
HAL Id: hal-00448387
https://hal.science/hal-00448387v1

Submitted on 18 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dagda, a load-balanced middleware to distribute
Complex Systems simulations

Antoine Dutot, Damien Olivier, Guilhelm Savin

To cite this version:
Antoine Dutot, Damien Olivier, Guilhelm Savin. Dagda, a load-balanced middleware to distribute
Complex Systems simulations. 3rd International Conference on Complex Systems and Applications
(ICCSA’09), Jun 2009, Le Havre, France. pp.171-174. �hal-00448387�

https://hal.science/hal-00448387v1
https://hal.archives-ouvertes.fr

1

Dagda, a load-balanced middleware to distribute
Complex Systems simulations

Antoine Dutot, Damien Olivier, Guilhelm Savin

Résumé—Complex systems which are modeled and are si-
mulated in computer science become increasingly sophisticated.
The computing power of a single machine becomes insufficient
to execute these simulations. Therefore, it needs to exploit
computing power of a set of machines.

DAGDA, the architecture and the platform which are presented
in this paper, offers a layer between simulation of a complex
system and the available resources. This layer manages spreading
of entities on machines to reduce work-load and network-load of
each machine.

Index Terms—middleware, dynamic load-balancing, complex
systems simulations

I. INTRODUCTION

P
ROGRAMS asking increasingly computing ressources,
developers create distributed programs that aim to be

executed on several computers. This kind of programs raises
some problems. There are problems about communication
between remote parts of the program : how to realize a
layer to process remote calls, what impact this layer will
have on the program’s performances. There are also problems
about computers architecture : is same architecture needed for
computers, etc. . . Finally, there is problem of how distribute
tasks or components of the distributed program.

In this paper, we focus on simulations of complex systems
and we propose a dedicated platform, DAGDA, for their
distribution. This kind of simulations is often composed of a
massive set of entities with many interactions between them.
Entity is a generic concept which covers for example agent
and object concept. Execution of an entity is not deterministic
because of interactions existing between the entity and other
entities or environment, what explains a distributed approach
rather than others methods used in deterministic programs.
Execution of such simulations can be modeled by a dynamic
graph which allows to describe interactions (edges) existing
in a set of elements (nodes).

DAGDA merges a middleware, to allow communication
between remote entities, and a load-balancer, to spread these
entites on available machines.

Middlewares are a category of programs that creates a layer
between a distributed application and computing ressources.
They help developers by creating an abstraction of the res-
sources, so developers do not have to deal with resource
problems and can focus on the application. The subsection
I-B describes middlewares.

DAGDA uses the load-balancing algorithm ANTCO2 which
is described in II. It has been chosen because it spreads
entities considering not only the workload of machines but
also interactions existing between entities. The load-balancing
concept is described in subsection I-C.

A. Active Object

An important pattern needing to be presented for this paper
is the active object pattern[1]. The difference between a basic

object and an active object takes place between method call
and its execution. With basic object, calling and execution of
a method are synchronous (ie Fig. 1).

method is called

method is executed

result is returned to caller

caller deals with result

FIGURE 1. call of an object method

With active objects, calling and execution are asynchronous.
Method calls are request which are sent to an active object.
This last one stores requests in a queue and executes them
according to a scheduler (ie Fig. 2).

method is called

caller executes some tasks waiting result

when result is receive, caller deals with it

called object receives request

following a scheduler, request is executed

result is returned

FIGURE 2. call of active object method

Figure 3 shows this process : caller send a request, with the
help of a stub object, to an active object. This active object
returns a future with an empty value. When request has been
executed, value of the future is set and caller can handle this
value.

Interest of active objects is that caller can execute other
tasks while it is waiting for a request’s result : call is not
blocking anymore. Each active object has its own thread to
execute received requests. A stub object is used to contact an
active object on a method call. This call is done through a
proxy which is a bridge between stub objects and the active
object.

B. Middleware

A middleware provides a connection between softwares or
between components of a software. This connection allows a
communication between process. These process can be located

Body

Proxy

Stub Object

Future Request

Thread
Object

FIGURE 3. Active Object pattern

on different machines, with different operating systems. So,
a middleware allows a program to exploit power of several
participating computers. It can also manage connection and
disconnection of participants. So, it creates a dynamic grid of
machines used to distribute tasks.

There is different types of middleware. Some of them
provide to developers a way to send a job to a machine
and then, when job is done, retrieve the result. In this case,
there is no interaction between participants, and it is usually a
centralized approach : a server (or a restricted set of servers)
distributing job to some slaves. For example BOINC[2], which
is used by @home projects like SETI@home 1.

Others have an object-approach of the distribution using
for some of them the active object pattern. It is the case of
ProActive[3] developed by INRIA Sophia Antipolis. This kind
of middleware allows interactions between different distributed
tasks.

With program running on a single machine, there is an
addressing space which allows to attribute an unique id to each
object. This id is often the memory address of the object. When
a program is distributed (it is running on a set of machines),
uniqueness of an id is more difficult to assure. Middlewares
provide a global addressing space which allow an unique id
for each object.

C. Load-balancing

The concept of load-balancing is that a set of machines
S are grouped as an unique virtual machine M. If T is the
set of all executable tasks, then load-balancer is a function
l : T → S which attributes to a task t a machine l(t) = m

that will execute the task t. So the load-balancer l defines a
policy to distribute tasks on M.

This technique is used by web services, for example, to
spread users’s requests between servers : several servers look
like one for users. When a user sends a request to a web
service, load-balancer redirects this request to one of the
available servers. This allows to equilibrate work-load of
servers and provide a best quality of service.

In distributed programming, it allows to optimize work-load
of each machine by establishing a policy to spread tasks on
machines. Some load-balancing algorithms can depend on the
type of distributed network : this network can be synchronous
or asynchronous and its topology can be dynamic.

1. http://setiathome.ssl.berkeley.edu/

D. Dynamic Graph

Execution of simulations distributed by DAGDA can be
described as a dynamic graph, so the concept of graph and
then of a dynamic graph need to be defined.

A graph G is a pair (N, E) where N is a set of elements
called nodes and E is a set of nodes-pair (u, v) called edges
such that u, v ∈ N . A dynamic graph is a sequence Gi =
(Ni, Ei) such that ∀(u, v) ∈ Ei, u, v ∈ Ni. So, it is a graph
that can change over time, by adding/removing nodes and/or
edges, but such that if an edge exists at a time i then its ends
also exist at the same time i.

Nodes of the graph are the entities of the simulations and
edges model interactions between entities. Edges of the graph
modeling the execution are weighted : more intensive is an
interaction between two entities, more important is the weight
of the corresponding edge.

II. ANTCO2

A
NTCO2 is a distributed algorithm dedicated to load
balancing and communication minimisation.

AntCo2 considers only the dynamic graph of the application
to compute the distribution.

As communications and agents appear and disappear, as
the importance of communication evolve, the graph changes.
Therefore the load balancer should also handle this dynamic
process and be able to provide a distribution as the graph
evolve.

Each computing resource is associated with a color, then
by assigning a color to a node, the algorithm specify the
distribution.

One can see the distribution as a weighted partionning of the
graph. In this partionning we try to distribute evenly the load
(number of entities weighted by their computing demand) and
to minimize communications between computing ressources to
avoid saturating the network. These two criteria are conflicting,
therefore a trade-off must be found.

We see the partionning as a dynamic community detection
algorithm. We call such dynamic communities "organizations".
Communities are often seen as group of vertices that are more
densely connected one with another than with the rest of the
graph. An algorithm able to detect organizations is able to
follow communities as they evolve when nodes and edges
appear, evolve and disappear in the communities.

There exists several graph partionning algorithms ([4], [5],
[6]) and community detection algorithms ([7]), but few handle
evolving graphs. It is always possible to restart such algorithms
each time the graph changes, but this would be computatio-
nally intensive. AntCo2 is an incremental algorithm that start
from the previous partionning to compute a new partionning
when the graph changes.

Having a load balancer running on a single machine, to
distribute applications that are often very large could be inef-
ficient. Another goal of AntCo2 is to be able to be distributed
with the application.

AntCo2 uses an approach based on swarm intelligence,
namely colonies of ants. This algorithm provides several
advantages : ants can act with only local knowledge of the

graph representing the application to distribute. AntCo2 tries
to avoid any global computation, therefore allowing it to be
distributed with few communications and no global control.

In AntCo2, each colony represents a computing resource and
has its own color. Inside colonies, ants collaborate to colonize
organizations inside the graph and assign their color to nodes.
Inversely, colonies compete to keep and conquer organizations.

Ants color nodes using numerical colored pheromones cor-
responding to their colony color. Such pheromones "evaporate"
and therefore must be maintained constantly by ants. This
allows to handle graph dynamics by forgetting old partionning
solutions and discovering new solutions by the constant explo-
ration of ants inside the graph. The details of the algorithm
are given in ([8]).

The change of a color for a node indicates a "migration
advice", meaning that the corresponding agent should migrate
on the computing resource associated to the new color. An
inerty mechanism allows to avoid oscillatory advices.

III. DAGDA

D
AGDA is a middleware dedicated to the distribution
of Complex Systems simulations. It uses an existing

middleware as a base which is extended with new features.
The final aim is to provide a simple way to create distributed
complex system simulation.

The main words of Dagda are decentralized, portable,
load-balanced. Decentralized means that there is no restric-
ted set of machines on which depend all machines. Dagda
aims to be as portable as possible, is that any machines
(computer,pda,phone,super-calculator,. . .) can participate to
the distribution.

The used middleware is ProActive[3]. This choice is motiva-
ted by the active object approach which is used in ProActive.

A. Entities

Dagda is based on the concept that the distributed applica-
tion is composed of a massive set of objects. These objects
are called entities and are hosted on a machine by an agency.
Entities are active objects.

Entities can interact with each other and can migrate from
one agency to an other. This rises a problem : how to identify
each entity through the network and how to get a remote
entity ? The second part of this problem, how to get entity, is
treated on section III-B. Entities are identified by an id which
is unique through time and network. Uniqueness is assumed
by the fact that id depends on the agency’s address (agency
who creates the entity) and on a timestamp.

B. Communication between agencies

Dagda aims to have a decentralized architecture so there
is no master server to reference informations as for example
entities location. Therefore, some mechanisms are needed to
provide functionalities like entity-search.

Each agency has a dedicated active object whose role is
to detect other agencies and to provide to user functionalities
through connected agencies.

Agency

Network

AgencyAgency

Node

Entities

Agora
interactions with
other agencies

Load-Balancer
spreads entities

FIGURE 4. Dagda overview

C. Context

A program may have some parameters which create a
context that is used by composants of this program. With
programs running on a simple process, this is easy to do
by declaring global variables. But with distributed programs,
each machine has its own memory and one other can not see
changes.

Dagda creates a context divided in two parts. It contains a
local part which contains parameters that do not have to be
shared. Second part is global and changes on this part will be
spread on all machines. Context users can access to parameters
without local or global distinctions.

D. Interactions Graph

Dagda profiles method calls between entities. For example,
if an entity A calls a method m() of an entity B, this call will
be detected and registered. Then this detection of interactions
between entities is used as provider to a dynamic graph
which models these interactions through the time. Nodes of
this graph are the entities host on the machine and remote
entities such that there is an interaction between these remote
entities and one of the hosted entities. Edges of the graph
represent interactions between entities. Greater is the number
of interactions between two entities, greater is the weight of
the corresponding edge. There is a mechanism which decreases
edges’s weight through the time. The GRAPHSTREAM[9] 2

API is used to create the graph.
This graph can be used by tools, for example to monitor

entities activity and have a look on this activity.

2. http://www.graphstream-project.org

E. Load-balancing

Entities are spread on the available machines with the
ANTCO2 load-balancing algorithm. This choice allows :

– equilibrate the work-load of machines ;
– reduce the network-load ;
– distribute the load-balancer.

Distribution of the load-balancer is an important thing to have
a decentralized platform. In [10], three ways are presented
to run the ANTCO2 algorithm. The first and the second one
run with a restricted set of servers (size of this set is one
in the first case). In these two cases, computing-load of
server is fully used and ANTCO2 has a global view of the
distributed application. The last one uses each machines to
run the algorithm. In this case, only a few computing-load
is used on each machine and ANTCO2 has just a local view
of the distributed application. This case allows to decentralize
ANTCO2, so it has been choosen in DAGDA.

Work-load dedicated to ANTCO2 is function of number of
entities, so by balancing entities-load, it balances itself : it is
auto-distributed.

IV. RESULTS

A
T this time, DAGDA is still in development. The platform
is able to create entities and profile interactions between

them. So it is possible to view the graph of the simulation’s
execution in real time. It is also able to connect agencies and
migrate entities from one agency to another.

A. Test application

To realize some tests, a simple application has been written
which aimed to generate interactions between entities and mi-
grate them between agencies. Entities used for this application
can be described as follows :

TESTENTITY :

attributes :

List<TestEntity> neigh

methods :

call(TestEntity te) {

while(neight.size() > MAX)

neigh.poll();

neigh.add(te);

}

execute() {

int i,j;

i = random() % neigh.size();

j = random() % neigh.size();

neigh.get(i).call(neigh.get(j));

if(random() < P_MIGRATION)

migrateSomewhere();

}

The application creates a set of TestEntity and inits
randomly the neigh attribute of entities. Then each agency
run the execute() method of each hosted entity.

Figure 5 shows the graph of the execution of this application
with 64 entities.

FIGURE 5. Execution of the test program

V. CONCLUSION

In this paper, concepts of middleware and load-balancing
have been described. Then the DAGDA platform which merges
a middleware and the load-balancer ANTCO2 has been pre-
sented.

DAGDA is still in development but it ables to launch a
program and profile execution of this program. Next step is to
finalize implementation of the load-balancer and validate the
platform making battery of tests.

Then we need to provide an application running on DAGDA

and realize tests on performances to show the gain brought by
DAGDA.

RÉFÉRENCES

[1] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular actor
formalism for artificial intelligence,” in IJCAI, 1973, pp. 235–245.

[2] D. P. Anderson, “Public computing : Reconnecting people to science,”
in Conference on Shared Knowledge and the Web, Residencia de
Estudiantes, Madrid, Spain, Nov. 2003.

[3] L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel,
and R. Quilici, Grid Computing : Software Environments and Tools.
Springer-Verlag, January 2006, ch. Programming, Deploying, Compo-
sing, for the Grid.

[4] B. Kernighan and S. Lin, “An efficient heuristic procedure for parti-
tioning graph,” The Bell System Technical Journal, vol. 49, no. 2, pp.
192–307, 1970.

[5] B. Hendrickson and R. Leland, “An improved spectral graph partitioning
algorithm for mapping parallel computations,” SIAM J. Scien. Comput.,
vol. 16, no. 2, pp. 452–469, 1995.

[6] C. M. Fiduccia and R. M. Mattheyses, “A linear time heuristic for impro-
ving network partitions,” in ACM IEEE Design Automation Conference,
1982, pp. 175–181.

[7] M. E. J. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Phys. Rev, vol. 69, 2004.

[8] C. Bertelle, A. Dutot, F. Guinand, and D. Olivier, “Organization
detection for dynamic load balancing in individual-based simulations,”
Multi-Agent and Grid Systems, vol. 3, no. 1, p. 42, 2007. [Online].
Available : http://litis.univ-lehavre.fr/~dutot/biblio/MAGS2007.pdf

[9] A. Dutot, F. Guinand, D. Olivier, and Y. Pigné, “Graphstream : A tool
for bridging the gap between complex systems and dynamic graphs,”
in EPNACS : Emergent Properties in Natural and Artificial Complex

Systems, 2007.

[10] A. Dutot, “Distribution dynamique adaptative à l’aide de mécanismes
d’intelligence collective,” Ph.D. dissertation, Université du Havre - LIH,
2005.

[11] M. K. et al., “Weighted round-robin cell multiplexing in a general-
purpose atm switch chip,” IEEE J. of Selected Areas in Comm., vol. 9,
no. 8, pp. 1265–1279, 1991.

