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Meta-Heuristic Search and Square Erickson Matrices

Denis Robilliard and Amine Boumaza and Virginie Marion-Poty

Abstract— A Ramsey theory problem, that can be seen as a
2 dimensional extension of the Van der Waerden theorem, was
posed by Martin J. Erickson in his book [1]: “find the minimum
n such that if the lattice points of [n]×[n] are two-colored, there
exist four points of one color lying on the vertices of a square
with sides parallel to the axes”. This was solved recently by
Bacher and Eliahou in 2009 [2], who showed that n = 15. In this
paper we tackle a derived version of this problem, searching for
the minimum n that forces the existence of a monochromatic
[3] × [3] subgrid of [n] × [n] of the form {i, i + t, i + 2t} ×
{j, j+t, j+2t}. We use meta-heuristics on this open problem to
find instances of 2-colorations without monochromatic [3]× [3]
subgrid of the above form, setting a lower bound on n. In
particular we found such a binary square grid of size 662,
implying that n > 662.

I. INTRODUCTION

Ramsey theory is a branch of mathematics that studies the

existence of orderly substructures in large chaotic structures.

In fact, the existence of orderly sub-structures is guaranteed

by the theory: “complete disorder is impossible1”. The cen-

tral question Ramsey theorists struggle to answer is: how

large must be the structure such that it contains orderly

substructures?

For example, consider a sequence of symbols, colored

randomly using a fixed number of colors. Although this

sequence may be generated as randomly as possible, if the

sequence is sufficiently long there must exist a sub-sequence

of a given length that is in arithmetic progression whose

symbols are all colored the same.

More formally Van der Waerden’s theorem states that

considering k > 1 symbols (or colours), there exist an

integer N such that any k-coloured sequence of length at

least N contains a sub-sequence of length l > 1 in arithmetic

progression (at indices i, i + t, · · · , i + (l − 1) t) that is

monochromatic (i.e. contains only one repeated colour). The

smallestN for which this holds is called the Van der Waerden

number W (k, l). Such numbers are known only for few

values of k and l [3]. The 6th, and, largest known, Van der

Waerden number for 2 colors was found in 2008 by Kouril

et al. [4] and is W (2, 6) = 1132.

Tibor Gallai [5] extended the above theorem to the d-
dimensional case. Within this framework, M. J. Erickson[1]

posed the following problem:

Open problem 1: “Find the minimum n such that if the

n2 lattice points of [n]× [n] are two-colored, there exist four

points of one color lying on the vertices of a square with

sides parallel to the coordinate axes.”
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1Quote attributed to Theodore Motzkin

This problem can be slightly rephrased as the following:

“find the smallest n such that there are no monochromatic 2-

squares in a binary matrix of size n×n”. A monochromatic

2-square is a sub-matrix S with row indices {i, i + t} and

column indexes {j, j + t} with t ≥ 1 whose 4 corners

are colored the same. Following [2] we pose the following

definition:

Definition 1: An Erickson matrix is a binary matrix con-

taining no monochromatic (or constant) 2-squares.

In the following, we will use the term matrices to refer to

binary square matrices.

In [2] the authors give the exact value of n = 15 for the

above problem. This value was determined by computational

means and a clever exploration of the search space, repre-

sented as a binary tree and using a special data structure that

prevents from storing the tree nodes. Furthermore the authors

list all Erickson matrices for n = 14.

Similarly to the Van der Waerden numbers, one can search

for higher order Erickson matrices i.e. that are free of

constant s-squares, where an s-square in [n] × [n] is any

square subgrid of the form {i, i + l, . . . , i + (s − 1) l} ×
{j, j + l, . . . , j + (s− 1) l} with s2 points.

Definition 2: For any positive integer k > 1, let us denote

by n(k, s) the smallest integer n for which any k-coloring

of the grid [n]× [n] contains a monochromatic s-square.

It follows from a theorem of Gallai [5] that n(k, s) is

finite. The actual order of magnitude of n(k, s) is completely

unknown at the time of this writing. For instance, before the

result n(2, 2) = 15 of [2], it was only known that: 13 ≤

n(2, 2) ≤ min(W (2, 8), 5 · 22
40

) (where W (2, 8) is a still

unknown Van der Waerden number).

Following their discovery of n(2, 2) = 15, Bacher and

Eliahou proposed as open problems the cases n(3, 2) and

n(2, 3). In the present work, our goal is to find a lower bound

for n(2, 3). More precisely, we aim to provide a lower bound

n(2, 3) ≥ n0 + 1 by constructing a specific matrix of size

n0 which is free of monochromatic 3-squares of the form

{i, i+ l, i+2 l}×{j, j+ l, j+2 l}. We first focus our interest

on the closed 2-squares problem for which we have the exact

bound, in order to find and validate different search methods.

The algorithm proposed by Bacher and Eliahou in [2]

explores the search space exhaustively starting from a 2× 2
matrix constructing successively larger matrices by adding

a so-called “elbow” (a column at the right and a row on

the bottom). In [4] Kouril and Paul used a dedicated SAT

solver to find W (2, 6), a method which could also be used

for Erickson matrices, as we show in Section II-A. However

these methods reach their limits when dealing with large

matrices. That is why we choose to tackle this problem using

heuristic methods.



We study the behaviour of several meta-heuristics for dif-

ferent sizes of matrices. In doing so, we observe that for sizes

13 and 14, the problem of finding Erickson matrices could

be of some interest for the evolutionary and meta-heuristics

communities as a benchmark problem. Even though the

problem is easy for a SAT solver, we found that for these

sizes the problem can be difficult for different meta-heuristics

within a limited number of evaluations.

II. SEARCHING FOR ERICKSON MATRICES

As our goal is to find lower bounds, we consider a question

derived from problem 1, defined as follows:

Open problem 2: “Let n < 15 an integer, find a square

Erickson matrix of size n.”

This provides us with a range of problems of increasing

difficulty, depending on n. From [2] we know the number of

solutions2 to problem 2, denoted Er(n):

n Er(n)

2 7

3 138

4 5490

5 390856

6 29169574

7 1533415720

8 29085496072

9 156515895928

10 54978562276

11 2510360996

12 1990028

13 570132

14 116114

≥ 15 0

For the smallest values of n, the problem is overly easy

due to the small size of the search space, but the density of

optimal solutions decreases when n gets closer to 15. For

instance, when n = 14, which is the largest size for which

there exist Erickson matrices, the number of solutions is

slightly less than 218 while the search space is of dimension

2196.

A. Exact resolution with a SAT solver

Problem 2 can be easily expressed as a boolean sat-

isfiability problem in conjonctive normal form, where the

variables are the coefficients of the matrix. For each possible

2-square, we define two clauses that forbid the 2-square to

be monochromatic:

(xi,j ∨ xi+t,j ∨ xi,j+t ∨ xi+t,j+t)

(¬xi,j ∨ ¬xi+t,j ∨ ¬xi,j+t ∨ ¬xi+t,j+t)

where xi,j denotes the matrix coefficient at indices (i, j),

and t is the size of the 2-square.

2This is indeed the number of matrices with upper left coefficient equal
to 0: the exact number of solutions is doubled.

We used the march_pl SAT solver developped at Delft

University3. For the hardest instance, where the matrix size

equals 14, the problem was expressed as 1638 clauses on 196
variables, and a solution was found in about 2.5 minutes on

a standard PC (this obviously yields solutions for smaller

instances). Furthermore we verified the non existence of

monochromatic 2-squares on matrices of size 15, where the

problem was expressed as 2030 clauses on 225 variables,

which could be done in roughly 20 minutes.

However this method cannot be applied on matrices as

large as those considered in Section III. For example, if we

express the problem of finding a 300 × 300 matrix free of

monochromatic 3-squares, we obtain 8732592 clauses on

90000 variables, which is untractable with standard SAT

solvers. This is why we investigate the performance of

heuristic search methods whose behaviour is less dependent

on the size of the problem.

B. Heuristics search methods

The different meta-heuristics we used to solve problem 2

are: a local search hybridized with path relinking, a simulated

annealing algorithm, and a simulated annealing hybridized

with local search. All these heuristics update a search point

(a matrix) using a neighborhood operator. Depending on the

fitness of the newly generated point and the algorithm used,

the new point replaces or not the original one. The exact

algorithms will be presented shortly, in the meantime we

discuss the features that are common to all of them.

1) Common features:

a) Initialization method: Let us consider the range of

possible square binary matrices of any given size, ordered

by increasing number of 1 coefficients. Clearly Erickson

matrices cannot be located far from the middle of this range:

at the extremes, a matrix contains almost only 0’s or 1’s

and thus contains many constant 2-squares. In other words

the ratio of 0 coefficients over 1 coefficients in an Erickson

matrix cannot be far from 1, i.e. Erickson matrices are almost

balanced in 0 and 1. As an example, in size 14 the proportion

of balanced matrices is given by the ratio of the binomial

coefficient (142, (142)/2) over the number of matrices 214
2

,

which represents 5.7% of the search space but happens to

include about 20% of Erickson matrices [6].

Thus, in order to speedup the search, we chose random

balanced matrices as initial solutions for all our algorithms.

b) Fitness function and neighborhood operator: The

fitness function returns the number of monochromatic 2-

squares present in the matrix, thus we work in a minimization

context. Our basic neighborhood operator is the simple bit

flip. When a bit flip is performed we only compute the fitness

adjustment based on the 2-squares to which the flipped bit

belongs. This is more efficient than recomputing the fitness

over the whole matrix.

2) Algorithms details:

3http://www.st.ewi.tudelft.nl/sat



a) Local search and the GRASP framework: Our local

search operator is defined in the following way: if a single

bit flip improves the fitness then it is performed, otherwise

we search for a second bit-flip such that the combined

two flips improve the fitness. Only the bits belonging to

monochromatic 2-squares of the current search point (matrix)

are considered, since flipping other bits can only degrade the

fitness.

On this local search we apply a path relinking heuristic

similar to the GRASP method proposed by [7]. We perform

the local search on an initial solution, then we explore the

path linking this solution to one picked randomly in an elite

archive. At each step of the linking path we choose to flip

the bit that leads to the best point. We tested four archive

sizes: 5, 25, 50 and 100. A new elite solution replaces the

closest one (with respect to the Hamming distance) with a

worse fitness, if any in the archive.

b) Simulated Annealing: Our simulated annealing al-

gorithm is quite standard (see [8]). We use a static cooling

schedule, defined by the following temperature formula:

tk = A/log(1 + (k/B)C)

where k is the iteration counter and A,B, C are constants.

This formula provides the initial temperature for k = 1. The

values for A, B and C are given further in Section II-C for

the 2-squares problem and in Section III for the 3-squares

problem. After each decrease of the temperature, we perform

4×n2 (where n is the size of the matrix) iterations at constant

temperature. We remind that the probability of acceptance of

a worse search point x′ when current point is x is given by:

Pr(x← x′) = exp

(

fitness(x)− fitness(x′)

tk

)

We test three variants of the perturbation operator:

• in the first one, a new search point is generated by

randomly flipping one bit of the matrix

• in the second one, we explore only the set of balanced

matrices, thus we flip randomly two bits maintaining

the matrix balanced

• in the last one, we randomly flip two bits of the matrix.

c) Large Step Markov Chain (or LSMC): Our third

algorithm is inspired from [9]. It can be viewed as a variant of

simulated annealing, where a new search point is constructed

by:

• first, applying a medium size partly random perturbation

(named “kick” in the original article from Martin et al.)

to the current point; at this stage the fitness of the new

point is probably worse than its predecessor;

• then, optimizing the resulting point with a local search

heuristic.

The final point is accepted or rejected as in the simulated

annealing method. Thus the main difference with simulated

annealing is that we focus on local optima of the local search

heuristic. This general framework is also known as memetic

algorithms [10].

In our case, the cooling schedule was the same as in

the previous method. We tested two variants: one where

the “kick” perturbation was the inversion of 3 random bits

belonging to monochromatic 2-squares; and the other where

the 3 inverted bits were chosen randomly in the whole matrix.

Such “kick” perturbations unfortunately do not guarantee

that the loss of fitness remains limited, because of the high

level of dependency between coefficients of the matrix. Thus

we are not in a context as favourable as in the case of the

euclidean TSP studied in [9].

C. Experiments

In this section we compare the performance of the differ-

ent search methods. Experiments were conducted with the

following setting:

• matrices of size 10 ≤ n ≤ 14,

• maximum number of evaluations 5 · 107,

• and 30 independent runs.

The simulated annealing and LSMC algorithms used pa-

rameters A = 1.5, B = 1 · 105 and C = 1.

The results from the simulated annealing algorithm are in

Table I, those from LSMC are in Table II and those from

the GRASP method are given in Table III. These tables are

structured as follows:

• column "size" is the matrix size

• the second column indicates the variant of the heuristic

• column "best fit." is the minimum fitness reached during

the 30 test runs

• "# optima" is the number of runs that reached the "best

fit." value

• "opt. cost" is the mean number of evaluations used by

the "# optima" runs with standard deviation given in

the same column between parentheses (values are to be

multiplied by 104)

• "final fitness" is the final fitness averaged on the 30
runs with standard deviation given in the same column

between parentheses.

From these experiments we can observe that:

• Sizes 10 and 11 are fairly simple instances, all algo-

rithms found optimal solutions at each run, however

with different evaluation cost, LSMC dominating the

others.

• For size 12 an optimal solution is no more found at

each run, except by the simulated annealing. However

some runs of the other algorithms were able to find an

optimal solution, GRASP being the weakest.

• For sizes 13 and 14, only the simulated annealing was

able to find optimal solutions (such an optimal size 14
matrix is illustrated in Figure 1).

• The best LSMC variant uses the “kick” perturbation

defined randomly on the whole matrix.

• The best simulated annealing variant uses the 1 bit

perturbation. It is also to be noted that using a balanced

2 bits perturbation is superior to a random 2 bits

change, as it was expected due to the greater density



Fig. 1. An Erickson matrix of size 14 found by simulated annealing.

of optimal solutions in balanced matrices. However 1

bit perturbation is still superior.

• Overall, simulated annealing performed the best, al-

though it is more costly in small instances (sizes 10
and 11). GRASP was the weakest heuristics, and the

archive size did not strongly influence its success rate.

Figures 2–5 illustrate the behaviour of the best variant

on different problem sizes of each heuristic: GRASP with

an archive size of 100, Simulated Annealing (SA) with one

bit perturbation and LSMC with random kick. The curves

represent average fitness values over 30 runs. We notice that

even though GRASP and LSMC start at lower fitness values

than SA, their fitness decrease is slower than SA on sizes 12

and up. As it is shown in these figures, GRASP appears to

be the weakest heuristic on these problems.

Results on matrices of size 11
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GRASP 100
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Fig. 2. Evolution of the mean fitness for the best variant of the three
heuristics for size 11. Both axes are in log scale.

III. A LOWER BOUND FOR n(2, 3)

We can now tackle the search for a lower bound to n(2, 3).

We remind that we are now searching for square binary

matrices, as large as possible, that do not contain any constant

3-squares of the form {i, i+ l, i+ 2 l} × {j, j + l, j + 2 l}.
First we consider some comparison elements about the fitness

landscapes related to n(2, 2) and n(2, 3), then we report the

results of our experiments.

Results on matrices of size 12
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Fig. 3. Evolution of the mean fitness for the best variant of the three
heuristics for size 12. Both axes are in log scale.

Results on matrices of size 13
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Fig. 4. Evolution of the mean fitness for the best variant of the three
heuristics for size 13. Both axes are in log scale.

Results on matrices of size 14
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Fig. 5. Evolution of the mean fitness for the best variant of the three
heuristics for size 14. Both axes are in log scale.



TABLE I

SIMULATED ANNEALING RESULTS FOR DIFFERENT PERTURBATION

OPERATORS ("1" FOR 1 BIT MUTATION, "2*" FOR BALANCED 2 BITS

MUTATION AND "2" FOR RANDOM 2 BITS MUTATION).

size variant best # opt. opt. cost ×104 final fit.

10 1 0 30 175 (30) 0 (0)
2* 0 30 187 (52) 0 (0)
2 0 30 197 (45) 0 (0)

11 1 0 30 363 (70) 0 (0)
2* 0 30 411 (91) 0 (0)
2 0 30 420 (93) 0 (0)

12 1 0 30 707 (150) 0 (0)
2* 0 30 1020 (220) 0 (0)
2 0 30 1070 (310) 0 (0)

13 1 0 6 2060 (1500) 0.80 (0.41)
2* 0 6 1350 (810) 0.8 (0.41)
2 0 3 1220 (740) 0.93 (0.37)

14 1 0 3 2100 (850) 3.67 (2.20)
2* 0 2 928 (240) 4.83 (1.6)
2 1 1 1640 (NA) 5.27 (0.94)

TABLE II

LARGE STEP MARKOV CHAIN RESULTS FOR 2 VARIANTS ("2-SQUARE"

FOR A KICK MUTATION ONLY ON BITS BELONGING TO CONSTANT

2-SQUARES, "RANDOM" FOR A KICK MUTATION ON RANDOM BITS).

size variant best # opt. opt. cost ×104 final fit.

10 2-square 0 30 0.31 (0.21) 0 (0)
random 0 30 0.42 (0.29) 0 (0)

11 2-square 0 30 3.31 (2.4) 0 (0)
random 0 30 3.26 (2.7) 0 (0)

12 2-square 0 18 856 (1300) 0.433 (0.57)
random 0 27 419 (680) 0.1 (0.31)

13 2-square 1 1 4040 (NA) 3.5 (1.1)
random 1 1 1730 (NA) 3.1 (0.84)

14 2-square 7 2 753 (720) 9.27 (1.2)
random 6 2 1550 (1900) 8.57 (1.6)

TABLE III

GRASP RESULTS FOR DIFFERENT ARCHIVE SIZES.

size archive best # optima opt. cost ×104 final fit.

10 5 0 30 3.31 (3.8) 0 (0)
25 0 30 3.84 (4.7) 0 (0)
50 0 30 3.84 (4.7) 0 (0)
100 0 30 3.84 (4.7) 0 (0)

11 5 0 30 384 (390) 0 (0)
25 0 30 254 (350) 0 (0)
50 0 30 242 (230) 0 (0)
100 0 30 329 (390) 0 (0)

12 5 1 14 2740 (1400) 1.57 (0.57)
25 0 2 2690 (400) 1.57 (0.73)
50 0 2 3200 (610) 1.7 (0.75)
100 0 2 3410 (310) 1.63 (0.72)

13 5 3 1 3840 (NA) 5 (0.9)
25 3 2 775 (250) 5 (0.1)
50 3 2 2530 (2000) 5.13 (0.97)
100 2 1 4320 (NA) 5.03 (1)

14 5 8 2 2570 (2900) 10.6 (1.1)
25 8 2 3670 (840) 10.7 (1.2)
50 8 4 2240 (1100) 10.4 (1.3)
100 8 2 3240 (1400) 10.6 (1.1)
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Fig. 6. The ratio of possible 2-squares over 3-squares plotted in function
of the matrix size.

d) Fitness landscape: At first we can observe that a bit

in the 4 corners of the matrix obviously belongs to fewer 2-

squares (respectively 3-squares) than a bit located closer to

the center of the matrix. In order to simplify our reasoning,

we propose to consider the average number of 2-squares and

3-squares to which a bit belongs. This can be computed

easily, and we observe that on average the number of 2-

squares tends to be twice the number of 3-squares when the

matrix size grows, as illustrated in Figure 6.

In terms of fitness landscape, this suggests that the inter-

dependence between bits (also called epistasis) is lower

when trying to get rid of monochromatic 3-squares than

when working on 2-squares, and thus the search for optimal

matrices of a given size is easier when working on n(2, 3)
than on n(2, 2). However the overall problem difficulty

increases due to the large size of the matrices involved in

searching an as large as possible bound for n(2, 3).

e) Experiments: From the experiments on constant 2-

squares reported in the previous section, we selected the

simulated annealing with single bit perturbation as the most

promising heuristic to search for a lower bound for n(2, 3) .

We had to adapt the cooling schedule to this new problem,

as reaching low fitness values for large matrices required

staying longer at a lower temperature than in the 2-square

instances. The temperature parameters are now: A = 1, B =
1.001 and C = 0.7, and the stopping criterion has also been

changed such that the algorithm now ends when there is no

fitness improvement for 2 · 108 evaluations.

We explored matrices of size ranging from 30 and up.

The largest matrix avoiding monochromatic 3-squares

we found is of size 662 and was obtained in 4 hours

on an Itanium-2 processor running at 1.5GHz. It is

illustrated in Figure 7, interested readers may download it at

\htpp:lil.univ-littoral.fr\~robillia\matrices\662.tx

IV. CONCLUSION

In this paper we focused on the problem of finding a lower

bound for n(2, 3) using heuristic methods. First we worked

on the recently closed problem n(2, 2), testing different

algorithms for searching for Erickson matrices. We found



Fig. 7. A size 662 matrix free from monochromatic 3-squares.

that simulated annealing was the most promising, as it was

the only one which reached optimal solutions on sizes 13 and

14. A standard SAT solver was also tested and found to be

very efficient on the n(2, 2) problem but could not process

matrices as large as those involved for n(2, 3).

We gave some insights, based on epistasis, on the relative

difficulty of these problems. From the preliminary results we

chose to apply simulated annealing to our initial problem, and

we found a lower bound: n(2, 3) > 662. To our knowledge,

this work is the first attempt to provide such a lower bound.

We did not use population based evolutionary algorithms

per se, since we did not find a satisfying crossover operator

due to the inter-dependence of genes (matrix coefficients).

However this could constitute an interesting research ques-

tion.

From this study we think that searching for Erickson

matrices could be an interesting benchmark for the evolution-

ary and meta-heuristics communities. Furthermore, heuristics

seem to be powerful tools to tackle similar problems origi-

nating from Ramsey theory.
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