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—–

Abstract: In 1996, Ricardo Ricardo Mañé discovered that Mather measures are in fact the minimizers
of a ”universal” infinite dimensional linear programming problem. This fundamental result has many
applications, one of the most important is to the estimates of the generic number of Mather measures.
Mañé obtained the first estimation of that sort by using finite dimensional approximations. Recently,
we were able with Gonzalo Contreras to use this method of finite dimensional approximation in order
to solve a conjecture of John Mather concerning the generic number of Mather measures for families of
Lagrangian systems. In the present paper we obtain finer results in that direction by applying directly
some classical tools of convex analysis to the infinite dimensional problem. We use a notion of countably
rectifiable sets of finite codimension in Banach (and Frechet) spaces which may deserve independent
interest.

—–

Résumé: En 1996, Ricardo Mañé a découvert que les mesures de Mather peuvent être obtenues comme

solutions d’un problème variationnel convexe ”universel” de dimenion infinie. Ce résultat fondamental

a de nombreuses applications, il permet par exemple d’estimer le nombre de mesures de Mather des

systèmes génériques. Mañé a obtenu la première estimation de ce type en utilisant une approximation par

des problèmes variationnels de dimension finie. Nous avons récemment utilisé cette méthode avec Gonzalo

Contreras pour résoudre une conjecture de John Mather sur le nombre générique de mesures minimisantes

dans les familles de systèmes Lagrangians. Dans le présent article, on obtient des résultat plus fins dans

cette direction en appliquant directement au problème de dimension infinie des méthodes classiques de

l’analyse convexe. On étudie pour ceci une nouvelle notion d’ensembles rectifiables de codimension finie

dans les espaces de Banach (ou de Frechet) qui est peut-être intéressante en elle même.

∗This is version 2, the first version was submitted in July 2008
1membre de l’IUF
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1 Introduction

Let M be a compact connected manifold without boundary. We want to study the dynamical
system on TM generated by a Tonelli Lagrangian

L : TM −→ R.

By Tonelli Lagrangian we mean a C2 function L : TM −→ R such that, for each x ∈ M , the
function v 7−→ L(x, v) is superlinear and convex with positive definite Hessian. Note then that
the superlinearity is uniform with respect to x, see [15], section 3.2. To each Tonelli Lagrangian
is associated a complete C1 flow ψt on TM , with the property that a curve (x(t), v(t)) is a
trajectory of ψt if and only if (i) v(t) = ẋ(t) and (ii) the curve x(t) solves the Euler-Lagrange
equation

d

dt
(∂vL(x(t), ẋ(t))) = ∂xL(x(t), ẋ(t)).

We call this flow the Euler-Lagrange flow associated to L. A standard example is the mechanical
case where

L(x, v) =
1

2
‖v‖2x − V (x),

the associated Euler Lagrange equation is just the Newton equation

ẍ(t) = −∇V (x(t)).

Variational methods offer interesting tools to investigate the orbits of the Euler-Lagrange flow.
We recall the following well-known fact: A C1 curve x(t) (or more generally an absolutely
continuous curve x(t)) satisfies the Euler-Lagrange equation on an open interval I if and only
if, for each t0 ∈ I, there exists ǫ > 0 such that [t0 − ǫ, t0 + ǫ] ⊂ I and such that

∫ t0+ǫ

t0−ǫ

L(x(t), ẋ(t))dt <

∫ t0+ǫ

t0−ǫ

L(γ(t), γ̇(t))dt

for all C1 curves γ : [t0−ǫ, t0+ǫ] −→M different from x and satisfying the boundary conditions
γ(t0 − ǫ) = x(t0 − ǫ) and γ(t0 + ǫ) = x(t0 + ǫ).

One of the standard applications of variational methods is to the existence of periodic orbits.
This can be done as follows. Fix a positive real number T and a homology class w ∈ H1(M,Z).
Let W 1,1(T,w) be the set of absolutely continuous curves x : R −→ M which are T -periodic
and have homology w (when seen as closed loops on M). It is a classical result that the action
functional

W 1,1(T,w) ∋ γ 7−→

∫ T

0
L(γ(t), γ̇(t))dt

has a minimum, and that the minimizing curves are C2 and solve the Euler-Lagrange equation.
This is a way to prove the existence of many periodic orbits of the Euler-Lagrange flow.

John Mather had the idea to apply variational methods to measures instead of curves. Let
I(L) be the set of compactly supported Borel probability measures on TM which are invariant
under the Euler-Lagrange flow. Note that, if x(t) is a T -periodic solution of the Euler-Lagrange
equation, then we associate to it an invariant measure µ characterized by the property that

∫

TM

f(x, v)dµ(x, v) =
1

T

∫ T

0
f(x(t), ẋ(t))dt

for each continuous and bounded function f on TM . In this case, we see that the action of
the curve x is just T

∫

TM
Ldµ. This suggests to take

∫

TM
Ldµ as the definition of the action
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of a probability measure. A Mather measure is then defined as a minimizer of the action on
I(L). John Mather proved in [20] that Mather measures exist, and moreover that they are
supported on a Lipschitz graph. More precisely, there exists a Lipschitz vectorfield Y (x) on M
(which depends on the Lagrangian L, but not on the Mather measure) such that all the Mather
measures of L are supported on the graph of Y .

In the mechanical case where L = ‖v‖2/2−V (x), the Mather measures are just the invariant
measures associated to the rest points maximizing V (and therefore one can take Y ≡ 0 in this
case). So we have not gained much insight in the dynamics of the Euler-Lagrange flow of these
Lagrangians at that point. A trick due to John Mather yet allows to obtain further information
from his theory. Recall first that, if ω is a closed form on M , that we see as a function on TM
linear in each fiber, then the Tonelli Lagrangian

L̃(x, v) = L(x, v) + ωx · v

generates the same Euler-Lagrange flow as L. This can be seen easily by considering the varia-
tional characterization of the Euler-Lagrange equation. The remark of Mather is that, although
L and L̃ generate the same flow, they do not have the same Mather measures. Actually, the
Mather measures of L̃ = L+ω depend only on the cohomology of ω in H1(M,R). By definition,
they are invariant measures of the flow of L. If the cohomology group H1(M,R) is not trivial,
this construction allows to find non-trivial measures supported on Lipschitz graphs for mechan-
ical Lagrangians. In order to simplify the notations for the sequel, we associate once and for all
to each cohomology class c ∈ H1(M,R) a smooth closed one-form cx · v which has cohomology
c. We assume that the form depends linearly on the class. We denote by L+ c the Lagrangian
L(x, v) + cx · v. Finally, we denote by M(L) the set of Mather measures of L. It is a convex
subset of I(L).

The Mather measures are very important objects in themselves, but they also appear as
building blocks for more elaborate constructions of orbits of Lagrangian systems as initiated in
[21] (see also [6, 7, 10, 11]). It is useful for these constructions to be able to understand the
dimension of M(L). An important result was obtained by Ricardo Mañé in 1996, see [18]:

Theorem 1. Let L be a Tonelli Lagrangian, and let σ∞(L) be the set of those potentials V ∈
C∞(M) such that the Tonelli Lagrangian L − V has more than one Mather measure. The set
σ∞(L) is a meager set in the sense of Baire category. It means that it is contained in the union
of countably many nowhere dense closed sets.

When applied in the mechanical case, L = ‖v‖2/2 this theorem states that generic smooth
functions on M have only one maximum, which is of course not a new result. More interesting
situations appear by considering modified kinetic energies L = ‖v‖2/2+ωx · v. For applications,
however, it is necessary to treat simultaneously all the sets M(L − V + c), c ∈ H1(M,R). We
were recently able with Gonzalo Contreras to extend the result of Mañé in that direction, see
[4]. These results imply Mañé Theorem as well as the following:

Theorem 2. Let L be a Tonelli Lagrangian. Let Σ∞
k (L) be the set of potentials V ∈ C∞(M)

such that, for some c ∈ H1(M,R), dim(M(L − V + c)) > k. Then, if k > b1 (where b1 =
dimH1(M,R)), the set Σ∞

k (L) is Baire meager in C∞(M).

In the sequel, we shall fix p ∈ {2, 3, . . . ,∞} and consider potentials in Cp(M) instead of
C∞(M) (note that the case p = ∞ is still included). We call Σp

k(L) the set of potentials
V ∈ Cp(M) such that

max
c∈H1(M,R)

dim(M(L− V + c)) > k.

The results we have recalled above remain valid, with the same proof, in this context. They
state that it is exceptional in the sense of Baire category to have too many Mather measures.

3



Now in the separable Frechet space Cp(M,R), there are plenty of other notions of small sets,
which are at least as relevant as the Baire category, and are more in the spirit of having measure
zero (although there is not a single way to define sets of measure zero on infinite dimensional
spaces). Good introductions to these notions and to the literature concerning them are [3], [23]
and [13]. In dynamical systems, the most popular notion is prevalence, that we now define:

A subset A of a Frechet space B is said Haar-null if there exists a compactly supported Borel
probability measure m on B such that m(A + x) = 0 for each x ∈ B. This concept was first
introduced by Christensen in the separable case, see [12] or [3]. It was used as a description of the
smallness of the sets of non Gâteau differentiability of Lipschitz functions on separable Frechet
spaces. It was then rediscovered in the context of dynamical systems, where the name prevalence
appeared, see [22]. A prevalent set is the complement of a Haar-null set. It is proved in [22]
that some versions of the Thom Transversality Theorem still hold in the sense of prevalence.

Another notion is that of Aronzsajn-null sets, or equivalently of Gaussian-null sets, see [13]
or [3]. They can be defined as those sets which have zero measure for all Gaussian measure, see
[23], [13] and Section 3 for more details. The complement of an Aronzsajn-null set is prevalent.

One can wonder whether the smallness results discussed above concerning the dimension of
M(L) still hold for these notions of small sets. Since these notions have first been introduced to
deal with non-differentiability points of Lipschitz or convex functions, and since the proof of the
genericity results recalled above boils down to abstract convex analysis, it is not very surprizing
that the answer is positive. It is implied by the following stronger statement expressed in terms
of a notion of countably rectifiable sets that will be defined in Section 2:

Theorem 3. Let L be a Tonelli Lagrangian and let p ∈ {2, 3, . . . ,∞} and k > b1 be given, where
b1 is the first Betti number of M (the dimension of H1(M,R)). The set Σp

k(L) is countably
rectifiable of codimension k− b1 in Cp(M). As a consequence, for each k > b1, the set Σp

k(L) is
meager in the sense of Baire and Aronszajn-null. Its complement is prevalent.

We will give in Section 5 a more general result which implies Theorem 3 and many similar
statements. For example, the set σpk(L) of those potentials V ∈ Cp(M) such that dim(M(L −
V )) > k is countably rectifiable of codimension k. This is a refined version of Mañé’s result.

Here is an example of a new application: In perturbation theory, one often fixes a Lagrangian
L and a potential V and studies the dynamics generated by L − ǫV , for ǫ small enough. The
following result is then useful:

Corollary 1. Let L be a Tonelli Lagrangian and let p ∈ {2, 3, . . . ,∞} be given. Let Ap
k(L) be

the set of potentials V ∈ Cp(M) such that

sup
ǫ>0,c∈H1(M,R)

dim(M(L− ǫV + c)) > k.

If k > 1+b1 (b1 is the dimension of H1(M,R)), then Ap
k(L) is countably rectifiable of codimension

k − (1 + b1) in C
p(M). As a consequence, the set Ap

k(L) is Baire-meager and Aronszajn-null.

This Corollary is proved in Section 5. Rectifiable sets of finite codimension in Banach spaces
are defined and studied in Section 2. To our knowledge, this is the first systematic study of this
class of sets, whose definition is inspired by some recent works of Luděk Zaj́ıček in [25]. We
extend the definition to Frechet spaces in Section 3 and prove in this more general setting that
rectifiable sets of positive codimension are Baire-meager, Haar-null and Aronszajn-null. The
proof follows [25]. In section 4, we study the action of differentiable mappings on rectifiable sets
in separable Banach spaces. We believe that this study is of independent interest, and hope
that it will have other applications. The proof of Theorem 3 (and of a more general statement)
is then exposed in section 5. Actually, it consists mainly of stating appropriately some of the
ideas developed by Mañé in [18] in order to reduce Theorem 3 to an old result of Zaj́ıček on
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monotone set-valued maps, see [24]. This approach gives a more precise answer with an easier
proof than the finite dimensional approximation used in [18] and in [4].

2 Rectifiable sets of finite codimension in Banach spaces

In a finite dimensional Banach space R
n, one can say that a subset A is countably rectifiable

of codimension d if there exist countably many Lipschitz maps Fi : R
n−d −→ R

n such that A
is contained in the union of the ranges of the maps Fi. Many authors also add a set of zero
(n− d)-dimensional Hausdorff measure, but we do not.

In an infinite dimensional Banach space B, a first attempt might be to define a rectifiable
set of codimension d as a set contained in the countable union of ranges of Lipschitz maps
Fi : Bi −→ B, where Bi are closed subspaces of B of codimension d. A closer look shows
that this definition does not prevent B itself from being rectifiable of positive codimension.
For instance, if B is a separable Hilbert space, then B × R

n is also a separable Hilbert space.
Therefore, it is isomorphic to B, and there exists a Lipschitz (linear) map B −→ B ×R

n which
is onto. We thus need a finer definition, and the recent work of Luděk Zaj́ıček in [25] opens the
way.

A continuous linear map L : B −→ B1 is called Fredholm if its kernel is finite dimensional
and if its range is closed and has finite codimension. We say that L is a Fredholm linear map
of type (k, l) if k is the dimension of the kernel of L and l is the codimension of its range. The
index of L is the integer k− l. Recall that the set of Fredholm linear maps is open in the space of
continuous linear maps (for the norm topology), and that the index is locally constant, although
the integers k and l are not. They are lower semi-continuous. To better understand the meaning
of the index, observe that, when B and B1 have finite dimension n and n1, then the index of all
linear maps is i = n− n1.

Definition 2. Let B be a Banach space. We say that the subset A ⊂ B is a Lipschitz graph of
codimension d if there exists:

• a splitting B = D⊕T of B, where T is a linear subspace of dimension d and D is a closed
linear subspace,

• a subset D1 of D,

• a Lipschitz map g : D1 −→ T ,

such that
A = {(x1 ⊕ g(x1)) : x1 ∈ D1}.

We then say that A is a Lipschitz graph transverse to T .
We say that the set A ⊂ B is a rectifiable set of codimension d if there exist an integers k,

a Banach space B1, and a Fredholm linear map P : B1 −→ B of type (k, 0) such that

A ⊂ P (A1),

where A1 ⊂ B1 is a Lipschitz graph of codimension d+ k.
Finally, we say that the subset A ⊂ B is countably rectifiable of codimension d if it is

contained in the union of countably many rectifiable sets of codimension d.

This definition is directly inspired by a recent work of Zaj́ıček [25], who proves that the
rectifiable sets of positive codimension according to this definition are small sets (see Section 3
for more details). In particular, the space B is not countably rectifiable of positive codimension
in itself. This legitimates the systematic study of these sets initiated in the present paper.
Denoting by Rd(B) the collection of all countably rectifiable subsets of codimension d in B, we
have Rd+1(B) ⊂ Rd(B). This requires a proof:
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Lemma 3. If A is countably rectifiable of codimension d + 1, then it is countably rectifiable of
codimension d.

Proof. We first prove that a Lipschitz graph A of codimension d+1 is rectifiable of codimension
d. Let T be a transversal to A, and let D be a complement of T in B. Let g : D ⊃ D1 −→ T
be a Lipschitz map such that A = {x⊕ g(x) : x ∈ D1}. Let S be a one dimensional subspace of
T . The Lipschitz graph A2 ⊂ D × S × T defined by

A2 = {(x, λ, g(x) − λ) : x ∈ D1, λ ∈ S}

has codimension d+ 1. On the other hand, we have A ⊂ P (A2), where P : D × S × T −→ B is
defined by

P : (x, λ, t) 7−→ x+ λ+ t

which is of type (1, 0). As a consequence, A is rectifiable of codimension d.
Assume now that A is rectifiable of codimension d + 1, and write it A = L(Ã), where Ã is

a Lipschitz graph of codimension d + i + 1 and L is linear Fredholm of type (i, 0). Since Ã is
rectifiable of codimension d + i, it can be written Ã = P (Ã1), where P is linear Fredholm of
type (l, 0) and Ã1 is a Lipschitz graph of codimension d + l + i. Now we have A = L ◦ P (Ã1),
and L ◦P is linear Fredholm of type (i+ l, 0). As a consequence, A is rectifiable of codimension
d.

Let us describe the action of Fredholm linear maps on rectifiable sets.

Lemma 4. Let L : B −→ B1 be a linear Fredholm map of index i, and let A ⊂ B be a rectifiable
subset of codimension d. Then L(A) is rectifiable of codimension d− i in B1.

Proof. If A = P (A′), where A′ ⊂ B′ is a Lipschitz graph of codimension d+k and P : B′ −→ B
is Fredholm of type (k, 0), then L(A) = L ◦ P (A′), and L ◦ P has index k + i. So it is enough
to prove the statement when A is a Lipschitz graph.

We now assume that A is a Lipschitz graph of codimension d. Let K be the kernel of L, let
K̆ be a complement of K in B, let R be the range of L and R̆ be a complement of R in B1. The
set A × 0 is a Lipschitz graph of codimension d+ dim R̆ in B × R̆. On the other hand, the set
L(A) can also be written L̃(A×0), where L̃ : B× R̆ −→ B1 is defined by L̃(b, r) = L(b)+r. The
linear map L̃ is Fredholm of type (dimK, 0), hence L(A) = L̃(A×0) is rectifiable of codimension
d+ dimR− dimK = d− i.

Lemma 5. Let L : B1 −→ B be a linear map between two Banach spaces B1 and B. Assume that
kerL has a closed complement in B1 and that the range of L is closed and has finite codimension
l. If A is a countably rectifiable set of codimension d in B, then L−1(A) is countably rectifiable
of codimension d− l in B1.

Proof. Let R ⊂ B be the range of L. The set A ∩R is countably rectifiable of codimension d
in B. Since A ∩R = π(A ∩R), where π : B −→ R is a linear projection onto R, and since π is
a Fredholm map of type (l, 0), we conclude that A ∩ R is countably rectifiable of codimension
d − l in R. Let us now consider a splitting B1 = R1 ⊕ K1, where K1 is the kernel of L. Let
L̃ : R1 −→ R be the restriction of L to R1. Note that L̃ is a linear isomorphism, and therefore
L̃−1(A∩R) is countably rectifiable of codimension d− l in R1. The conclusion now follows from
the observation that L−1(A) = L̃−1(A ∩R)×K1.
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It is obvious from the definition that Rd(B) is a translation-invariant σ-ideal of subsets of
B. More precisely, we have:

A ∈ Rd(B), A′ ⊂ A =⇒ A′ ∈ Rd(B),

An ∈ Rd(B) ∀n ∈ N =⇒ ∪n∈NAn ∈ Rd(B),

A ∈ Rd(B), b ∈ B =⇒ b+A ∈ Rd(B).

When B = R
n a countably rectifiable set of codimension d is what it should be: a set which

is contained in the union of the ranges of countably many Lipschitz maps fi : R
n−d −→ R

n.
Indeed such an range can be written as the projection on the second factor of the graph of fi in
R
n−d × R

n. Some relations between finite-dimensional rectifiable sets and infinite dimensional
rectifiable sets of finite codimension are given in 2.2. They are used in Section 3 to prove,
following Zaj́ıček (see [25]), that rectifiable sets of finite codimension are small. A consequence
of these results is that a countably rectifiable set of positive codimension has empty interior. As
a consequence, we obtain:

Lemma 6. In a Banach space, a closed linear subspace of codimension d is rectifiable of codi-
mension d, but not countably rectifiable of codimension d+ 1.

Proof. Let B1 be a closed subspace of codimension d in B. We can see B1 as the range of
a linear Fredholm map P : B −→ B1 of type (d, 0). Since B1 = P (B1), if B1 was countably
rectifiable of codimension d+1 in B, it would be countably rectifiable of codimension 1 in itself,
which is in contradiction with the fact that countably rectifiable sets of positive codimension
have empty interior.

2.1 Lipschitz graphs of finite codimension

We collect here some classical useful facts concerning Lipschitz graphs. Given a closed linear sub-
space T of a Banach space B, we consider the quotient space B/T and the canonical projection
π : B −→ B/T . We endow B/T with the quotient norm ‖.‖ defined by ‖y‖ := infx∈π−1(y) ‖x‖.
It is well-known that B/T is then itself a Banach space. If B1 is a closed complement of T , then
π|B1

is a Banach space isomorphism onto B/T .

Proposition 7. The following statements are equivalent for a subset A ⊂ B and a finite di-
mensional (or more generally closed with a closed complement) subspace T of B:

1. There exists a closed complement D of T in B, a subset D1 ⊂ D and a Lipschitz map
g : D1 −→ T such that A = {x⊕ g(x) : x ∈ D1}.

2. For each closed complement D of T in B, there exists a subset D1 ⊂ D and a Lipschitz
map g : D1 −→ T such that A = {x⊕ g(x) : x ∈ D1}.

3. The restriction to A of the natural projection π : B −→ B/T is a bi-Lipschitz homeomor-
phism onto its image.

In this case, we say that A is a Lipschitz graph transverse to T .

Proof. If 1. holds, then π(A) = π(D1), and the restriction π|A can be inverted by the Lipschitz
map

x 7−→ π−1
|D (x)⊕ g(π−1

|D (x))

so we have 3.

7



Let us now assume 3. If D is a complement of T , then we have 2. with D1 = π−1
|D (π(A)) and

g = P ◦ π−1
|A

◦ π|D,

where P : B −→ T is the projection associated to the splitting B = D⊕T . This map is Lipschitz
since we have assumed that π−1

|A is Lipschitz.

Proposition 8. Let A be a Lipschitz graph transverse to T in B. Then there exists δ > 0
such that, if F : B −→ B is Lipschitz with Lip(F ) < δ, then (Id + F )(A) is a Lipschitz graph
transverse to T .

Proof. We consider a complement D of T in B, a subset D1 of D and a Lipschitz map
g : D1 −→ T such that A = {x⊕g(x) : x ∈ D1}. Let us set G(x) = x⊕g(x). Let π : B −→ B/T
be the canonical projection. We want to prove that π ◦ (Id+F ) restricted to A is a bi-Lipschitz
homeomorphism. It is equivalent to prove that

π ◦ (Id+ F ) ◦G = Id+ π ◦ F ◦G

is a bi-Lipschitz homeomorphism of D1 onto its image. This holds if Lip(π ◦ F ◦G) < 1 by the
classical inversion theorem for Lipschitz maps. But Lip(π ◦ F ◦G) 6 Lip(F )Lip(G).

We have two useful corollaries:

Lemma 9. Let A ⊂ B be a Lipschitz graph of codimension d, and let F : U −→ B1 be a C1

diffeomorphism onto its range, where U is an open subset of B. For each a ∈ A∩U , there exists
an open neighborhood V ⊂ U of a such that F (A ∩ V ) is a Lipschitz graph of codimension d.

Lemma 10. Given a Lipschitz graph A ⊂ B of codimension n, the set of tranversals to A is
open for the natural topology on n-dimensional linear subspaces of B.

Proof of Lemma 10: Let Gd(B) be the set of d-dimensional linear subspaces of B. Let
L(B) be the set of bounded linear selfmaps of B. Let A be a Lipschitz graph transverse to
T ∈ Gd(B). By Proposition 8, there exists δ > 0 such that (Id + L)(A) is a Lipschitz graph
transverse to T when L ∈ L(B) satisfies ‖L‖ 6 δ. We can assume that δ < 1, which im-
plies that the linear map (Id + L) is a Banach space isomorphism. As a consequence, the set
A = (Id+L)−1

[

(Id+L)(A)
]

is a Lipschitz graph transverse to (Id+L)−1(T ). In other words, for
each L ∈ L(B) such that ‖L‖ 6 δ, the space (Id+L)−1(T ) is a transversal to A. These spaces,
when L vary, form a neighborhood of T in Gd(B) because the linear maps {(Id+L)−1, ‖L‖ 6 δ}
form a neighborhood of the identity in L(B).

2.2 Pre-transversals of Rectifiable sets

Let us now return to rectifiable sets which are not necessarily Lipschitz graphs.

Definition 11. Let A be a rectifiable subset of codimension d in the Banach space B. We say
that the subspace Q ⊂ B is a pre-transversal of A if there exists:

• A Banach space B1 and a Fredholm map P : B1 −→ B of type (k, 0).

• A Lipschitz graph A1 such that P (A1) = A.

• A transversal T of A1 in B1 such that P|T is an isomorphism onto Q = P (T ).
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The dimension of T and Q is necessarily d+ k.

Lemma 12. Let A be a rectifiable subset of codimension d > 1 in the Banach space B. Then
there exists an integer n > d such that the set of pre-transversals of A contains a non-empty
open set of Gn(B) (the set of all n-dimensional linear subspaces of B).

Proof. Let us write A = P (A1), where P : B1 −→ B is a Fredholm map of type (k, 0) and
A1 ⊂ B1 is a Lipschitz graph of codimension d + k. Let K be the kernel of P , and let T0 be
a transversal of A1 such that T0 ∩ K = 0, such a transversal exists by Lemma 10. Then, by
definition, P (T0) = Q0 is a pre-transversal of A. Let B2 be a complement of K in B1 containing
T0, and let U ⊂ Gd+k(B2) be a neighborhood of T0 in the space of (d+k)-dimensional subspaces
of B2. If U is small enough, then each T ∈ U (seen as a subspace of B1) is a transversal of A1

such that T ∩K = 0, so that Q = P (T ) is a pre-transversal of A. Since P|B2
is an isomorphism,

the spaces P (T ), T ∈ U form a neighborhood of Q0 in Gd+k(B).

Lemma 13. Let A be a rectifiable subset of codimension d in the Banach space B. If Q is
a pre-transversal to A, then (A + x) ∩ Q is rectifiable of codimension d (or equivalently it is
rectifiable of dimension (dimQ)− d) in the finite dimensional space Q for each x ∈ B.

Proof. We have A = P (A1) and Q = P (T ), where P : B1 −→ B is Fredholm of type (k, 0)
and where A1 is a Lipschitz graph transverse to T . Let K ⊂ B1 be the kernel of P , we have
K ∩ T = 0. The relation

(A+ x) ∩Q = P
(

(A1 + y) ∩ (T ⊕K)
)

holds for each point y ∈ P−1(x). The set (A1 + y) ∩ (T ⊕K) is a Lipschitz graph of dimension
at most k = dimK in T ⊕ K. As a consequence, the set P ((A1 + y) ∩ (T ⊕K)) is rectifiable
of dimension at most k in Q. In other words, it is rectifiable of codimension d (recall that
dimQ = d+ k).

The closure of a Lipschitz graph of codimension d is obviously a Lipschitz graph of codimen-
sion d. This property does not hold for rectifiable sets, but we have:

Lemma 14. Each rectifiable set of codimension d is contained in a rectifiable set of codimension
d which is a countable union of closed sets.

Proof. Using the notations of Definition 2, we have A = P (A1), where A1 is a Lipschitz graph
of codimension d in B1. The closure Ā1 of A1 is a Lipschitz graph of codimension d, hence P (Ā1)
is rectifiable of codimension d. Let us write Ā1 = ∩i∈NA

i
1 where the sets Ai

1, i ∈ N are closed
bounded subsets of Ā1. Note that the sets Ai

1 are Lipschitz graphs. We claim that P (Ai
1) is

closed for each n, which implies the thesis. Consider a sequence an of points of P (Ai
1) converging

to a in B. We want to prove that a ∈ P (Ai
1). Let B̃1 be a closed complement of kerP in B1,

and let xn be the sequence of preimages of an in B̃1. Since P|B̃1
is an isomorphism, the sequence

xn has a limit x in B̃1 with P (x) = a. The point x does not necessarily belong to Ai
1, but there

exists a sequence kn in kerP such that xn ⊕ kn ∈ A1 and such that P (xn ⊕ kn) = an. The
sequence kn is bounded because A1 is bounded, and therefore it has a subsequence converging
to a limit k in the finite dimensional space kerP . We have x⊕ k ∈ Ai

1 because Ai
1 is closed, and

thus a = P (x⊕ k) belongs to P (Ai
1).
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3 Rectifiable sets in Frechet spaces

In this section, we work in the more general setting of Frechet spaces. A Frechet space F is a
complete topological vector space whose topology is generated by a countable family of semi-
norms ‖.‖k, k ∈ N. Equivalently, the topology on F is generated by a translation invariant
metric which turns F into a complete metric space. The main example here is C∞(M). Let us
first define Lipschitz graphs and rectifiable sets in the context of Frechet spaces.

Definition 15. We say that the set A ⊂ F is a Lipschitz graph of codimension d if there exists
a continuous linear map P : F −→ B with dense range in the Banach space B such that P (A)
is a Lipschitz graph of codimension d in B.

This definition is coherent with the already existing one in the case where F is a Banach
space in view of the following:

Proposition 16. Let F and B be Banach spaces, and let P : F −→ B be a continuous linear
map with dense range. If A ⊂ B is a Lipschitz graph of codimension d in B, then P−1(A) is a
Lipschitz graph of codimension d in F .

Proof. Let T be a transversal of A which belongs to the range of P (such a transversal exists
by Lemma 10), and let B̃ be a complement of T in B. Let T ′ ⊂ F be a subspace such that P|T ′

is an isomorphism onto T , and let F̃ be the preimage of B̃. Note that F = F̃ ⊕ T ′. This can
be proved as follows: let π : B −→ T and π̃ : B −→ B̃ be the projections corresponding to the
splitting B = T⊕B̃. Each point f ∈ F can be written f = t+(f−t) with t = P−1

|T ′
◦π◦P (f) ∈ T ′.

It is enough to see that P (f− t) ∈ B̃. This inclusion holds because P (f− t) = P (f)−π(P (f)) =
π̃(P (f)) ∈ B̃. Let g : B̃ ⊃ D −→ T be the Lipschitz map such that A = {x ⊕ g(x), x ∈ D}.
Setting D′ = P−1(D) and g′ = P−1

|T ′
◦ g ◦ P , we get that

P−1(A) = {f ⊕ g′(f), f ∈ D′}

and g′ : D′ −→ T ′ is Lipschitz.

Proposition 17. The following statements are equivalent for a subset A of the Frechet space
F :

• There exists a Banach space B and a continuous linear map P : F −→ B with dense range
such that P (A) is rectifiable of codimension d in B.

• There exists a Frechet space F1, a continuous linear map π1 which is Fredholm of type
(k, 0), and a Lipschitz graph A1 of codimension d+ k in F1 such that A = π1(A1).

We say that A is rectifiable of codimension d if these properties are satisfied.

Proof. Assume that there exists a linear Fredholm map π1 : F1 −→ F as in the statement.
Then, there exists a Banach space B1 and a continuous linear map P1 : F1 −→ B1 with dense
range such that P1(A1) is a Lipschitz graph of codimension d + k in B1. The space K :=
P1(ker π1) ⊂ B1 has dimension at most k. Let us set B := B1/K, and let π : B1 −→ B be the
standard projection. There is a unique map P : F −→ B such that P ◦ π1 = π ◦ P1. In other
words, the following diagram commutes.

F1
P1−−−−→ B1

π1





y

π





y

F
P

−−−−→ B
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Let us check that P has dense range and that P (A) is rectifiable of codimension d. The range
of P is the range of π ◦ P1, which is dense because π is onto and P1 has dense range. We have
P (A) = P (π1(A1)) = π(P1(A1)) which implies that P (A) is rectifiable of codimension d because
P1(A1) is a Lipschitz graph of codimension d+ k and π has type (k′, 0) with k′ 6 k.

Conversely, assume that P : F −→ B exists as in the statement. Then there exists a Lip-
schitz graph A′

1 of codimension d + k in some Banach space B1 and a linear Fredholm map
π : B1 −→ B of type (k, 0) such that P (A) = π(A′

1). Let K be the kernel of π, which has
dimension k, and let us set F1 := F ×K. Let π1 : F1 −→ F be the projection on the first factor.
In order to complete the diagram with a map P1 : F1 −→ B1, we consider a right inverse L of π,
(which is a Fredholm linear map of type (0, k)) and set P1(f, k) = L(P (f)) + k. Note then that
P ◦π1 = π ◦P1. The range of P1 is π−1(P (F )), it is dense because the range of P is dense. As a
consequence, the set A1 := P−1

1 (A′
1) is a Lipschitz graph of codimension d+k, by definition. On

the other hand, the map π1 is Fredholm of type (k, 0) hence the thesis follows from the inclusion
A ⊂ π1(A1). In order to prove this inclusion, let us consider a point a ∈ A. There exist a′1 ∈ A′

1

such that π(a′1) = P (a). Then there exists a1 ∈ A1 such that π ◦ P1(a1) = P (a), which implies
that P (π1(a1)) = P (a). As a consequence, the difference f := a− π1(a1) belongs to kerP . Let
us consider the point b1 = a1 + (f, 0) ∈ F1. We have P1(b1) = P1(a1) ∈ A′

1, thus b1 ∈ A1. On
the other hand, π1(b1) = π1(a1) + f = a hence a ∈ π1(A1).

A subset A ∈ F is said countably rectifiable of codimension d if it is a countable union of
rectifiable sets of codimension d. The special case F = C∞(M) may help to understand the
definitions.

Lemma 18. A subset A ∈ C∞(M) is rectifiable of codimension d if and only if there exists p ∈ N

and a set A′ ⊂ Cp(M) which is rectifiable of codimension d and such that A = C∞(M) ∩A′.

Proof. Assume that A is rectifiable of codimension d. Then there exists a Banach space B
and a continuous linear map P : C∞(M) −→ B with dense range such that A′ = P (A) is
rectifiable of codimension d. Then, the map P is continuous for some Cp norm and extends to
a continuous linear map Pp : Cp(M) −→ B for some p. Since the map Pp has dense range, the
set Ap = P−1

p (A′) is rectifiable of codimension d, and A ⊂ Ap ∩C∞(M).
Conversely, if A = C∞(M) ∩ A′ for some rectifiable set A′ ⊂ Cp(M), then we have

A = P−1(A′), where P : C∞(M) −→ Cp(M) is the standard inclusion. This inclusion is
continuous with dense range hence A is rectifiable.

We shall now explain, following Zaj́ıček (see [25]) that rectifiable sets of positive codimension
in Frechet spaces are small in various meanings of that term. We first recall definitions.

A subset A ⊂ F is called Baire-meager if it is contained in a countable union of closed sets
with empty interior. Baire Theorem states that a Baire-meager subset of a Frechet space has
empty interior.

A subset A ⊂ F is called Haar-null if there exists a compactly supported Borel probability
measure µ on F such that µ(A+f) = 0 for all f ∈ F . The equality µ(A+f) = 0 means that the
set A + f is contained in a Borel set Ãf such that µ(Ãf ) = 0. A countable union of Haar-null
sets is Haar-null, see [12, 3] and [22] for the non-separable case.

A subset A ⊂ F of a separable Frechet space F is called Aronszajn-null if, for each sequence
fn generating a dense subset of F , there exists a sequence An of Borel subsets of F such that
A ⊂ ∪nAn and such that, for each f ∈ F and for each n, the set

{x ∈ R : f + xfn ∈ An} ⊂ R

has zero Lebesque measure. A countable union of Aronszajn-null sets is Aronszajn-null, and
each Aronszajn-null set is Haar null, see [1, 3].
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Theorem 4. Let F be a Frechet space, and let A ⊂ F be countably rectifiable of positive
codimension. Then A is Baire-meager, Haar null, and (if F is separable) Aronszajn-null.

This Theorem is due to Luděk Zaj́ıček (see [25]) in the case of Banach spaces. The extension
to Frechet spaces that we now expose is not very different.

Proof of Theorem 4: Let A be a rectifiable set of positive codimension in the Frechet
space F , and let P : F −→ B be a continuous linear map with dense image in the Banach
space B such that P (A) is rectifiable of positive codimension. We can assume without loss of
generality that A = P−1(P (A)).

Let us prove that A is Baire meager. By Lemma 14, we can assume without loss of generality
that P (A) is a countable union of closed sets in B, which implies that A = P−1(P (A)) is a
countable union of closed sets in F . It is thus enough to prove that A has empty interior. Let Q̃
be a pre-transversal of P (A) in B (see Definition 11) contained in P (F ). Such a space Q̃ exists
by Lemma 12 because P has dense range. Let Q ⊂ F be a linear subspace such that P|Q is an

isomorphism onto Q̃. Given f ∈ F , the set (A+ f) ∩Q has empty interior in Q, and therefore
there exists a sequence qn ∈ Q such that qn −→ 0 (in Q thus in F ) and (f + qn) 6∈ A. We
conclude that the complement of A is dense in F .

Let us prove that A is Haar-null. Let Q̃ be a pre-transversal of A contained in P (F ) (see
Definition 11 and Lemma 12) and let Q ⊂ F be a linear space such that P|Q is an isomorphism

onto Q̃. Let µ be the normalized Lebesgue measure on a bounded open subset of Q, that we
also see as a compactly supported Borel probability measure on F . Since all rectifiable sets of
positive codimension in the finite-dimensional space Q have zero Lebesgue measure, we conclude
that µ(A+ f) = 0 for each f ∈ F . Therefore, A is Haar-null in F .

Finally, we assume that F is separable and prove that A is Aronszajn-null. Let fn ∈ F be
a sequence generating a dense subspace of F . Since P has a dense range, the sequence P (fn)
generates a dense subset in B. As a consequence, there exists an integer N such that the space

vect{P (fn), n 6 N} ⊂ B

contains a pre-transversal Q̃ of P (A). Then, the space

FN := vect{fn, n 6 N} ⊂ F

contains a subspace Q such that P|Q is an isomorphism onto Q̃. Since (A + f) ∩ Q has zero
Lebesgue measure in Q for each f ∈ F , we conclude from Fubini Theorem that A ∩ (Fn − f)
has zero Lebesque measure in FN for each f ∈ F . By standard arguments, (see for example [3],
Proposition 6.29, p 144 or [1], Proposition 1, p 151) this implies that A can be written as the
union

A = ∪n6NAn

of Borel sets An which are such that the set

{x ∈ R : f + xfn ∈ An}

has zero measure in R for each f ∈ F and each n 6 N .

4 Countably rectifiable sets and differential calculus

In separable Banach spaces, the concepts of countably rectifiable sets can be localized and
behaves well with differential calculus. This section is not used in the proof of our results in
Lagrangian dynamics, except a small part of it for Corollary 1.

12



We say that a set A ⊂ B is locally countably rectifiable of codimension d if, for each a ∈ A,
there exists a neighborhood U of a in B such that U ∩A is countably rectifiable of codimension
d. Every countably rectifiable set is obviously locally countably rectifiable, and conversely we
have:

Lemma 19. Let B be a separable Banach space. If the subset A ⊂ B is locally countably
rectifiable of codimension d, then it is countably rectifiable of codimension d.

Proof. The space A is a separable metric space for the metric induced from the norm of B,
and therefore it has the Lindelöf property: each open cover of A admits a countable subcover.
Now the hypothesis of local countably rectifiability implies that A can be covered by a union of
open subsets of A each of which is countably rectifiable of codimension d in B. Therefore, by the
Lindelöf property, A is the union of countably many sets each of which is countably rectifiable
of codimension d in B.

Let B and B1 be two Banach spaces, U ⊂ B be an open subset of B, and F : U −→ B1

be a C1 map. We say that F is Fredholm if the Frechet differential dFx is Fredholm at each
x ∈ U . If U is connected, then the index of dFx does not depend on x, we say that this is the
index of F . The following result shows that rectifiable sets of codimension d in separable Banach
spaces could have been equivalently defined as the image by a C1 Fredholm map of index i of a
Lipschitz graph of codimension d+ i.

Proposition 20. Let B and B1 be separable Banach spaces, let U be an open subset of B, and
let A ⊂ U be a countably rectifiable set of codimension d. If F : U −→ B1 is a C1 Fredholm
map of index i then F (A) is countably rectifiable of codimension d− i in B1.

Proof. It is enough to prove that, for each i and d, the image of a Lipschitz graph of codimension
d by a Fredholm map of index i is locally countably rectifiable of codimension d− i. In fact, if
A = ∪nPn(An) is a countably rectifiable set of codimension d, where An are Lipschitz graphs of
codimension d+ in and Pn are linear Fredholm maps of type (in, 0), then F (A) = ∪nF ◦Pn(An).
The map F ◦Pn is Fredholm of index i+in, and therefore, if our claim is proved, then F ◦Pn(An)
is countably rectifiable of codimension (d+ in)− (i+ in) = d− i.

So we now assume that A is a Lipschitz graph. In order to prove that the image F (A) is
countably rectifiable of codimension d − i, it is enough to prove that each point a ∈ A has a
neighborhood U in A such that F (U) is countably rectifiable of codimension d − i. Let a ∈ A
be given. Assume that the linear Fredholm map dFa is of type (k, l). There is a local C1

diffeomorphism φ of B around a and a splitting B = B1 ⊕ C of B, with dimC = l, such that
F = F̃ ◦ φ in a neighborhood of a, where F̃ is of the form

x 7−→ π(x)⊕ f(x),

where π : B −→ B1 is a linear Fredholm map of type (k, 0) and f : B −→ C is a C1 map
satisfying dfa = 0, see [9], Theorem 1.1. By Lemma 9, φ(A) is locally a Lipschitz graph of
codimension d. In other words, there exists a neighborhood U of a in A such that φ(U) is a
Lipschitz graph of codimension d. Hence there exists a splitting B = B̃ ⊕ T , a subset D̃ ⊂ B̃,
and a Lipschitz map g : D̃ −→ T such that φ(U) = {x⊕g(x) : x ∈ D̃}. Let us define A2 ⊂ B×C
as

A2 :=
{(

x, f(x)
)

: x ∈ φ(U)
}

=
{(

x̃⊕ g(x̃), f(x̃⊕ g(x̃))
)

: x̃ ∈ D̃
}

.

Since the map
D̃ ∋ x̃ 7−→ (g(x̃), f(x̃⊕ g(x̃)) ∈ T × C
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is Lipschitz, the set A2 is a Lipschitz graph transverse to T×C in B×C, it is thus of codimension
d+ l. Now the set F̃ (A) is just the image of A2 by the linear map

B × C ∋ (x, z) 7−→ π(x)⊕ z ∈ B.

This linear map is Fredholm of type (k, 0), so by definition F̃ (A) is rectifiable of codimension
d+ l − k = d− i.

The following direct corollary is especially important:

Corollary 21. Let B be a separable Banach space, U ⊂ B and open set, and φ : U −→ B a C1

diffeomorphism onto its image V . Then the set A ⊂ U is countably rectifiable of codimension d
if and only if its image φ(A) is countably rectifiable of codimension d.

A consequence of all these observations is that the notion of countably rectifiable subsets of
codimension d is well-defined in separable manifolds modeled on separable Banach spaces:

Definition 22. Let W be a separable C1 manifold modeled on the separable Banach space B.
The set A ⊂ B is said countably rectifiable of codimension d if, for each point a ∈ A, there exists
a neighborhood U ⊂W of a in W and a chart φ : U −→ V ⊂ B such that φ(U ∩A) is countably
rectifiable of codimension d in B.

In view of Corollary 21, if A is a countably rectifiable set of codimension d in W and
φ : U ⊂W −→ V ⊂ B is any chart of W , then φ(A ∩U) is countably rectifiable of codimension
d in B. Obviously, when W = B, this definition of countably rectifiable sets of codimension d
coincides with the former one. Proposition 20 has a straightforward generalization:

Theorem 5. Let W and W1 be separable manifolds modeled on separable Banach spaces, and
let A ⊂ W be a countably rectifiable set of codimension d. If F : W −→ W1 is a C1 Fredholm
map of index i then F (A) is countably rectifiable of codimension d− i in W1.

If W and W1 are two separable manifolds modeled on separable Banach spaces B and B1,
the C1 map F : W −→W1 is called a submersion at x if the differential dFx : TxW −→ TF (x)W1

is onto, and if its kernel splits (if these conditions are satisfied, we say that dFx is a linear
submersion). It means that there exists a closed linear subspace B̃ in TxM such that TxM =
ker(dFx)⊕ B̃. It is known that the map F is a submersion at x if and only if there exist local
charts at x and F (x) such that the expression of F in these charts is a linear submersion. The
following statement then follows from Lemma 5:

Proposition 23. LetW andW1 be two separable manifolds modeled on separable Banach spaces.
Let A ⊂ W1 be a countably rectifiable subset of codimension d, and let F : W −→ W1 be a C1

map which is a submersion at each point of F−1(A). Then F−1(A) is countably rectifiable of
codimension d.

5 Application to Lagrangian systems

We now return to the study of Minimizing measures of Lagrangian systems. Let us begin with
a general abstract result:

Theorem 6. Let F be a Frechet space of C2 functions on TM (but not necessarily with the C2

topology) and U be an open subset of F . Assume that

• The topology on F is stronger than the compact-open topology. In other words, for each
compact set K ⊂ TM the natural map F −→ C(K) is continuous.
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• The space F contains a dense subset of C(M) ( where the functions of C(M) are seen as
functions on TM).

• For each f ∈ U , the function L− f is a Tonelli Lagrangian.

Then, for each k ∈ N, the set

{f ∈ U : dim(M(L− f)) > k}

is a countable union of Lipschitz graphs of codimension k in F (and therefore it is countably
rectifiable of codimension k).

Before we turn to the proof, let us see how to derive the statements of the introduction from
this result.

By taking U = F = Cp(M), p ∈ {2, 3, . . . ,∞}, we obtain that the set σp(L) of functions
f ∈ Cp(M) such that L − f has more than one Mather mesure is countably rectifiable of
codimension 1, which is stronger than the Theorem of Mañé (Theorem 1).

Proof of Theorem 3: As earlier, let us identify the spaceH1(M,R) with a b1-dimensional
space of smooth forms, and therefore with a b1-dimensional space of funtions on TM . Let us
take U = F = H1(M,R) × Cp(M), and apply Theorem 6. We obtain that the set of pairs
(c, f) ∈ H1(M,R) × Cp(M) such that dim(M(L − c− f)) > k is countably rectifiable of codi-
mension k. Since Σp

k is the projection of this set on the second factor Cp(M), we conclude by
Proposition 17 that Σp

k is countably rectifiable of codimension k − b1.

Proof of Corollary 1: Let Pp : Cp(M) −→ C2(M) be the standard inclusion, which is
a continuous linear map with dense range. We observe that

Ap
k(M) = A2

k(M) ∩ Cp(M) = P−1
p (M)

so, by Proposition 17, it is enough to prove the result for p = 2. The map

(0,∞)× C2(M,R) ∋ (ǫ, V ) 7−→ ǫV ∈ C2(M,R)

is a smooth submersion. By theorem 3, the set

Σ2
k := {V ∈ C2(M,R) : max

c∈H1(M,R)
dimM(L− V + c) > k}

is countably rectifiable of codimension k− b1, hence Proposition 23 implies that the set of pairs
(ǫ, V ) ∈ (0,∞) × C2(M,R) such that ǫV ∈ Σ2

k is countably rectifiable of codimension k − b1 in
(0,∞) × C2(M,R). The conclusion now follows by Lemma 4 since A2

k is the projection of this
set on the second factor.

The proof of Theorem 6 will occupy the rest of the section. It is useful first to recall the
notion of a closed probability measure on TM . The Borel probability measure µ is said
closed if it is compactly supported and if, for each function f ∈ C∞(M), we have

∫

TM

dfx · v dµ(x, v) = 0.

If µ is compactly supported and invariant under the Euler-Lagrange flow of a Tonelli Lagangian
L, then µ is closed. We recall the proof first given by Mather, see [20].

We can express the invariance of the measure µ by saying that, for each smooth function
g : TM −→ R, we have

∫

TM

gdµ =

∫

TM

g ◦ ψtdµ.
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Differentiating at t = 0, we get
∫

TM

dg(x,v) · X (x, v)dµ(x, v) = 0,

where X is the Euler-Lagrange vector-field (the generator of ψt). This is true in particular if
g = f ◦ π is a function which depends only on the position x, and writes

∫

TM

dfx ·Π(X (x, v))dµ(x, v) = 0

for each smooth function f on M , where Π : T(x,v)(TM) −→ TxM is the differential of the
standard projection. The proof now follows from the observations that Π(X (x, v)) = v.

Let us now fix a Riemannian metric on M , and define, for each n ∈ N, the compact subset
Kn of TM as follows:

Kn = {(q, v) ∈ TM : ‖v‖q 6 n}.

We denote by Cn the set of closed probability measures supported on Kn. We also define the
Banach space Bn as the closure, in C(Kn), of the restrictions to Kn of the functions of F .
Since C(Kn) is separable, so is Bn. Moreover, it follows from our assumptions on F that Bn

contains C(M). Each probability measure µ on Kn gives rise to a linear form on C(Kn) and,
by restriction, to a linear form ln(µ) ∈ B∗

n, which is just defined by

ln(µ) · f =

∫

fdµ.

Because Bn is not necessarily dense in C(Kn), the map ln is not necessarily one-to-one.
Let us now define the functional An : Bn −→ R by

An(f) = sup
µ∈Cn

∫

(f − L)dµ.

This functional is convex, and it is bounded from below (because any Dirac supported on a
point of the zero section of TM belongs to Cn). By standard results of convex analysis, the set

{f ∈ Bn : dim(∂An(f)) > k}

is a countable union of Lipschitz graphs of codimension k in the separable Banach space Bn for
each k ∈ N (see [24] or [3], Theorem 4.20, p. 93), where ∂An(f) is the sub-differential in the
sense of convex analysis of the function An at point f . We will now be able to conclude if we
can relate the set M(L− f) of Mather measures and the set ∂An(f). This is the content of the
following, where we denote by Pn : F −→ Bn the natural map :

Lemma 24. If L− f is a Tonelli Lagrangian, then there exists n ∈ N such that

dim(M(L− f)) 6 dim ∂An(Pn(f)).

Assuming Lemma 24, let us finish the proof of Theorem 6. The map Pn : F −→ Bn is
continuous by our assumptions on F , and it has a dense range by the definition of Bn. In view
of the Lemma we have

{f ∈ U : dimM(L− f) > k} ⊂
⋃

n

P−1
n

(

{f ∈ Bn : dim ∂An(f) > k}
)

. (U)

Each of the sets
{f ∈ Bn : dim∂An(f) > k}
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is a countable union of Lipschitz graphs of codimension k in Bn, hence the preimage

P−1
n

(

{f ∈ Bn : dim ∂An(f) > k}
)

is a countable union of Lipschitz graphs of codimension k in F , by Definition 15. Therefore
Theorem 6 follows from (U).

The last step is to prove Lemma 24. The main tool is the following beautiful variational
principle which has been established by Bangert [2] and Fathi and Siconolfi [16] following fun-
damental ideas of Mañé, [18] (see also [5, 8]):

Theorem 7. The Mather measures of the Tonelli Lagrangian L are those which minimize the
action

∫

Ldµ in the class of all compactly supported closed measures.

The key point here is that the invariance of the measure is obtained as a consequence of
its minimization property, and not imposed as a constraint as in Mather’s work. By applying
this general result to the Lagrangian L − f , we obtain that there exists n ∈ N such that the
set M(L − f) of Mather measures is the set of measures µ ∈ Cn which minimize the action
∫

(L− f)dµ in Cn. Now if µ is such a measure, then the associated ln(µ) belongs to ∂An(Pn(f)),
as can easily be seen from the definition of An. In other words, we have proved that

ln(M(L− f)) ⊂ ∂An(Pn(f))

when n is large enough. In order to prove Lemma 24, it is enough to observe that ln is one to
one on M(L− f). This property holds because Bn contains C(M) and because the elements of
M(L− f) are all supported on a Lipschitz graph.
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[12] J. P. R. Christensen: On sets of Haar measure zero in abelian Polish groups. Israel J.
Math. 13 (1972), 255–260.

[13] M. Csörnyei : Aronszajn null and Gaussian null sets coincide. Israel J. Math. 111 (1999),
191–201.

[14] Y. Eliashberg, N. Mishachev : Introduction tu the h-principle, Graduate Studies in
Math 48, AMS (2002).

[15] A. Fathi : Weak KAM Theorem in Lagrangian Dynamics, Book to appear.

[16] A. Fathi, A. Siconolfi : Existence of C1 critical subsolutions of the Hamilton-Jacobi
equation. Invent. Math. 155 (2004), no. 2, 363–388.
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