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Abstract

In this paper, the concept of stochastic ordering is extended to belief functions on the
real line defined by random closed intervals. In this context, the usual stochastic ordering
is shown to break down into four distinct ordering relations, called credal orderings, which
correspond to the four basic ordering structures between intervals. These orderings are
characterized in terms of lower and upper expectations. We then derive the expressions of
the least committed (least informative) belief function credally less (respectively, greater)
than or equal to a given belief function. In each case, the solution is a consonant belief
function that can be described by a possibility distribution. A simple application to
reliability analysis is used as an example throughout the paper.

Keywords: Dempster-Shafer theory, Evidence theory, Random intervals, Ordering re-
lation, Possibility distribution.



1 Introduction

Stochasting ordering is an important concept in Probability theory. Given two probability
distributions P and P ′ on the real line, we say that P is stochastically less than or equal
to P ′ and we write P ≤st P ′ if

P ((x,+∞)) ≤ P ′((x,+∞)), ∀x ∈ R (1)

or, equivalently,
F (x) ≥ F ′(x), ∀x ∈ R, (2)

where F and F ′ are the cumulative distribution functions (cdfs) of P and P ′, respectively
[33]. Intuitively, this means that distribution P attaches less probability to larger values
than P ′ does. It is well known that (1) holds if and only if:∫

g dP ≤
∫

g dP ′, (3)

for all non decreasing real function g for which the expectations (integrals) are defined
[21]. The concept of stochastic ordering has numerous applications in hypothesis testing,
queuing theory, reliability, decision theory, etc.

In recent years, the theory of belief functions, or Dempster-Shafer theory has been
gaining increasing attention as a generalization of probability theory allowing the rep-
resentation of various states of knowledge ranging from complete certainty to outright
ignorance [6, 26, 30, 37]. This formalism has been applied in various areas including
statistics [8, 19], classification [11, 24, 4], clustering [10, 22], data mining [34], decision
analysis [31], knowledge elicitation [17], etc. Roughly speaking, a belief function on a
domain Ω is based on a mass function assigning numbers in the [0, 1] interval to subsets of
Ω, called focal sets. When the domain is the real line, focal sets are usually constrained to
be real intervals [7, 29]. A belief function is then mathematically equivalent to a random
interval.

In this paper, we extend the concept of stochastic ordering to belief functions on the
real line. We show that, in this context, the usual stochastic ordering breaks down into
four distinct orderings, derived from the four basic ordering structures between intervals
1. These orderings, called credal orderings, can be characterized in terms of lower and
upper expectations. We derive the expressions of the least committed (least informative)
belief function credally less (respectively, greater) than or equal to a given belief function.
A running example related to reliability analysis is used as an illustration throughout the
paper.

The rest of this paper is organized as follows. Background notions on belief functions
are recalled in Section 2. Credal orderings are then introduced in Section 3. The expres-
sions of the least committed belief functions subject to credal ordering constraints are
then derived in Section 4. Finally, Section 5 concludes the paper.

2 Belief Functions on the Real Line

In this paper, basic definitions and results related to belief functions will be assumed to
be known. The reader is invited to refer to [26, 30, 28] for extensive presentations of

1Some of these orderings were introduced, without development, in [2] and [3] in the context of novelty
detection.
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these notions. In this section, we will focus on belief functions on the real line that are
mathematically defined as random intervals, as introduced by Dempster in [7] and studied
by Yager [36], Ferson et al. [15], Petitrenaud and Denœux [23] and Smets [29], among
others.

2.1 Belief Function Induced by a Random Interval

Let U and V be random variables such that U ≤ V with probability one, and let Γ be
the multi-valued mapping that maps each point (u, v) ∈ R2 such that u ≤ v to the closed
interval [u, v]. This setting defines a random interval [U, V ] = Γ(U, V ), as well as belief
and plausibility functions on R defined, respectively, by

bel(A) = Pr([U, V ] ⊆ A) (4)
pl(A) = Pr([U, V ] ∩A 6= ∅) (5)

for all element A of the Borel sigma-algebra B(R) on the real line [7]. We note that
pl(A) = 1 − bel(A), where A is the complement of A, and bel ≤ pl. As noted in [7], the
knowledge of the values taken by bel for closed intervals is sufficient to recover the joint
distribution of U and V . Furthermore, the marginal distributions of U and V may be
recovered from the values bel and pl for all intervals of the form (−∞, x]. Indeed, the
following equalities hold for all x ∈ R:

bel((−∞, x]) = Pr([U, V ] ⊆ (−∞, x]) = Pr(V ≤ x) = FV (x) (6)
pl((−∞, x]) = Pr([U, V ] ∩ (−∞, x] 6= ∅) = Pr(U ≤ x) = FU (x). (7)

Let PU and PV denote the probability distributions of U and V , respectively. It is clear
from (6)-(7) that PU ≤st PV , which will be noted U ≤st V .

Although the joint probability distribution of U and V can be arbitrary, we will focus
on two special cases of practical interest, where this distribution is either discrete with a
finite number of outcomes, or absolutely continuous.

Let us first consider the discrete case where Pr(U = ui;V = vi) = mi for i ∈ {1, . . . , n}
with

∑n
i=1 mi = 1. Let Ii = [ui, vi], and let m be the mass function from the set I of

closed real intervals to [0, 1] such that

m(Ii) = mi

for all i ∈ {1, . . . , n} and m(I) = 0 for all other I ∈ I. The belief and plausibility functions
are then given by:

bel(A) =
∑
Ii⊆A

mi, (8)

pl(A) =
∑

Ii∩A6=∅

mi, (9)

for all A ∈ B(R). The intervals Ii are called the focal intervals of m. Note that this
framework can be slightly extended to allow the focal intervals to be open or half-open,
with possibly infinite lower or upper bounds [7]. It can also be extended to allow a mass to
be assigned to the empty set, resulting in an unnormalized mass function [29]. However,
these extensions will not be considered in this paper.
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When the joint probability distribution of U and V is absolutely continuous with
density function f , then we may define a mass density function (or continuous mass
function) m from I to R+ as

m([u, v]) = f(u, v), ∀u ≤ v.

The following equalities then hold:

bel(A) =
∫∫

[u,v]⊆A

f(u, v) dudv, (10)

pl(A) =
∫∫

[u,v]∩A6=∅

f(u, v)dudv, (11)

for all A ∈ B(R). Here again, the intervals [u, v] such that m([u, v]) > 0 are called focal
intervals of m.

Three special cases are of interest:

1. When focal intervals are reduced to points, then bel = pl is a probability measure,
sometimes called in this context a Bayesian belief function.

2. When the focal intervals are nested, m is said to be consonant; the associated plau-
sibility function pl is then a possibility measure [38, 14]. If we denote π(x) = pl({x})
for all x ∈ R, we then have

pl(A) = sup
x∈A

π(x), ∀A ∈ B(R).

Example 1 Let us consider a piece of equipment that fails on demand according to a
Bernouilli process with probability p, and let X denote the random variable taking the
value 1 if the piece of equipment fails, and 0 otherwise. Assume that an expert is asked to
provide his opinion about p. Using the so-called method of consonant intervals [1, page 89],
he may choose a series of n intervals [ui, vi] along with values γi such that bel([ui, vi]) = γi,
and for i < j, γi < γj and [ui, vi] ⊂ [uj , vj ]. These nested intervals are the focal sets of a
discrete mass function mE . The mass assigned to the focal set [ui, vi] is mi = γi − γi−1,
with γ0 = 0.

Let us now assume that, instead of eliciting expert opinion, we have made n indepen-
dent observations X1, . . . , Xn of X, in which the piece of equipment has been found to
fail r times out of n. Based on this data, we would like to express our opinion on p in the
form of a mass function. A solution to this statistical inference problem was provided by
Dempster [5, 7]. This solution takes the form of the continuous mass function:

m([u, v]) =
n!

(r − 1)!(n− r − 1)!
ur−1(1− v)n−r−1 if 0 < r < n, (12)

m([0, v]) = n(1− v)n−1 if r = 0, (13)

m([u, 1]) = nun−1 if r = n. (14)

Let [U, V ] denote the corresponding random interval. If r = 0, U is constant and equal to
zero. If r > 0, the probability density of U is

fU (u) =
∫ 1

u
f(u, v)dv =

n!
(r − 1)!(n− r)!

ur−1(1− u)n−r, (15)
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which is the density of a beta distribution with parameters r and n− r + 1. Similarly, V
is constant and equal to 1 if r = n. If r < n, its probability density is

fV (v) =
∫ v

0
f(u, v)du =

n!
r!(n− r − 1)!

vr(1− v)n−r−1, (16)

which is the density function of the beta distribution with parameters r + 1 and n − r.
Using (7) and (6), we may easily derive the expressions of bel((−∞, p]) and pl((−∞, p]).
If r < n, we have

bel((−∞, p]) = FV (p) =
n!

r!(n− r − 1)!

∫ p

0
vr(1− v)n−r−1dv,

which is the incomplete beta function ratio Ip(r + 1, n − r) [20, page 8]. Using standard
formula [20, page 63], it can be computed as:

bel((−∞, p]) =
n∑

i=r+1

(
n

i

)
pi(1− p)n−i.

Similarly, we have pl((−∞, p]) = FU (p) and, for r > 0:

pl((−∞, p]) =
n!

(r − 1)!(n− r)!

∫ p

0
ur−1(1− u)n−rdu (17)

=
n∑

i=r

(
n

i

)
pi(1− p)n−i. (18)

2.2 Lower and Upper Expectations

Given a mass function m and the associated belief and plausibility functions bel and pl,
let P be the set of probability measures P such that

bel(A) ≤ P (A) ≤ pl(A), ∀A ∈ B(R).

Any P ∈ P is said to be compatible with bel. The lower and upper expectations of a
bounded and measurable function g : R → R with respect to m are defined as:

Em(g) = inf
P∈P

EP (g) (19)

Em(g) = sup
P∈P

EP (g), (20)

where EP (g) =
∫

gdP denotes the expectation of g with respect to P . In the discrete case,
these quantities may be shown [6] to be equal to:

Em(g) =
n∑

i=1

mi inf
x∈Ii

g(x) (21)

Em(g) =
n∑

i=1

mi sup
x∈Ii

g(x). (22)
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In the continuous case, we have [32]:

Em(g) =
∫ +∞

−∞

∫ +∞

u
f(u, v) inf

u≤x≤v
g(x) dvdu (23)

Em(g) =
∫ +∞

−∞

∫ +∞

u
f(u, v) sup

u≤x≤v
g(x) dvdu. (24)

It is obvious that lower and upper expectations boil down to usual expectation when
bel is Bayesian.

Finally, the following proposition holds.

Proposition 1 Let g be a bounded, measurable and nondecreasing function, and let m
be a discrete or continuous mass function on R corresponding to the random set [U, V ].
Then

Em(g) = EU (g), (25)
Em(g) = EV (g), (26)

where EU (·) and EV (·) denote the expectation with respect to the marginal probability
distribution of U and V , respectively.

Proof. In the discrete case, we have

Em(g) =
n∑

i=1

mi inf
x∈Ii

g(x) =
n∑

i=1

mig(ui) = EU (g).

In the continuous case,

Em(g) =
∫ +∞

−∞

∫ +∞

u
f(u, v) inf

u≤x≤v
g(x) dvdu

=
∫ +∞

−∞
g(u)

(∫ +∞

u
f(u, v) dv

)
du

=
∫ +∞

−∞
g(u)fU (u) du,

where fU (u) is the marginal probability density of U . The proof for the upper expectation
is similar. �

Example 2 Continuing Example 1, assume that we want to assess our belief that the
piece of equipment will fail. The degree of belief and the plausibility of that event can be
shown [1, pp. 250-252] to be equal to:

bel(X = 1) = Em(gid), pl(X = 1) = Em(gid),

where m is the mass function representing our state of information regarding parameter
p, and gid : R → R is the bounded and measurable function defined by

gid(x) =

{
x if 0 ≤ x ≤ 1
0 otherwise.
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If m is a discrete mass function mE as described in Example 1, we thus have

bel(X = 1) =
n∑

i=1

miui (27)

pl(X = 1) =
n∑

i=1

mivi. (28)

If m is the continuous mass function given by (12)-(14) and r > 0, then bel(X = 1) =
EU (gid) is the expectation of the beta distribution with parameters r and n − r + 1. We
thus have

bel(X = 1) =
r

n + 1
.

Note that the above formula remains valid for r = 0. Similarly, if r < n, pl(X = 1) =
EV (gid) is the expectation of the beta distribution with parameters r + 1 and n − r. We
thus have

pl(X = 1) =
r + 1
n + 1

.

Again, this formula remains valid for r = n. The corresponding mass function mX regard-
ing the value of X is

mX({0}) =
n− r

n + 1
(29)

mX({1}) =
r

n + 1
(30)

mX({0, 1}) =
1

n + 1
. (31)

2.3 Least Commitment Principle

The Least commitment Principle (LCP) [27], or Principle of Maximum Uncertainty [18]
plays an important role in the theory of belief function, in a way similar to the principle of
maximum entropy in Bayesian Probability Theory. As explained in [27], the LCP states
that, given two belief functions compatible with a set of constraints, the most appropriate
is the least informative.

To make this principle operational, it is necessary to define ways of comparing belief
functions according to their information content. Several such partial orderings have been
defined by Yager [35], Dubois and Prade [13], and Denœux [9]. We will focus here on the
plausibility ordering v defined as follows for belief functions on R: we say that m is more
committed than m′, and we write m v m′ if

pl(A) ≤ pl′(A), ∀A ∈ B(R). (32)

As bel(A) = 1− pl(A) for all Borel set A, this is equivalent to the following condition:

bel(A) ≥ bel′(A), ∀A ∈ B(R). (33)

It is clear that relation v is a partial ordering in the set of real mass functions.
Given two real numbers a and b such that a < b, let M([a, b]) be the set of mass

functions with support in [a, b], i.e., such that all focal intervals are included in interval
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[a, b]. The greatest element of v in M([a, b]) is the vacuous mass function on [a, b],
denoted as m[a,b] and defined by m([a, b]) = 1 and m(I) = 0 for all intervals I 6= [a, b].
The corresponding plausibility function pl[a,b] verifies pl[a,b](A) = 1 for all A ∈ B(R) such
that A ∩ [a, b] 6= ∅.

3 Credal Orderings

As recalled in Section 1, the definition of the stochasting ordering relation is based on the
comparison of probabilities for each event (x,+∞), for any x ∈ R. In the belief function
framework, one associates to each such event no long a single numer, but an interval
defined by its belief and plausibility values. One then has to replace the usual ordering
relation between real numbers by an ordering relation between intervals. As several such
orderings can be defined, we will obtain different extensions of stochastic ordering in the
belief function framework.

3.1 Definitions

Let us consider two intervals [a, b] and [a′, b′]. They can basically be in four positions
[16, 12]:

1. [a, b] . [a′, b′] if and only if a ≤ b′;

2. [a, b] 6 [a′, b′] if and only if a ≤ a′;

3. [a, b] 0 [a′, b′] if and only if b ≤ b′;

4. [a, b] � [a′, b′] if and only if b ≤ a′.

It is clear that . is the weakest of these relations, while � is the strongest one. The
following implications hold:

[a, b] � [a′, b′] ⇒ [a, b] 6 [a′, b′] ⇒ [a, b] . [a′, b′], (34)

[a, b] � [a′, b′] ⇒ [a, b] 0 [a′, b′] ⇒ [a, b] . [a′, b′]. (35)

To each of the above relations between intervals can be associated a relation between belief
functions. More precisely, for any two mass functions m and m′ on R, let us introduce the
following definitions:

1. m . m′ if and only if bel((x,+∞)) ≤ pl′((x,+∞)), ∀x ∈ R ;

2. m 6 m′ if and only if bel((x,+∞)) ≤ bel′((x, +∞)), ∀x ∈ R ;

3. m 0 m′ if and only if pl((x,+∞)) ≤ pl′((x,+∞)), ∀x ∈ R;

4. m � m′ if and only if pl((x, +∞)) ≤ bel′((x,+∞)), ∀x ∈ R.

It is obvious that similar implications as in (34)-(35) hold for these four relations be-
tween mass functions. In the following, they will be referred to as the weak, lower, upper
and strong credal orderings, respectively. Following the usual convention, the correspond-
ing inverse relations will denoted as &, >, 1 and �, respectively.
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3.2 Properties

First of all, it is clear that the above four credal orderings boil down to stochastic ordering
when m and m′ are Bayesian: they thus qualify as valid extensions of this concept in the
belief function setting. The fact that credal orderings extend both stochastic ordering and
interval orderings is consistent with the two complementary views of belief functions as
generalized probability measures and generalized sets [13].

The credal oredrings introduced in this paper should not be confused with the infor-
mational orderings recalled in Section 2.3. However, the following proposition points to a
relationship with the plausibility ordering v.

Proposition 2 For any two mass function m and m′ on R:

m v m′ ⇒
{

m 0 m′

m′ 6 m,

Proof. By definition, m v m′ means that pl(A) ≤ pl′(A) for all Borel set A or, equivalently,
bel(A) ≥ bel′(A) for all Borel set A. Consequently, m v m′ implies that pl((x,+∞)) ≤
pl′((x, +∞)) and bel((x,+∞)) ≥ bel′((x,+∞)) for all x ∈ R, i.e., m 0 m′ and m′ 6 m. �

The four basic credal orderings also admit interesting characterizations in terms of
stochastic inequalities between probability measures associated to mass functions, as ex-
pressed in the following proposition.

Proposition 3 Let m and m′ be two mass functions, and let [U, V ] and [U ′, V ′] be the
corresponding random intervals. The following equivalences hold:

m . m′ ⇔ U ≤st V ′ (36)
m 6 m′ ⇔ U ≤st U ′ (37)
m 0 m′ ⇔ V ≤st V ′ (38)
m � m′ ⇔ V ≤st U ′. (39)

Proof. Direct from (6)-(7). For instance, we have bel((x,+∞)) = 1 − pl((−∞, x]) =
1− FU (x) and bel′((x,+∞)) = 1− pl′((−∞, x]) = 1− FU ′(x) for all x. Hence, m 6 m′ iff
FU ≥ FU ′ , that is, iff U ≤st U ′. �

Lastly, the four credal orderings introduced above also admit a characterization in
terms of lower and upper expectations. This is described in the following proposition.

Proposition 4 Let m and m′ be two mass functions, and let G denote the set of bounded,
measurable and non decreasing real functions. Then we have:

m . m′ ⇔ Em(g) ≤ Em′(g), ∀g ∈ G (40)
m 6 m′ ⇔ Em(g) ≤ Em′(g), ∀g ∈ G (41)
m 0 m′ ⇔ Em(g) ≤ Em′(g), ∀g ∈ G (42)
m � m′ ⇔ Em(g) ≤ Em′(g), ∀g ∈ G. (43)

Proof. From Proposition 3, m 6 m′ ⇔ U ≤st U ′. As recalled in Section 1, this is
equivalent to EU (g) ≤ EU ′(g) for all g ∈ G. Now, from Proposition 1, EU (g) = Em(g) and
EU ′(g) = Em′(g) for all g ∈ G, hence the result. The proof of the other equivalences is
similar. �
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4 Least Committed Mass Function Subject to a Credal Or-
dering Constraint

Let m be a real mass function with support in [a, b] for some real numbers a and b such
that a < b. Let m′ be another mass function in M([a, b]). Assume that m is known,
whereas we only know that m′ is greater (or, alternatively, lower) than or equal to m,
according to one of the credal ordering defined above. We would like to find the least
committed mass function m′ compatible with this constraint. Situations where problems
of this kind may arise include the following:

• We consider two variables X and X ′. Our beliefs on X are represented by m.
Additionally, we believe that X ′ tends to take greater values than X. How to
quantify our beliefs on X ′ using a mass function?

• We consider one variable X and two different contexts C and C ′. When C holds,
our beliefs on X are represented by m. When C ′ holds, we have less information
and we are not able to express our belief on X directly as a mass function. However,
we believe that X tends to take lower values than when C holds. How to quantify
our beliefs on X in context C ′?

The above problem may be formalized as follows. Let

S [a,b]
R (m) = {m′ ∈M([a, b]) | m′Rm}

for some ordering relation R in {.,&,6,>,0,1,�,�}. We would like to find the least-
committed element in SR(m), if it exists. The solutions are described in the following
subsections.

4.1 Solution for R ∈ {., &, 1, 6}

The cases where R ∈ {.,&,1,6} are relatively simple. We have seen in Section 2.3 that
the vacuous mass function on [a, b], denoted as m[a,b], is the greatest element in M([a, b])
for the v relation, i.e, m v m[a,b] for all m ∈ M([a, b]). From Proposition 2, it follows
that the following relations hold for all m ∈M([a, b]):

m[a,b] 6 m, m[a,b] . m, m[a,b] 1 m, m[a,b] & m.

We may conclude that m[a,b] is the least commited element in S [a,b]
R (m) for R ∈ {.,&,1

,6} and all m ∈M([a, b]).
This trivial result shows that constraints of the form m′Rm with R ∈ {.,&,1,6} for

fixed m are too weak to result in the selection of an informative, i.e., non vacuous mass
function m′. As will be shown, the four other types of credal inequality constraints lead
to more useful solutions. These solutions are detailed in the following subsections, and
summarized in Table 1.

4.2 Constraint of the form m′ > m

The following proposition shows that the problem of finding the least committed mass
function m′ in M([a, b]) such that m′ > m for given m in M([a, b]) has a simple solution.
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As this solution is consonant, it is more concisely described by its corresponding possibility
distribution. This is done in Proposition 5. The expressions of the corresponding mass
function in the discrete and continuous cases are then given in Propositions 7 and 8,
respectively.

Proposition 5 The least committed element in S [a,b]
> (m) exists and is unique. It is the

consonant mass function m> with possibility distribution π> given by

π>(x) =

{
pl((−∞, x]) if x ≤ b,

0 if x > b,
(44)

where pl is the plausibility function associated to m.

Proof. Let m′ ∈M([a, b]). We have m′ ∈ S [a,b]
> (m) iff it verifies the following constraints:

bel′((x,+∞)) ≥ bel((x,+∞)), ∀x ∈ R

or, equivalently,
pl′((−∞, x]) ≤ pl((−∞;x]), ∀x ∈ R. (45)

In particular, for pl> defined by (44), we have

pl>((−∞, x]) = sup
y≤x

π>(y) = pl((−∞, x]).

Consequently, condition (45) is verified by m>. To show that m> is least committed, we
need to prove that if m′ ∈ S [a,b]

> (m), then m′ is more committed than m>, i.e., pl′(A) ≤
pl>(A) for all A. So, let m′ be an arbitrary mass function in S [a,b]

> (m). Let A be a Borel
set on R. If A ∩ [a, b] = ∅, then pl′(A) = pl>(A) = 0, since m′ ∈ M([a, b]). Assume that
A ∩ [a, b] 6= ∅, and let s = sup(A ∩ [a, b]). We have A ∩ [a, b] ⊆ (−∞, s] and, consequently

pl′(A) = pl′(A ∩ [a, b]) ≤ pl′((−∞, s]) ≤ pl((−∞; s]) = π>(s).

Since function π> is non decreasing and right-continuous on (−∞, b], (where it is identical
to the cdf of U), we have π>(s) = supx≤s π>(x) = pl>(A). Consequently,

pl′(A) ≤ pl>(A), ∀A ∈ B(R),

which shows that m> is indeed the least committed mass function in S [a,b]
> (m). �

The following propositions give the expressions of the random interval [U>, V>] as well
as the mass function m> associated to π>, in the discrete and continuous cases.

Proposition 6 Let [U>, V>] be the random interval associated to π> defined in Proposi-
tion 5. The cdfs of U> and V> are

FU>(x) = FU (x), (46)
FV>(x) = H(x− b), (47)

for all x ∈ R, where H is the Heaviside step function defined by H(u) = 1 if u ≥ 0 and
H(u) = 0 otherwise.
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Proof. By constrution, pl>((−∞, x]) = pl((−∞, x]) for all x, hence FU> = FU . Now,

FV>(x) = bel>((−∞, x]) (48)
= 1− pl>((x,+∞)) (49)
= 1− sup

y>x
π>(y) (50)

=

{
0 if x < b

1 if x ≥ b.
(51)

�

Proposition 7 Let m be a discrete mass function with focal intervals [ui, vi] ⊆ [a, b],
i = 1, . . . , n and masses m([ui, vi]) = mi, i = 1, . . . , n. Let u(1) < u(2) < . . . < u(`) be
the ` distinct values of u1, . . . , un. Then m> defined in Proposition 5 is a discrete mass
function with the following expression:

m>([u(j), b]) =
∑

{i|ui=u(j)}

mi, j = 1, . . . , `. (52)

Proof. The mass function m> defined by (52) is consonant. Let π> be the corresponding
possibility distribution. If x > b then π>(x) = 0. If x ≤ b,

π>(x) =
∑

{j|u(j)≤x}

m>([u(j), b])

=
∑

{j|u(j)≤x}

∑
{i|ui=u(j)}

mi

=
∑

{i|ui≤x}

mi = pl((−∞, x]),

which is identical to (44). �

Proposition 8 Let m be a continuous mass function. Then m> defined in Proposition 5
is a continuous mass function with the following expression:

m>([u, b]) = fU (u), ∀u ≤ b. (53)

Proof. Let m> be defined by (53). It is consonant. Let π> be the corresponding possibility
distribution. If x > b then π>(x) = 0. If x ≤ b,

π>(x) =
∫ x

a
m>([u, b]) du

=
∫ x

a
fU (u)du

= FU (x).

Then, by Equation (7), we have

FU (x) = pl((−∞, x])

11



and hence
π>(x) = pl((−∞, x])

which is identical to (44). �

Example 3 Let us come back to Example 1. Assume that m represents the available
information regarding the failure probability p of a component in standard operating con-
dition, and we want to assess our beliefs regarding the failure probability p′ of the same
component in a different, more stringent environment, for which we have no data. We
only know that the failure probability in this new environment tends to be higher than
the failure probability in standard operating condition. If this piece of knowledge is mod-
elled using the lower ordering and if we accept the least commitment principle, then our
knowledge regarding p′ should be represented by the mass function m> derived from m.

Let us first assume that m is a discrete mass function constructed from expert opinion
using the method of consonant intervals. Furthermore, let us assume that the following
numerical values were obtained:

m([0.1, 0.15]) = 0.3, m([0.05, 0.3]) = 0.4,

m([0, 0.3]) = 0.2, m([0, 1]) = 0.1.

Using (52), we get
m>([0.1, 1]) = 0.3, m>([0.05, 1]) = 0.4,

m>([0, 1]) = 0.2 + 0.1 = 0.3.

If F> denotes the set of focal sets of m>, then, by definition of a possibility distribution,
we have

π>(p) =
∑

I∈F>,p∈I

m>(I)

and we easily obtain

π>(p) =


0 if p < 0 or p > 1,

0.3 if 0 ≤ p < 0.05
0.7 if 0.05 ≤ p < 0.1
1 if 0.1 ≤ p ≤ 1.

Let us now assume that m is the continuous mass function resulting from the observation
of r failures out of n trials and defined by (12)-(14). If r = 0, then fU is a Dirac delta
function centered at zero, and we get m>([0, 1]) = 1. If r > 0, fU is given by (15). Using
(53), we get

m>([u, 1]) =
n!

(r − 1)!(n− r)!
ur−1(1− u)n−r, ∀u ∈ [0, 1].

As in Example 2, we can also compute the belief and plausibility that the component will
fail in the new environment. Let SE denote the proposition that the component will be
used in the new, more stringent environment. We have

bel(X = 1|SE) = Em>
(gid) =

r

n + 1
pl(X = 1|SE) = Em>(gid) = 1.

12



The corresponding mass function is

mX({0}|SE) = 0 (54)

mX({1}|SE) =
r

n + 1
(55)

mX({0, 1}|SE) =
n− r + 1

n + 1
, (56)

which can be compared to (29)-(31).

4.3 Constraint of the form m′ 0 m

The problem of finding the least committed mass function m′ subject to a constraint of the
form m′ 0 m for fixed m is symmetrical to that described in the previous subsection. We
first give the expression of the possibility distribution in Proposition 9, and then provide
the expressions for the corresponding mass functions in the discrete and continuous cases
in Propositions 11 and 12, respectively.

Proposition 9 The least committed element in S [a,b]
0 (m) exists and is unique. It is the

consonant mass function m0 with possibility distribution π0 given by

π0(x) =

{
0 if x < a,

pl([x, +∞)) if x ≥ a,
(57)

where pl is the plausibility function associated to m.

Proof. Let m′ ∈M([a, b]). We have m′ ∈ S [a,b]
0 (m) iff it verifies the following constraints:

pl′((x,+∞)) ≤ pl((x, +∞)), ∀x ∈ R.

Let us show that the above condition is verified for m0 defined by (57). We have

pl0((x,+∞)) = sup
y>x

π0(y) = sup
y>x

pl([y, +∞)) = pl((x,+∞)),

for all real x. Furthermore,

pl0([x,+∞)) = sup
y≥x

π0(y) = π0(x) = pl([x,+∞)),

for all real x. To show that m0 is least committed, we need to prove that if m′ ∈ S [a,b]
0 (m),

then m′ is more committed than m0, i.e., pl′(A) ≤ pl0(A) for all A. So, let m′ be an
arbitrary mass function in S [a,b]

0 (m). Let A be a Borel set on R. If A ∩ [a, b] = ∅, then
pl′(A) = 0, since m′ ∈M([a, b]). Assume that A ∩ [a, b] 6= ∅, and let i = inf A ∩ [a, b]. We
have A ∩ [a, b] ⊆ [i, +∞) and, consequently

pl′(A) = pl′(A ∩ [a, b]) ≤ pl′([i, +∞)) ≤ pl([i, +∞)) = π0(i).

Since function π0 is non increasing and left-continuous on [a,+∞), we have π0(i) =
supx≥i π0(x) = pl0(A). Consequently,

pl′(A) ≤ pl0(A), ∀A ∈ B(R),

which shows that m0 is indeed the least committed mass function in S [a,b]
0 (m). �

The following three propositions are the direct counterparts of Propositions 6, 7 and
8. The proofs are immediate.

13



Proposition 10 Let [U0, V0] be the random interval associated to π0 defined in Propo-
sition 9. The cdfs of U0 and V0 are

FU0(x) = H(x− a), (58)
FV0(x) = FV (x), (59)

for all x ∈ R.

Proposition 11 Let m be a discrete mass function with focal intervals [ui, vi] ⊆ [a, b],
i = 1, . . . , n and masses m([ui, vi]) = mi, i = 1, . . . , n. Let v(1) < v(2) < . . . < v(q) be the q
distinct values of v1, . . . , vn. Then m0 defined in Proposition 9 is a discrete mass function
with the following expression:

m0([a, v(j)]) =
∑

{i|vi=v(j)}

mi, j = 1, . . . , q. (60)

Proposition 12 Let m be a continuous mass function. Then m0 defined in Proposition
9 is a continuous mass function with the following expression:

m0([a, v]) = fV (v), ∀v ≥ a. (61)

Example 4 Let us continue Example 3, assuming now that the piece of equipement will
be used in a more favorable environment in which the probability of failure p′ is expected
to be lower than the one corresponding to standard operating conditions. In the discrete
case, we get, with the same figures as in Example 3:

m0([0, 0.15]) = 0.3, m0([0, 0.3]) = 0.4 + 0.2 = 0.6,

m0([0, 1]) = 0.1.

The corresponding possibility distribution is given by (57):

π0(p) =


0 if p < 0 or p > 1,

1 if 0 ≤ p ≤ 0.15
0.7 if 0.15 < p ≤ 0.3
0.1 if 0.3 < p ≤ 1.

Let us now consider the continuous case where m is given by (12)-(14). If r = n, then fV

is the Dirac delta function centered at one. If r < n then fV is given by (16) and we get,
using (61):

m0([0, v]) =
n!

r!(n− r − 1)!
vr(1− v)n−r−1, ∀v ≥ 0.

Let FE denote the proposition that the piece of equipment will be used in a more favorable
environment than the standard operating conditions. We have

bel(X = 1|FE) = Em0
(gid) = 0

pl(X = 1|FE) = Em0(gid) =
r + 1
n + 1

.

14



The corresponding mass function is

mX({0}|FE) =
n− r

n + 1
(62)

mX({1}|FE) = 0 (63)

mX({0, 1}|FE) =
r + 1
n + 1

, (64)

which, again, can be compared to (29)-(31).

4.4 Constraint of the form m′ � m

In this subsection, we give the counterpart of the result presented in Section 4.2, for a
constraint of the form m′ � m for given m. As we shall see, the solution is quite similar
to that presented in Section 4.2. The proofs are similar and will only be sketched.

Proposition 13 The least committed element in S [a,b]
� (m) exists and is unique. It is the

consonant mass function m� with possibility distribution π� given by

π�(x) =

{
bel((−∞, x]) if x ≤ b,

0 if x > b,
(65)

where bel is the belief function associated to m.

Proof. Let m′ ∈M([a, b]). We have m′ ∈ S [a,b]
� (m) iff it verifies the following constraints:

pl((x,+∞)) ≤ bel′((x,+∞)), ∀x ∈ R

or, equivalently,
pl′((−∞, x]) ≤ bel((−∞;x]), ∀x ∈ R.

In particular, this condition is verified by m� defined by (65). For an arbitrary m′ ∈
S [a,b]
� (m), the largest value that can be given to pl′((−∞, x]) is thus bel((−∞, x]). Assume

that pl′((−∞, x]) = bel((−∞;x]), for all x ∈ R. Using the same line of reasoning as for
the proof of Proposition 5, it can be shown that m� is the least committed mass function
verifying these constraints. �

The following propositions give the expressions of the random interval [U�, V�] as well
as the mass function m�,in the discrete and continuous cases.

Proposition 14 Let [U�, V�] be the random interval associated to π� defined in Propo-
sition 13. The cdfs of U� and V� are

FU�(x) = FV (x), (66)
FV�(x) = H(x− b), (67)

for all x ∈ R.

Proof. The proof is identical to that of Proposition 6.
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Proposition 15 Let m be a discrete mass function with focal intervals [ui, vi] ⊆ [a, b],
i = 1, . . . , n and masses m([ui, vi]) = mi, i = 1, . . . , n. Let v(1) < v(2) < . . . < v(q) be
the q distinct values of v1, . . . , vn. Then m� defined in Proposition 13 is a discrete mass
function with the following expression:

m�([v(j), b]) =
∑

{i|vi=v(j)}

mi, j = 1, . . . , q. (68)

Proof. It can be checked that the mass function m� defined by (68) is consonant, and
that the corresponding possibility distribution π� is identical to (65). �

Proposition 16 Let m be a continuous mass function. Then m� defined in Proposition
13 is a continuous mass function with the following expression:

m�([u, b]) = fV (u), ∀u ≤ b. (69)

Proof. Let m� be the mass function defined by (69). It is consonant. Let π� be the
corresponding possibility distribution. If x > b then π�(x) = 0. If x ≤ b,

π�(x) =
∫ x

a
m�([u, b]) du

=
∫ x

a
fV (u)du

= FV (x).

Then, by Equation (6), we have

FV (x) = bel((−∞, x])

and hence
π�(x) = bel((−∞, x])

which is identical to (65). �

Example 5 Let us again return to our reliability analysis problem. As in Example 3,
m is a mass function on the failure probability p of a component in standard operating
condition, and we want to assess our beliefs regarding the failure probability p′ of the same
component in a more stringent environment. As before, we only know that the failure
probability in this new environment tends to be higher than the the failure probability in
standard operating condition. Assume that this piece of knowledge is now modelled using
the strong ordering.

Let us first consider the case where m is discrete, with the same numerical values as
in Example 1. Using (68), we get

m�([0.15, 1]) = 0.3, m�([0.3, 1]) = 0.4 + 0.2 = 0.6,

m�({1}) = 0.1.
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The corresponding possibility distribution is given by (65):

π�(p) =


0 if p < 0.15 or p > 1,

0.3 if 0.15 ≤ p < 0.3
0.9 if 0.3 ≤ p < 1
1 if p = 1.

Let us now assume that m is continuous and defined by (12)-(14). If r = n, then fV is a
Dirac delta function centered at one, and we get m�({1}) = 1. If r < n, fV is given by
(16). Using (69), we get

m�([v, 1]) =
n!

r!(n− r − 1)!
vr(1− v)n−r−1, ∀v ∈ [0, 1].

As before, let SE denote the proposition that the component will be used in the more
stringent environment. We have

bel(X = 1|SE) = Em�(gid) =
r + 1
n + 1

pl(X = 1|SE) = Em�(gid) = 1.

The corresponding mass function is

mX({0}|SE) = 0

mX({1}|SE) =
r + 1
n + 1

mX({0, 1}|SE) =
n− r

n + 1
,

which can be compared to (29)-(31) and (54)-(56). In particular, we observe that, if the
piece of equipment has failed in all trials under the standard operating conditions (r = n),
we find that mX({1}|SE) = 1, i.e., we are sure that the same piece of equipment will fail
in the more stringent environment. This result is somewhat paradoxical, which suggests
that the constraint imposed by the use of the strong credal ordering is too stringent in
this example.

4.5 Constraint of the form m′ � m

The solution for the case where R is equal to � is symmetrical to that presented in the
previous section, and somewhat similar to that for 0 presented in Section 4.3. The results
will be stated here without proof, for completeness.

Proposition 17 The least committed element in S [a,b]
� (m) exists and is unique. It is the

consonant mass function m� with possibility distribution π� given by

π�(x) =

{
0 if x < a,

bel([x, +∞))) if x ≥ a,
(70)

where bel is the belief function associated to m.
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Proof. The proof is similar to those of Propositions 5 and 13. �
The following propositions are the counterparts of Propositions 14, 15 and 16. Their

proofs are quite similar.

Proposition 18 Let [U�, V�] be the random interval associated to π� defined in Propo-
sition 17. The cdfs of U� and V� are

FU�(x) = H(x− a), (71)
FV�(x) = FU (x), (72)

for all x ∈ R.

Proposition 19 Let m be a discrete mass function with focal intervals [ui, vi] ⊆ [a, b],
i = 1, . . . , n and masses m([ui, vi]) = mi, i = 1, . . . , n. Let u(1) < u(2) < . . . < u(`) be
the ` distinct values of u1, . . . , un. Then m� defined in Proposition 17 is a discrete mass
function with the following expression:

m�([a, u(j)]) =
∑

{i|ui=u(j)}

mi, j = 1, . . . , `. (73)

Proposition 20 Let m be a continuous mass function. Then m� defined in Proposition
17 is a continuous mass function with the following expression:

m�([a, v]) = fU (v), ∀v ≥ a. (74)

Example 6 To complete our study, let us continue the same problem as in Example 4,
in which it was assumed that the piece of equipement will be used in a more favorable
environment. The probability of failure p′ is then expected to be lower than the one
corresponding to standard operating conditions. Here, this piece of knowledge will be
represented using the strong credal ordering. In the discrete case, we get, with the same
figures as in Example 3:

m�([0, 0.1]) = 0.3, m�([0, 0.05]) = 0.4,

m�({0}) = 0.2 + 0.1 = 0.3.

The corresponding possibility distribution is given by (70):

π�(p) =


0 if p < 0 or p > 0.1,

1 if p = 0
0.7 if 0 < p ≤ 0.05
0.3 if 0.05 < p ≤ 0.1.

Let us now consider the continuous case where m is given by (12)-(14). If r = 0, then fU

is the Dirac delta function centered at zero, and we have m�({0}) = 1. If r > 0 then fU

is given by (15) and we get, using (74):

m�([0, u]) =
n!

(r − 1)!(n− r)!
ur−1(1− u)n−r, ∀u ∈ [0, 1].
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Denoting, as before, by FE the proposition that the piece of equipment will be used in a
more favorable environment than the standard operating conditions, we have

bel(X = 1|FE) = Em�(gid) = 0

pl(X = 1|FE) = Em�(gid) =
r

n + 1
.

The corresponding mass function is

mX({0}|FE) =
n− r + 1

n + 1
mX({1}|FE) = 0

mX({0, 1}|FE) =
r

n + 1
,

which can be compared to (29)-(31) and (62)-(64). As in Example 6, we may remark that
the obtained mass function seems too specific: if r = 0, i.e., the piece of equipement never
failed in standard operating conditions out of n trials, then we find mX({0}|FE) = 1,
corresponding to the certainty that the piece of equipement will not fail in future use
under less stringent conditions. This again suggests that the use of the strong credal
ordering is not fully appropriate in that case.

5 Conclusions

The usual concept of stochastic ordering between probability distributions has been ex-
tended to belief functions on the real line, resulting in four distinct ordering relations cor-
responding to the four basic orderings between intervals. Each of these orderings admits
a characterization in terms of lower or upper expectations, generalizing a corresponding
result in the case of stochastic ordering and standard expectation. Note that the approach
described here is quite different from that presented in [25], where Dempster-Shafer theory
is used to compare real intervals or fuzzy numbers, and the result of the comparison is
given in the form of a belief interval or a fuzzy number.

The problem of finding the least committed belief function subject to a credal ordering
constraint has then been studied in detail for each of the four basic credal orderings. In
each case, the solution has been found to be a consonant belief function that can be
described by a possibility distribution. The obtained formula may be used to model
uncertain ordinal information such as “X is likely to be greater than Y ” or “X tends to
take smaller values in context C1 than in context C2”, in the belief function framework.
More complex constraints such as “X is likely to be greater than Y and smaller than Z”
could also be considered, using a similar approach.

The initial motivation of this work arose from a novelty detection application [2, 3], in
which we have data for only one state S of a system under study, and we want to design
a decision rule that detects the occurence of unknown states. Typically, one designs a
“novelty measure” X whose probability distribution given S can be learnt from data, and
which is expected to take higher values when the system is in any of the unknown states.
Using the concepts introduced in this paper, it is possible to model our knowledge of X
when the system is in an unknown state as a belief function, and to derive a decision rule
using the Generalized Bayes Theorem [27]. More results in this direction will be reported
in future publications.
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