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Abstract—In 3G wireless technologies, competitive operators
are assigned a fixed part of the spectrum from long-term
auctions. This is known to lead to utilization inefficiencies because
some providers can be congested while others are lightly used.
Moreover it forbids the entrance of new candidate providers.
There is now a stream of work dealing with spectrum sharing
among providers to lead to a better utilization. In this paper,
we study an intermediate model of price competition between
two providers having a fixed (licensed) part of the spectrum, but
where a remaining part (an unlicensed band) can be used in case
of congestion, and is therefore shared. We discuss the existence
and uniqueness of the Nash equilibrium in the pricing game when
demand is distributed among providers according to Wardrop’s
principle so that users choose the least expensive perceived price
(when congestion pricing is used), and investigate the influence
of the shared band on social and user welfare.

I. INTRODUCTION

Wireless technologies are becoming omnipresent, end users

being connected from everywhere, and for a much broader use

than just telephony. The network access can be provided by a

set of technologies, ranging from 3G CDMA-based systems,

WiFi, to WiMAX for instance. Another important issue is

that competition is not only among technologies (which could

be operated by a single provider), but among concurrent

providers which operate on different or similar platforms.

Users indeed have to choose between several service providers,

their choice being based on a combination of price and quality

of service (QoS). Modeling this competition requires the use

of non-cooperative game theory [1], in order to understand

the interactions between (pricing) strategy of each provider,

depending also on the reactions of individual users. This

competitive pricing game has recently been extensively studied

in telecommunications, see among others [2], [3], [4], [5].

In wireless communications especially, resource, that is

spectrum, is limited and congestion is likely to occur. It has

been highlighted that the current spectrum sharing of 3G wire-

less networks, where providers own a long-term licensed fixed

part of the spectrum, does not lead to an efficient utilization,

since some providers can be congested while others are not

fully used [6], [7]. It is now proposed to share at least a part

of the spectrum (unlicensed bands) to cope with that situation

and provide a better average QoS [8]. That kind of principle

somewhat also justifies the development of cognitive networks

where end-to-end performance is dynamically optimized by

providers sensing and opportunistically accessing the under-

utilized spectrum [9], [10].

This paper analyzes a specific pricing game between two

providers having each a fixed and own spectrum, while an

unlicensed part of the spectrum is shared and used when the

fixed one is fully utilized. Spectrum is abstracted as a given

capacity, and providers play on the price per sent packet they

propose to users. We assume demand for service is not delay-

sensitive and depends on the price to correctly send a packet,

where packet losses occur as soon as demand exceeds capacity.

Demand is split among the providers according to Wardrop’s

principle [11], meaning that users have negligible influence

on total traffic, and choose the provider(s) with the smallest

price for sending correctly a packet. Note that our model also

represents the situation where each operator owns a 3G license

and sends traffic on a (shared) WiFi network (transparently

for users) as soon as the QoS using WiFi becomes as good

as using 3G. The questions we aim at answering are: what is

the user equilibrium (if any) for fixed prices? Then is there a

Nash equilibrium in the pricing (non-cooperative) game, that

is a price strategy for each provider such that none of them

can improve his revenue by changing unilaterally his price? If

it exists, is it unique? What is the influence of the proportion

of spectrum left unlicensed on the outcomes of the game?

This work is to our knowledge the first attempt to deal with

a model looking at a two-step game in wireless networks with

(partially) shared spectrum/capacity. In the first step, demand

is split among providers according to price and QoS and on

top of that the pricing game is played among providers.

The remainder of the paper is organized as follows. In

Section II we present the basic model and assumptions.

Section III explains the users’ behavior and their distribution

among the different operators according to a combination of

price and QoS. Using this user equilibrium, we then analyze

the pricing game among providers thanks to non-cooperative

game theory in Section IV. We illustrate how Nash equilibria

can be derived and introduce social welfare (sum of utilities

of all agents) and user welfare (dealing only with users). The

influence of the spectrum proportion kept unlicensed is also

discussed. Finally, we conclude and give some directions for

future research in Section V.



II. MODEL

We consider two providers (operators) in competition, de-

noted by i ∈ {1, 2}. Provider i owns a fixed (licensed) band

of the spectrum. Using this band, he is able to serve a fixed

number of packets Ci per time slot (assuming time is slotted).

On the other hand, we assume that there is a remaining and

unlicensed part of the spectrum, on which a capacity of C
packets per time slot can be served, that the two providers

can use as soon as demand exceeds capacity on their licensed

band. Again, this can also represent the case where providers

operate through a given technology where part of the spectrum

is shared, or could represent the case where providers operate

a licensed technology, say 3G, and may want to send some

traffic transparently to users on another technology (provided

their devices can support it) with shared spectrum, say WiFi,

as soon as their licensed capacity is fully utilized.

Formally, let di be provider i’s demand in a given time

slot (i ∈ {1, 2}). If di ≤ Ci, then all packets are served.

If di > Ci, demand in excess di − Ci is sent to the shared

band. As a consequence, total demand at this shared band is

[d1−C1]
+ +[d2−C2]

+ where [x]+ = max(0, x). We assume

that packets in excess, when demand exceeds capacity, are

lost and that the lost packets are uniformly chosen among the

sent ones. Similarly, we assume that, at each provider, the

packets sent on the shared band are uniformly chosen. As a

consequence, the part of shared capacity devoted to provider

i for i ∈ {1, 2} is

C ′
i =

[di − Ci]
+

[d1 − C1]+ + [d2 − C2]+
C, (1)

with the convention 0/0 = 0, and a packet is correctly sent
(that is, not lost) at provider i with probability

qi = min

„

1,
Ci + C′

i

di

«

= min

0

@1,
Ci +

[di−Ci]
+

[d1−C1]++[d2−C2]+
C

di

1

A .

(2)

Indeed, given the uniform choice, the probability of successful

transmission is the ratio of correctly transmitted packets on

submitted ones if demand exceeds capacity, and 1 if capacity

is above demand. Figure 1 summarizes the way providers

distribute demand.

d2

d1
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C
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Fig. 1. Summary of used capacities

Similarly to [5], we assume that users are charged per

submitted packet and not per correctly transmitted ones. That

way, in periods of congestion charges for a given successful

transmission are higher to incentivize users to restrict their

traffic. It is therefore a kind of congestion pricing.

Denote by pi the price that provider i fixes for each packet

sent to his network. Given that each packet is successfully

transmitted with probability qi, the average number of attempts

before success is 1/qi, the average value of a geometric

distribution with parameter qi, demand being considered the

same in each time slot (this is not a limitation if time slots are

very short with respect to demand fluctations in time). Thus a

perceived price per correctly transmitted packet at provider i,
i.e., the total average price to pay for sending a packet is

p̄i = pi

1

qi

= pi max



1,
di

Ci + [di−Ci]+

[d1−C1]++[d2−C2]+
C



 . (3)

Remark that it is not required to announce a price per sent

packet (users are not likely to approve paying for rejected

packets), but rather announce a congestion price p̄i for suc-

cessful transmission.

Our goal is now to investigate in next section how users will

split themselves among the different providers at equilibrium,

and what the total demand will be. Section IV deals with

the price war among providers using the determined user

equilibrium.

III. USER EQUILIBRIUM

Users are assumed to be infinitesimal, which means that

their individual influence on the total traffic is negligible. Their

behavior is to follow the so-called Wardrop’s principle [11]

taken from road transportation: demand is distributed in such

a way that all users choose the available provider(s) with the

lowest perceived price, and none if this perceived price is too

expensive. Therefore all users perceive the same price

p̄ := min(p̄1, p̄2). (4)

Total demand, defined as the total number of packets for

which the willingness to pay is larger than or equal to p̄, is a

function D(·) of the perceived price p̄, and is assumed to be

continuous and strictly decreasing.

We therefore end up with the following set of equations

characterizing the Wardrop (user) equilibrium:

p̄1 = p1 max



1,
d1

C1 + [d1−C1]+

[d1−C1]++[d2−C2]+
C



(5)

p̄2 = p2 max



1,
d2

C2 + [d2−C2]+

[d1−C1]++[d2−C2]+
C



(6)

d1 + d2 = D(min(p̄1, p̄2)) (7)

p̄1 > p̄2 ⇒ d1 = 0 (8)

p̄2 > p̄1 ⇒ d2 = 0. (9)

Equations (5) and (6) express the perceived prices in terms

of demand. Equations (8) and (9) express the fact that only

cheapest providers get demand, otherwise some users would

be better off switching. Equation (7) just relates total demand



to perceived price (which is then the same for both providers

if they both have a positive demand).

We then have the following theorem.

Proposition 1: Whatever the price profile (p1, p2), there

exists at least one Wardrop equilibrium. The corresponding

perceived prices are unique.

Proof: The existence of a Wardop equilibrium is proved

in a very general context in [12].

To show the uniqueness of the perceived price, assume that

we have two Wardrop equilibria with demand (d1, d2) and

(d′1, d
′
2) leading to respective perceived prices (p̄1, p̄2) and

(p̄′1, p̄
′
2). Assume (p̄1, p̄2) 6= (p̄′1, p̄

′
2) and let p̄ = min(p̄1, p̄2),

p̄′ = min(p̄′1, p̄
′
2). Without loss of generality we can suppose

that p̄1 < p̄′1, which implies several things:

d′1 > C1 +
[d′1 − C1]

+

[d′1 − C1]+ + [d′2 − C2]+
C (10)

C < [d′1 − C1]
+ + [d′2 − C2]

+ (11)

p̄′ = p̄′1. (12)

Relation (10) is a direct consequence of (5) and p̄′1 > p̄1 ≥ p1.

Moreover, p̄′1 > p1 means some packets are lost at provider

1 under the situation (d′1, d
′
2). Due to our capacity allocation

rule, packets can be lost only under (11).

Relation (12) comes from (10) and the fact that (d′1, d
′
2)

is a Wardrop equilibrium, so only the cheapest (in terms of

perceived costs) provider(s) have positive demand.

Relation (4) then implies that p̄ = min(p̄1, p̄2) ≤ p̄1 <
p̄′1 = p̄′, therefore from (7) and the non-increasingness of the

demand function, we have

d = d1 + d2 > d′ = d′1 + d′2. (13)

Our goal is now to show that there is a contradiction: if total

demand increases, then the perceived price increases too. We

consider two cases, depending on the sign of d1 − d′1.

• If d1 > d′1, then we have [d1 − C1]
+ + [d2 − C2]

+ ≥
[d′1 − C1]

+ + [d′2 − C2]
+: it is indeed obvious if d2 ≥ d′2,

whereas if d2 < d′2 we have

[d′2 − C2]
+ − [d2 − C2]

+ ≤ d′2 − d2

< d1 − d′1

= [d1 − C1]
+ − [d′1 − C1]

+,

where the second inequality comes from (13), and the last

equality stems from (10) and d1 > d′1.

Consequently we have1, using also again d1 > d′1 > C1,

d1

C1 + [d1−C1]+

[d1−C1]++[d2−C2]+
C

≥
d1

C1 + [d1−C1]+

[d′

1
−C1]++[d′

2
−C2]+

C

=
d1

Ad1 + B
,

where A = 1
[d′

1
−C1]++[d′

2
−C2]+

C > 0, and B =

C1

(

1 − 1
[d′

1
−C1]++[d′

2
−C2]+

)

> 0 from (11). Therefore x 7→

1Notice that [d′1 − C1]+ + [d′2 − C2]+ > 0 from (10), therefore the
denominators are non-zero.

x/(Ax + B) is increasing in x, and thus

d1

C1 + [d1−C1]+

[d1−C1]++[d2−C2]+
C

≥
d′1

C1 +
[d′

1
−C1]+

[d′

1
−C1]++[d′

2
−C2]+

C
,

meaning p̄1 ≥ p̄′1 from (5), which is a contradiction.

• Now consider the case d1 ≤ d′1. Then d2 > d′2 from (13),

and

• if [d′2 − C2]
+ = 0 then, from (6), p̄′2 = p2 ≤ p̄2;

• if [d′2 − C2]
+ > 0 then using the same reasoning as in

the case d1 > d′1, just inverting the roles of the providers,

we get that p̄′2 ≤ p̄2.

Since d2 > d′2, then d2 > 0, and the Wardrop condition

implies that p̄ = p̄2 ≤ p̄1. On the other hand, p̄′ ≤ p̄′2.

Therefore, applying (12) and the fact that p̄′2 ≤ p̄2 we have

p̄′1 ≤ p̄1, a contradiction.

Remark 1: From the uniqueness of the perceived price

p̄, the uniqueness of demand distribution (d1, d2) can be

discussed. First d1 + d2 = D(p̄) is unique from (7). Next if

both providers are strictly saturated (i.e., p̄i > pi for i = 1, 2),

then the maximum is given by the right side in the max of

(5) and (6), and (d1, d2) is the unique solution of

p̄ = pi

di

Ci + di−Ci

D(p̄)−C1−C2
C

, i = 1, 2.

Similarly, if only one provider is strictly saturated, say i ∈
{1, 2}, we have di solution of p̄ = pi

di

Ci+C
, and demand at

provider j 6= i is dj = D(p̄) − di. Now the last case is when

no provider is saturated and experiences losses. When p1 < p2

(without loss of generality), it means that 1 absorbs the whole

demand D(p1) while 2 gets nothing. If p1 = p2 = p, we

are in the only situation of non-uniqueness: users do not care

choosing between the providers since they have the same price

and none is congested, even if the unlicensed band is used by

one of the provider. More formally, each point (d1 = x, d2 =
D(p)− x) is a Wardop equilibrium, for max(0, D(p)−C2 −
C) ≤ x ≤ min(D(p), C1 + C). In the numerical analyses of

the next sections, for those rare cases we choose to spread

demand among providers, proportionally to their capacities,

i.e. we fix di = D(p) Ci

C1+C2
.

Figure 2 illustrates the Wardrop equilibrium characteriza-

tion, for fixed values of the unit prices p1 = 1, p2 = 2
and a given demand function. The increasing curve gives

the total demand level that would correspond to a given

perceived price: if total demand D is below C1, then all users

choose provider 1 and perceive the price p̄ = p1. Likewise, if

C1 < D ≤ C1 + C, then the needed extra capacity D − C1

is available to provider 1 and the perceived price is still

p̄ = p1. When D exceeds C1 + C, then provider 2 does not

necessarily get some demand, since users may be better off

choosing provider 1 even in case of losses. More precisely,

if C1 + C < D < (C1 + C)p2/p1, then all users stay with

provider 1 since the perceived price is then p̄ = p1
D

C1+C
< p2.

This situation is depicted in Figure 2 as case a. Provider

2 actually gets some demand when total demand exceeds

(C1+C)p2/p1: if (C1+C)p2/p1 < D ≤ (C1+C)p2/p1+C2
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Fig. 2. Graphical representation of the Wardrop equilibrium demand and
perceived price for three different demand functions.

then the perceived price is p2 and provider 2 gets demand

d2 = D − (C1 + C)p2/p1. This corresponds to case b in

Figure 2. When D > (C1+C)p2/p1 (this is case c in Figure 2,

both providers become saturated, and the unlicensed band

is shared among them according to (1). We therefore have

p̄1 = p̄2 = p̄, and (d1, d2) can be found by solving the system

(5)− (6). The perceived price at the Wardrop equilibrium is

determined by the intersection of

• the increasing demand-perceived price relation due to

congestion and the capacity allocation rule,

• and the decreasing demand-perceived price relation (7),

corresponding to user willingness-to-pay for the service.

IV. PRICING GAME BETWEEN PROVIDERS

We now consider the competition game among providers.

We assume providers know that for given prices p1 and

p2, users will behave according to the Wardrop equilibrium

described in the previous section. Providers therefore use

that knowledge to determine their best pricing strategy. This

makes the situation under study a two-stage game, where at a

first stage providers set prices, and at the second stage users

make their decision, determining the repartition (d1, d2) (see

Remark 1 for the rare cases when demands are not unique).

In this section, we focus on the upper-level game on prices,

where the provider revenues are those obtained at Wardrop

equilibrium.

We will illustrate the concepts introduced using some nu-

merical results. Unless otherwise specified, the model param-

eters that we take are C1 = 1.2, C2 = 2.4, C = 0.4, and

D(p) = [10 − 3p]+. We will refer to that set of example

values as S.

A. Provider utility and pricing game

The payoff we consider for provider i is simply his revenue

Ri(p1, p2) := pidi for i ∈ {1, 2}. (14)

As pointed out in the previous section, the demand of provider

i at the Wardrop equilibrium outcome depends not only on

his price pi, but also on the price of his opponent. The natural

modeling framework is therefore that of non-cooperative game

theory, and the equilibrium that of a Nash equilibrium [1].

A Nash equilibrium is a point of price strategies (p∗1, p
∗
2)

such that no provider can increase his revenue by unilaterally

changing his price, i.e., ∀p1, p2 ≥ 0,

R1(p
∗
1, p

∗
2) ≥ R1(p1, p

∗
2) and R2(p

∗
1, p

∗
2) ≥ R2(p

∗
1, p2).

The questions we wish to answer are then: is there a Nash

equilibrium to this game? If so, is it unique?

Determining existence and uniqueness of a Nash equilib-

rium is difficult with this model, due to the non-derivability

of the revenue functions and the multiple ratios involved. We

therefore see how to analyze it numerically and investigate

the influence of the unlicensed spectrum. Consider again

the parameter set S. First, Figure 3 displays the revenue of

provider 1 in terms of his price p1 for different values of

p2, the other fixed values being those in S. It illustrates that
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Fig. 3. Total utility of provider 1 as a function of p1.

provider 1 revenue is first increasing and then decreasing.

The three curves in Figure 3 are the same for low values

of p1: indeed, when p1 is low enough then all users choose

provider 1. More precisely, if D(p2) < (C1 + C)p2/p1, then

the Wardrop intersection point (p̄, D), illustrated as case a in

Figure 2, is for p̄ < p2, implying d2 = 0 from (9). On the

contrary, when p1 > p2
C1+C
D(p2)

, the curves in Figure 3 exhibit

different behaviors:

• when p2 = 1, the utility of provider 1 is maximal when

p1 is around 0.73. This corresponds to a situation where

both providers are saturated at the Wardrop equilibrium

(case c in Figure 2).

• When p2 = 2, provider 2 is indifferent between all values

in the range [0.75 − 1.5]. For those values of p1, we are

in the case b of Figure 2: the user perceived price is



p2, provider 1 gets demand d2 = p2/p1(C1 + C) while

d2 = D(p2)− p2/p1(C1 + C). Then in this whole range

for p1, the revenue of provider 1 is R1 = p2(C1+C). For

that case, there is not a unique best strategy for player 1
as a response to p2, but a whole interval.

• When p2 = 3, then the revenue of provider 1 is maximal

for p1 = 2.83, i.e. in the zone where d2 = 0 (case

a of Figure 2). If provider 1 increases his price, then

the revenue loss due to the decrease of d1 (because of

total demand decrease or because some users switch to

provider 2) exceeds the gain due to price increase.

Consider now the best reply of each provider i ∈ {1, 2} as

a function of BRi : R
+ 7→ P(R+), such that

BR1(p2) := arg max
p1≥0

R1(p1, p2) and

BR2(p1) := arg max
p2≥0

R2(p1, p2).

In words, the best replies are the price values (not necessarily

unique) maximizing the revenue of a provider, when the price

of the opponent is fixed. Nash equilibria are therefore the set

of points (p∗1, p
∗
2) for which p∗1 ∈ BR1(p

∗
2) and p∗2 ∈ BR2(p

∗
1),

i.e., a fixed point of the best reply correspondance defined as

BR(p1, p2) := {(q1, q2) ∈ R
+ × R

+ : q1 ∈ BR1(p2), q2 ∈
BR2(p1)}.

Figure 4 gives an example of those best replies for param-

eter values in S. First, we remark that best-replies are not

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

Provider 1 price p1

P
ro

v
id

er
2

p
ri

ce
p
2

BR1(p2)

BR2(p1)

Fig. 4. Best reply curves of both providers, C/Ctotal = 0.1.

always unique; non-uniqueness actually correspond here to

the situation of Figure 3 for p2 = 2, where the concurrent

provider is not saturated, so that revenue does not change over

an interval. The best-reply correspondences seem to meet in

three different zones: first at (0, 0), then they cross at a point

p∗ ≈ (1.05, 1.45), and on the whole range 2 < p1 = p2 < 2.4.

Actually, for that latter zone, best-reply curves do not cross:

the zone corresponds to the case max(C1, C2) < D(p) <
C1 + C2 + C, and therefore if providers have the same price

p, each provider i would have an incentive to decrease one’s

price pi by a small ε > 0, so as to fall into case b of Figure 2,

and obtain demand Ci +C. Therefore, there is no equilibrium

in that zone.

While (0, 0) is a trivial Nash equilibrium, we can also

notice that it is not stable: if one provider slightly deviates

and sets a small positive price, then successive best replies of

the providers lead to the second Nash equilibrium p∗ that we

pointed out, and that is stable.

Interestingly, the provider i with the largest own capacity

Ci (here i = 2) sets a higher price, possibly because he is

less in need for unlicensed band, and therefore is less affected

by price competition. Notice also that the unique stable

Nash equilibrium (p∗1, p
∗
2) corresponds to a case when both

providers are saturated. Therefore the whole band (licensed

+ unlicensed) is used. Total demand even exceeds the overall

transmission capacity C1 + C2 + C, and therefore there are

some losses. We have seen how to compute a Nash equilibrium

and interpret the pricing game; we now propose a measure of

social welfare that takes those losses into account.

B. Social and user welfare considerations

We suggest to define social welfare as the overall “value”

of the system, i.e. the sum of the utilities of all participants

(including users and providers). Prices paid by users are

received by providers, thus those monetary exchanges do not

appear in our social welfare measure, and social welfare should

reflect the sum of the willingness-to-pay values of all users

that are served. We considered infinitesimal users, therefore

such a value is calculated as an integral: if we define v as the

inverse function of the demand, then
∫ x

0
v is the overall user

value if the x users with highest willingness-to-pay are served.

When x users with highest willingness-to-pay are likely to be

served but losses can occur with equal probability Ploss for

those users, the corresponding sum of willingness-to-pay for

served users is then

SW = (1 − Ploss)

∫ x

0

v. (15)

Since v is decreasing and 1−Ploss ≤
C1+C2+C

x
with equality

for some repartitions of x over the providers, the optimal value

of social welfare is SWmax =
∫ C1+C2+C

0
v. For our case, at

a Nash equilibrium the D(p̄) users with highest willingness-

to-pay send their data, and Ploss =
[

1 − C1+C2+C
D(p̄)

]+

for all

of those users. We therefore have:

Proposition 2: The Social Welfare at Nash equilibrium is

SW = min

(

1,
C1 + C2 + C

D(p̄)

) ∫ D(p̄)

0

v, (16)

compared with the optimal one SWmax =
∫ C1+C2+C

0
v.

Also, the overall User Welfare (user willingness-to-pay

minus price paid) is UW = SW − R1 − R2.



C. Licensed vs unlicensed capacity

Let us now investigate the influence of the fraction µ of total

available band that is unlicensed on the system outcomes. We

assume that there is a total band Ctotal, that can be licensed

to a provider or declared as unlicensed. We choose to fix the

ratio r = C1/C2, so that

C = µCtotal, C1 =
r(1 − µ)

1 + r
Ctotal, C2 =

1 − µ

1 + r
Ctotal.

In what follows, we consider as before Ctotal = 4 and r =
0.5. Figure 5 shows the stable Nash prices (p∗1, p

∗
2) and the

corresponding user perceived price p̄ when µ varies, whereas

Figure 6 plots the provider revenues, user welfare UW, and

overall social welfare SW versus µ. When the proportion

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

Shared band proportion µ = C/Ctotal

P
ri

ce
s

p∗1
p∗2
p̄

Fig. 5. Prices at Nash equilibrium when µ varies.
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Fig. 6. Utilities at Nash equilibrium when µ varies.

of unlicensed band increases, the revenue of both providers

decreases since they have to drastically lower their price in

order to stay competitive (see Figure 5). This benefits to users,

who perceive a lower price p̄ and experience a larger user

welfare. However, the overall social welfare decreases, which

means that resources are less efficiently used. Using that kind

of study, a central authority (a government for instance) could

fix a given amount of shared spectrum so as to favor user

welfare over provider revenue. However, setting µ too large

leads prices and provider revenues tend to 0, thus a trade-off

has to be found to still ensure provider rentability.

V. CONCLUSIONS

This paper has investigated the price war among wireless

providers when part of the spectrum is unlicensed and can be

freely used. We have shown the existence of a user equilibrium

and described how to determine a Nash equilibrium for

the price war. We have also shown how the choice of the

unlicensed spectrum weight affects the trade-off between user

welfare and overall social welfare.

Next steps of this work are numerous. A relevant aspect is

to see what happens if the unlicensed spectrum is charged to

providers: could it help to improve the general behavior of

the system? Similarly, we would like to investigate the best

proportion of unlicensed band if there is a different weight for

user and provider utilities in a global objective measure for a

regulating authority.
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