimal
solutions (such an optimal size 14 matrix is illustrated in Figure 3).
• The best LSMC variant uses the “kick” perturbation defined randomly on the
whole matrix.
• The best simulated annealing variant uses the 1 bit perturbation. It is also
to be noted that using a balanced 2 bits perturbation is superior to a random 2
bits change, as it was expected due to the greater density of optimal solutions
in balanced matrices. However 1 bit perturbation is still superior.
• The GRASP archive size seems only influential on size 12.
• The GA tournament size does not appear to be strongly decisive, although
size 8 seems superior in terms of computational cost.
• Overall, simulated annealing performs the best, although it is more costly in
small instances (sizes 10 and 11). GA and GRASP are the weakest heuristics.

Figures 4–7 illustrate the behaviour of the best variant on different problem
sizes of each heuristic: GRASP with an archive size of 100, Simulated Annealing
with one bit perturbation, LSMC with random kick and GA with population
size 10000 and tournament size 8. The curves represent average fitness values
over 30 independent runs. We notice that even though GRASP and LSMC
start at lower fitness values than SA, their fitness decrease is slower than SA on
sizes 12 and up. As it is shown in these figures, GA and GRASP are close and
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appears to be the weakest heuristics on these problems.
We do not have strong explanations for the difference in behaviour between

these heuristics, although we can suggest that the SA algorithm is more able
to escape local optima and thus to perform a better exploration of the search
space. It seems plausible that the local search in GRASP and LSMC leads them
to over-sample the neighborhood of local optima, explaining the shape of their
plots: a promising start followed by a slow improvement. The case of the GA is
more intriguing: at first it behaves in a similar fashion to SA, before adopting a
GRASP-like behaviour, as illustrated on the plots. It suggests that at that stage
the diversity of the population is so reduced as to prevent efficient exploration
of the search space.

Figure 4: Evolution of the mean fitness for the best variant of the four heuristics
for size 11. Both axes are in log scale.

3 A Lower Bound for n(2, 3)

We can now tackle the search for a lower bound to n(2, 3). We remind that we
are now searching for square binary matrices, as large as possible, that do not
contain any constant 3-squares of the form {i, i+l, i+2 l}×{j, j+l, j+2 l}. The
fitness function now returns the number of monochromatic 3-squares present
in the matrix, which is to be minimized. First we consider some comparison
elements about the fitness landscapes related to n(2, 2) and n(2, 3), then we
report the results of our experiments.

Fitness landscape At first we can observe that a bit in the 4 corners of the
matrix obviously belongs to fewer 2-squares (respectively 3-squares) than a bit
located closer to the center of the matrix. In order to simplify our reasoning,
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Figure 5: Evolution of the mean fitness for the best variant of the four heuristics
for size 12. Both axes are in log scale.

Figure 6: Evolution of the mean fitness for the best variant of the four heuristics
for size 13. Both axes are in log scale.
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Figure 7: Evolution of the mean fitness for the best variant of the four heuristics
for size 14. Both axes are in log scale.

Table 1: Simulated Annealing results for different perturbation operators (”1”
for 1 bit mutation, ”2*” for balanced 2 bits mutation and ”2” for random 2 bits
mutation).
Columns are respectively: the matrix size, the perturbation type, the best fit-
ness among 30 runs, the number of runs that reached the best fitness, the mean
number of evaluations to reach the best fitness (standard deviation is between
parentheses), the mean final fitness for the 30 runs (standard deviation is be-
tween parentheses).

size variant best # opt. opt. cost ×104 final fit.
10 1 0 30 175 (30) 0 (0)

2* 0 30 187 (52) 0 (0)
2 0 30 197 (45) 0 (0)

11 1 0 30 363 (70) 0 (0)
2* 0 30 411 (91) 0 (0)
2 0 30 420 (93) 0 (0)

12 1 0 30 707 (150) 0 (0)
2* 0 30 1020 (220) 0 (0)
2 0 30 1070 (310) 0 (0)

13 1 0 6 2060 (1500) 0.80 (0.41)
2* 0 6 1350 (810) 0.8 (0.41)
2 0 3 1220 (740) 0.93 (0.37)

14 1 0 3 2100 (850) 3.67 (2.20)
2* 0 2 928 (240) 4.83 (1.6)
2 1 1 1640 (NA) 5.27 (0.94)
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Table 2: Large Step Markov Chain results for 2 variants (”2-square” for a kick
mutation only on bits belonging to constant 2-squares, ”random” for a kick
mutation on random bits).
Columns are respectively: the matrix size, the mutation variant, the best fit-
ness among 30 runs, the number of runs that reached the best fitness, the mean
number of evaluations to reach the best fitness (standard deviation is between
parentheses), the mean final fitness for the 30 runs (standard deviation is be-
tween parentheses).

size variant best # opt. opt. cost ×104 final fit.
10 2-square 0 30 0.31 (0.21) 0 (0)

random 0 30 0.42 (0.29) 0 (0)
11 2-square 0 30 3.31 (2.4) 0 (0)

random 0 30 3.26 (2.7) 0 (0)
12 2-square 0 18 856 (1300) 0.433 (0.57)

random 0 27 419 (680) 0.1 (0.31)
13 2-square 1 1 4040 (NA) 3.5 (1.1)

random 1 1 1730 (NA) 3.1 (0.84)
14 2-square 7 2 753 (720) 9.27 (1.2)

random 6 2 1550 (1900) 8.57 (1.6)

we propose to consider the average number of 2-squares and 3-squares to which
a bit belongs. This can be computed easily, and we observe that on average the
number of 2-squares tends to be twice the number of 3-squares when the matrix
size grows, as illustrated in Figure 8.

In terms of fitness landscape, this shows that the inter-dependence between
bits (also called epistasis) is lower when trying to get rid of monochromatic
3-squares than when working on 2-squares, and thus the search for optimal ma-
trices of a given size is easier when working on n(2, 3) than on n(2, 2). However
the overall problem difficulty increases due to the large size of the matrices
involved in searching an as large as possible bound for n(2, 3).

Experiments From the experiments on constant 2-squares reported in the
previous section, we selected the simulated annealing with single bit pertur-
bation as the most promising heuristic to search for a lower bound for n(2, 3)
.

In order to reach low fitness values for large matrices, we must adapt the
cooling schedule so that the algorithm stays longer at lower temperatures than
in the 2-square instances. Thus the temperature parameters are now: A = 1,
B = 1 and C = 0.7, defining the curve illustrated in Figure 2. The stopping
criterion was modified such that the algorithm now halts when there is no fitness
improvement for 2 · 108 evaluations.

We explored matrices of size ranging from 30 and up. The largest matrix
avoiding monochromatic 3-squares we found is of size 662 and was obtained
in 8 hours on an Itanium-2 processor running at 1.5GHz. It is illustrated in
Figure 94.

4Interested readers may download the matrix data file at
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Table 3: GRASP results for different archive sizes.
Columns are respectively: the matrix size, the archive size, the best fitness
among 30 runs, the number of runs that reached the best fitness, the mean
number of evaluations to reach the best fitness (standard deviation is between
parentheses), the mean final fitness for the 30 runs (standard deviation is be-
tween parentheses).

size archive best # opt. opt. cost ×104 final fit.
10 5 0 30 3.31 (3.8) 0 (0)

25 0 30 3.84 (4.7) 0 (0)
50 0 30 3.84 (4.7) 0 (0)
100 0 30 3.84 (4.7) 0 (0)

11 5 0 30 384 (390) 0 (0)
25 0 30 254 (350) 0 (0)
50 0 30 242 (230) 0 (0)
100 0 30 329 (390) 0 (0)

12 5 1 14 2740 (1400) 1.57 (0.57)
25 0 2 2690 (400) 1.57 (0.73)
50 0 2 3200 (610) 1.7 (0.75)
100 0 2 3410 (310) 1.63 (0.72)

13 5 3 1 3840 (NA) 5 (0.9)
25 3 2 775 (250) 5 (0.1)
50 3 2 2530 (2000) 5.13 (0.97)
100 2 1 4320 (NA) 5.03 (1)

14 5 8 2 2570 (2900) 10.6 (1.1)
25 8 2 3670 (840) 10.7 (1.2)
50 8 4 2240 (1100) 10.4 (1.3)
100 8 2 3240 (1400) 10.6 (1.1)
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Table 4: GA results for a population size of 10000 and different tournament
sizes.
Columns are respectively: the matrix size, the tournament size, the best fitness
among 30 runs, the number of runs that reached the best fitness, the mean
number of evaluations to reach the best fitness (standard deviation is between
parentheses), the mean final fitness for the 30 runs (standard deviation is be-
tween parentheses).

size tourn. best # opt. opt. cost ×104 final fit.
10 4 0 30 44.5 (13) 0 (0)

6 0 30 35.2 (12) 0 (0)
8 0 30 28.3 (6.9) 0 (0)
10 0 30 26.6 (5.6) 0 (0)

11 4 0 27 632 (970) 0.1 (0.31)
6 0 25 258 (410) 0.17 (0.38)
8 0 26 112 (52) 0.13 (0.35)
10 0 22 261 (610) 0.27 (0.45)

12 4 0 2 1170 (1300) 1.9 (1)
6 0 2 1780 (1000) 1.87 (0.9)
8 0 5 1690 (1300) 1.67 (0.96)
10 0 1 215 (NA) 2.23 (0.73)

13 4 3 2 1260 (860) 5.77 (1.1)
6 3 1 313 (NA) 5.37 (0.96)
8 3 1 179 (NA) 5.33 (1.1)
10 3 1 131 (NA) 5.37 (1.2)

14 4 8 1 527 (NA) 11.8 (1.7)
6 7 1 987 (NA) 10.7 (1.6)
8 7 1 379 (NA) 10.2 (1.4)
10 8 1 3010 (NA) 10.1 (1.1)
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Figure 8: The ratio of possible 2-squares over 3-squares plotted in function of
the matrix size.

Figure 9: A size 662 matrix free from monochromatic 3-squares.
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4 Conclusion

In this paper we aimed at the n(2, 3) problem, posed in [2]. Although the
recently closed n(2, 2) problem can be solved by a standard SAT solver, it is
no more the case of n(2, 3), due to the large size of the matrices involved. This
motivated the use of meta-heuristic methods to find a lower bound to n(2, 3),
that we first tested on the n(2, 2) case, which is related to finding a square
Erickson matrix of any given size.

Of the several algorithms we tested, simulated annealing was the most
promising, as it was the only one which reached optimal solutions on sizes 13
and 14. From this study we think that searching for Erickson matrices could
be an interesting benchmark for the evolutionary and meta-heuristics commu-
nities, as it is not so easy to solve. Moreover [2] gives interesting insights on this
problem such as the density of optimal solutions for different matrix sizes. Find-
ing a satisfying crossover operator could also constitute an interesting research
question.

From these results we chose to apply simulated annealing to the n(2, 3) prob-
lem, and we found a lower bound: n(2, 3) > 662. We also gave some insights,
based on epistasis, on the relative difficulty of n(2, 2) and n(2, 3) problems. To
our knowledge, this work is the first attempt to provide such a lower bound. In
the future we intend to apply self-adaptive cooling schedules to this problem,
to avoid having to set the schedule experimentally.

As a closing remark, this study suggests that meta-heuristics which can scale-
up to large problem sizes, could be powerful tools to tackle similar problems
originating from Ramsey theory.
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