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Pairing the vol
anoSorina Ioni
a1 and Antoine Joux1,2

1 Université de Versailles Saint-Quentin-en-Yvelines, 45 avenue des États-Unis,78035 Versailles CEDEX, Fran
e
2 DGAsorina.ioni
a,antoine.joux�m4x.orgAbstra
t. Isogeny vol
anoes are graphs whose verti
es are ellipti
 
urvesand whose edges are l-isogenies. Algorithms allowing to travel on thesegraphs were developed by Kohel in his thesis (1996) and later on, by Fou-quet and Morain (2001). However, up to now, no method was known, topredi
t, before taking a step on the vol
ano, the dire
tion of this step.Consequently, in Kohel's and Fouquet-Morain's algorithms, we alwaystake more steps than ne
essary, before 
hoosing the right dire
tion. Sup-pose we know the 
ardinality of the 
urve. Given a point P of order l onthe ellipti
 
urve, we develop a method to de
ide whether the subgroupgenerated by P is the kernel of a horizontal isogeny, a des
ending oran as
ending one. In most 
ases, our method is very e�
ient and givessimple algorithms, whi
h are more e�
ient than previous ones. In theother 
ases, we show that the two methods should be 
ombined in orderto obtain e�
ient algorithms.1 Introdu
tionLet E be an ellipti
 
urve de�ned over a �nite �eld Fq, where q = pr is aprime power. Let π be the Frobenius endomorphism, i.e. π(x, y) 7→ (xq , yq) anddenote by t its tra
e. Moreover, we assume that E is an ordinary 
urve, so itsendomorphism ring, whi
h we denote byOE , is an order in a quadrati
 imaginary�eld K ( [16, Theorem V.3.1℄). Let dπ = t2 − 4q be the dis
riminant of π. We
an write dπ = g2dK , where dK is the dis
riminant of the quadrati
 �eld K. Sothere are only a �nite number of possibilities for OE , sin
e

Z[π] ⊂ OE ⊂ OdK .This also means that the 
ondu
tor of OE , whi
h we denote by f , divides g, the
ondu
tor of Z[π].The number of points of E over Fq is given by #E(Fq) = q+1−t. Two isogenousellipti
 
urves over Fq have the same 
ardinality, and therefore the same tra
e
t. In his thesis [11℄, Kohel studies how the 
urves in Ellt(Fq), the set of 
urvesde�ned over Fq with tra
e t, are related via isogenies of degree ℓ. More pre
isely,he des
ribes the stru
ture of the graph of ℓ-isogenies de�ned on Ellt(Fq) and alsoexplains how this graph is related to orders in OK . He uses modular polynomialsto �nd the 
ondu
tor of End(E), assuming that g is known.In [7℄, Fouquet and Morain 
all the 
onne
ted 
omponents of this graphisogeny vol
anoes. They extend Kohel's work, by showing that it is a
tually



possible to �nd both g and f (also by using modular polynomials to move fromone verti
e of the vol
ano to another one). They also give an algorithm that
omputes the l-adi
 valuation of t, for l|g. This information 
an be used inS
hoof's algorithm [15℄. Re
ently, new appli
ations to isogeny vol
anoes werefound: the 
omputation of the Hilbert 
lass polynomial ([1℄, [18℄), that of modularpolynomials ([19℄) and that of the endomorphism ring of the 
urve ([20℄).More pre
isely, the methods enumerated above make use of algorithms thataim at travelling e�
iently on the vol
ano. These algorithms 
an either walk onthe 
rater, des
end from the 
rater to the �oor or, 
onversely, as
end from the�oor to the 
rater. As explained in [13℄ and [14℄, the stru
ture of the ℓ-Sylowsubgroup of the ellipti
 
urve may, in many 
ases, help de
iding whether wehave taken a step on the 
rater, or we have des
ended or as
ended. However,no known method 
an distinguish in advan
e horizontal isogenies from des
end-ing isogenies, or des
ending isogenies from as
ending ones. In this paper, wedes
ribe a new method to predi
t, given a point P of order ℓ, the type of theisogeny whose kernel is generated by P . Our approa
h, whi
h implies only the
omputation of a pairing on E, presents several advantages. It allows, in most
ases, to 
ompute the 
ondu
tor of the 
urve E without taking any steps onthe vol
ano. This is important be
ause 
omputing isogenies of degree ℓ, evenfor moderately large values of ℓ, is a di�
ult task, sin
e algorithms for isogeny
omputation are exponential (ex
ept for some parti
ular 
ases, see [3℄). We alsoshow that our algorithms for traveling on the vol
ano are, in most 
ases, fasterthan the ones from [11℄ and [7℄.The remainder of this paper is organised as follows: se
tions 2 and 3 presentde�nitions and properties of isogeny vol
anoes and pairings. Se
tion 4 explainsour method to �nd the type of the isogeny by means of pairing 
omputation.Finally, in se
tion 5, we present new algorithms for �nding the level of a 
urvein a ℓ-vol
ano, for as
ending and for walking on the 
rater of the vol
ano.2 Ba
kground on isogeny vol
anoesIn this paper we will rely on some results from 
omplex multipli
ation theory andon the Deuring lifting theorem. We denote by Elld(C) the set of C-isomorphism
lasses of ellipti
 
urves whose endomorphism ring equals Od, for some d < 0. Inthis setting there is an a
tion of the 
lass group of the order Od on Elld(C). Let
E ∈ Elld(C), Λ its 
orresponding latti
e and a an Od-ideal. We have a naturalhomomorphism

C/Λ → C/a
−1Λ, z → z,whi
h indu
es an isogeny that we denote by E → â ∗E. The a
tion des
ribed inthis way is transitive and free (see [17℄, prop.II.1.2). Moreover, the degree of theappli
ation E → â ∗ E is N(a), the norm of the ideal a (also [17℄, 
or.II.1.5).Now from Deuring's theorems (see [5℄), if p is a prime number that splits
ompletely, we get a bije
tion Elld(C) → Elld(Fq), where q = pr. Furthermore,the 
lass group a
tion in 
hara
teristi
 zero respe
ts this bije
tion, so we get ana
tion of the 
lass group also on Elld(Fq).



2.1 Isogeny vol
anoes and modular polynomialsConsider E an ellipti
 
urve de�ned over a �nite �eld Fq. Let ℓ be a primedi�erent from 
har(Fq) and I : E → E
′ be a ℓ-isogeny, i.e. a isogeny of degree

ℓ. As shown in [11℄, this means that OE 
ontains OE′ or OE′ 
ontains OE orthe two endomorphism rings 
oin
ide. If OE 
ontains OE′ , we say that I is ades
ending isogeny. Otherwise, if OE is 
ontained in OE′ , we say that I is aas
ending isogeny. If OE and OE′ are equal, then we 
all the isogeny horizontal.In his thesis, Kohel shows that horizontal isogenies exist only if the 
ondu
torof OE is not divisible by l. Moreover, in this 
ase there are exa
tly (

d
ℓ

)

+ 1horizontal isogenies of degree ℓ. If (

d
ℓ

)

= 1, then ℓ is split in OE and the twohorizontal isogenies 
orrespond to the a
tion of the two ideals l and l̄ via thea
tion des
ribed at the beginning of this se
tion. In a similar way, if (

d
ℓ

)

= 0,then ℓ is rami�ed in OE there is one horizontal isogeny starting from E andthis isogeny 
orresponds to the only prime ideal of norm ℓ in OE . In order todes
ribe the stru
ture of the graph whose verti
es are 
urves with a �xed numberof points and whose edges are ℓ-isogenies, we introdu
e the following de�nition(taken from [18℄):De�nition 1. An ℓ-vol
ano is a 
onne
ted undire
ted graph with verti
es par-tioned into levels V0, . . . , Vh, in whi
h a subgraph on V0 (the 
rater) is a regular
onne
ted graph of degree at most 2 and:(a) For i > 0, ea
h vertex in Vi has exa
tly one edge leading to a vertex in Vi−1,and every edge not on the 
rater is of this form.(b) For i < h, ea
h vertex in Vi has degree ℓ + 1.We 
all the level Vh the �oor of the vol
ano. Verti
es lying on the �oor havedegree 1. Let Ellt(Fq) be the set of ellipti
 
urves de�ned over Fq with tra
e t.The following proposition, formulated in [18℄ follows essentially from Proposition23 in [11℄.Proposition 1. Let p be a prime number, q = pr, and dπ = t2 − 4q. Take ℓ 6= panother prime number. Let G be the undire
ted graph with vertex set Ellt(Fq) andedges ℓ-isogenies de�ned over Fq. We denote by ℓh the largest power of ℓ dividingthe 
ondu
tor of dπ. Then the 
onne
ted 
omponents of G are ℓ-vol
anoes ofheight h and for ea
h 
omponent V :(a) The ellipti
 
urve whose j-invariants lie in V0 have endomorphism ringsisomorphi
 to some Od0 ⊇ Odπ whose 
ondu
tor is not divisible by l.(b) The ellipti
 
urve whose j-invariants lie in Vi have endomorphism ringsisomorphi
 to Odi , where di = l2id0.Ellipti
 
urves are determined by their j-invariant, up to a twist (the readershould refer to [16℄ for a de�nition of the twist of an ellipti
 
urve). In theremainder of this paper, we refer to a vertex in a vol
ano either by naming the
urve or its j-invariant.Given a 
urve E, two methods are known to 
onstru
t 
urves whi
h are ℓ-isogenous to E and therefore to travel on the vol
ano. One relies on modularpolynomials and the other on Vélu's formulae. We give below a brief survey ofthe two methods.



Modular polynomials The ℓthmodular polynomial, usually denoted by Φℓ(X, Y )is a polynomial with integer 
oe�
ients, whi
h satis�es the following property:given two ellipti
 
urves E and E′, there is a ℓ-isogeny de�ned over Fq, if andonly if, #E(Fq) = #E′(Fq) and Φℓ(j(E), j(E′)) = 0, where j(E) and j(E′) arethe j-invariants of 
urves E and E′. So in order to �nd the 
urves related to
E via a ℓ-isogeny, we need to solve the equation Φℓ(X, j(E)) = 0. As statedin [15℄, this polynomial may have 1, 2 or ℓ + 1 roots in Fq. So in order to �ndan edge on the vol
ano, it su�
es to �nd a root j′ of this polynomial. Note thatthe j-invariant determines the 
urve up to a twist. The formula for �nding theequation of the 
urve E′ ∈ Ellt(Fq) from j(E′) is also given in [15℄.The group stru
ture of the ellipti
 
urve on the vol
ano Lenstra [10℄relates the stru
ture of the 
urve to the endomorphism ring by proving that:

E(Fq) ≃ OE/(π − 1) (1)as OE-modules. It is thus natural to see how this stru
ture relates to the isogenyvol
ano. From (1), we 
an dedu
e that E(Fq) ≃ Z/mZ × Z/nZ, where n =g
d(a − 1, g/f), with
a =

{

(t − g)/2 if dK ≡ 1 (mod 4),
t/2 if dK ≡ 2, 3 (mod 4),where dK is the dis
riminant of the quadrati
 imaginary �eld 
ontaining OE .Moreover, n|m, n|(q − 1) and mn = #E(Fq). This means that on a ℓ-vol
anothe stru
ture of all the 
urves in a given level is the same.Let E be a 
urve on the isogeny vol
ano su
h that vℓ(n) < vℓ(m). As explainedin [13℄ (in the 
ase ℓ = 2, but the result holds in the general 
ase), we have thefollowing inequality:

vℓ(a − 1) ≥ min{vℓ(g), vℓ(#E(Fq))/2}As n = g
d(a − 1, g/f) and n ≤ vℓ(#E(Fq))/2, it follows that n = vℓ(g/f). Aswe des
end, the valuation at ℓ of the 
ondu
tor f in
reases by 1 at ea
h level(by proposition 1b). This implies that the ℓ-valuation of n for 
urves at ea
hlevel de
reases by 1 and is equal to 0 for 
urves lying on the �oor. Note that if
vℓ(#E(Fq)) is even and the height of the vol
ano is greater than vℓ(#E(Fq)),the stru
ture of the ℓ-torsion group is unaltered from the 
rater down to thelevel vℓ(#E(Fq))/2. From this level down, the stru
ture of the ℓ-torsion groupsstarts 
hanging as explained above. In the sequel we 
all this level the stabilitylevel. The vol
anoes whose ℓ-torsion is di�erent at ea
h level are 
alled regularvol
anoes (see Figure 1). Their stability level is on the 
rater. This terminologyis taken from [13℄. Apart from modular polynomials, the problem of �nding a
ℓ-isogeny de�ned on E has another solution. Given P a point of order ℓ on E, the
ℓ-isogeny I : E → E′ whose kernel G is generated by P 
an be found by usingVélu's formulae (see [21℄)). If we want to use this approa
h, we are interestedin expli
itly 
omputing the 
oordinates of points of order ℓ on E. We denoteby Gi, 1 ≤ i ≤ ℓ + 1, the ℓ + 1 subgroups of order ℓ of E. In [13℄ Miret and



Fig. 1. A regular vol
ano
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Z/ℓn1+n2Zal. give the degree ri of the smallest extension �eld of Fq su
h that Gi ⊂ Fqri ,
1 ≤ i ≤ ℓ + 1. This degree is related to the order of q in the group F∗

ℓ , thatwe denote by ordℓ(q). Noti
e that in the spe
ial 
ase of ℓ = 2, this degree isalways 1.Proposition 2. Let E de�ned over Fq be an ellipti
 
urve with k rational ℓ-isogenies, ℓ > 2, and let Gi, 1 ≤ i ≤ k, be their kernels, and let ri be theminimum value for whi
h Gi ⊂ E(Fqri ).(a) If k = 1 then r1 = ordℓ(q) or r1 = 2ordℓ(q).(b) If k = ℓ + 1 then either ri = ordℓ(q) for all i, or ri = 2ordℓ(q) for all i.(
) If k = 2 then ri|ℓ − 1, i = 1, 2.The following 
orollary [13℄ will also be useful in the remainder of this paper.Corollary 1. Let E/Fq be an ellipti
 
urve over Fq. If E/Fq has 1 or ℓ + 1rational ℓ-isogenies, then #E(Fordlq
q ) or #Ẽ(Fordℓq

q ) is a multiple of ℓ. Moreover,if E/Fordℓq
q has ℓ + 1 rational isogenies, then it is also a multiple of ℓ2.Notations. Let n ≥ 0. In the sequel, we denote by E[ℓn] the subgroup of pointsof order ℓn on the 
urve E, by E[ℓn](K) the subgroup of points of order n de�nedover K and by E[ℓ∞](K) the subgroup of points de�ned over K whose ordersare powers of ℓ.Given a point P ∈ E[ℓn](Fq), we also need to know the degree of the extension�eld in whi
h there is a ℓn+1-torsion point su
h that ℓP̃ = P . The following resultis taken from [6℄.Proposition 3. Let E/Fq be an ellipti
 
urve whi
h lies on a ℓ-vol
ano whoseheight h(V ) is di�erent from 0. Then the height of V ′, the ℓ-vol
ano of the 
urve

E/Fqs is
h(V ′) = h(V ) + vℓ(s)



From this proposition, it follows easily that if the stru
ture of ℓ-torsion on the
urve E/Fq is Z/ℓn1Z×Z/ℓn2Z, then the smallest extension in whi
h the stru
-ture of the ℓ-torsion 
hanges is Fqℓ . Indeed, it su�
es to see that the stru
tureof the ℓ-vol
ano 
ontaining E modi�es only over Fqℓ . Moreover, if we 
onsider a
urve E′ lying on the �oor of V/Fq, this means this 
urve has one point of order
ℓ de�ned over Fq and ℓ+1 isogenies de�ned over Fqℓ . We 
on
lude that E′ has allthe ℓ + 1 subgroups of order ℓ de�ned over Fq, whi
h means that (by as
endingon the vol
ano) the stru
ture of the ℓ-torsion of E over Fqℓ is ne
essarily

E[ℓ∞](Fqℓ) ∼ Z/ℓn1+1
Z × Z/ℓn2+1

Z.This observation will be very useful in the sequel.3 Ba
kground on pairingsLet E be an ellipti
 
urve de�ned over some �nite �eld Fq, m a number 
oprimeto q, su
h that m|#E(Fq) and assume m|(q − 1). Let P ∈ E[m](Fq) and Q ∈
E(Fq)/mE(Fq). Let fm,P be the fun
tion whose divisor is m(P )−m(O), where Ois the point at in�nity of the 
urve E (for ba
kground on divisors see [16℄). Take
R a random point in E(Fq) su
h as the support of the divisor D = (Q+R)−(R)is disjoint from the support of fm,P . Then we 
an de�ne the Tate pairing asfollows:

tm : E[m] × E(Fq)/mE(Fq) → F
∗

q/(F∗

q)
m

(P, Q) → fm,P (Q + R)/fm,P (R)The Tate pairing is a bilinear non-degenerate appli
ation, i.e. for all P ∈
E[m](Fq) di�erent from O there is aQ ∈ E(Fq)/mE(Fq) su
h that Tm(P, Q) 6= 1.So the output of the pairing is only de�ned up to a 
oset of (F∗

qk)n. However, for
ryptographi
 use, we generally need a unique value and we de�ne the redu
edTate pairing:
Tm(P, Q) = tm(P, Q)(q−1)/m ∈ µm,where by µm we denote the group of mth roots of unity. Pairing 
omputation
an be done in time O(log m) using Miller's algorithm [12℄. For more details onpairings, the reader should refer to [8℄.Suppose now that m = ℓn, with n ≥ 1 and ℓ prime. Now let P and Q be twolinearly independant ℓn-torsion points on E. Then all ℓn-torsion points R 
anbe expressed as R = aP + bQ. We de�ne the following symmetri
 pairing [9℄:
S(P, Q) = (Tℓn(P, Q)Tℓn(Q, P ))

1
2 . (2)Note that for any point P , Tℓn(P, P ) = S(P, P ). In the remainder of this paper,we 
all S(P, P ) the self pairing of P . Any ℓn-torsion points R 
an be expressedas R = aP + bQ. By bilinearity and symmetry of the S-pairing we get:log(S(R, R)) = a2log(S(P, P )) + 2ab log(S(P, Q)) + b2 log(S(Q, Q)).



where log is a dis
rete logarithm fun
tion in µln . We denote by k the largestinteger su
h that the polynomial
P (a, b) = a2log(S(P, P )) + 2ab log(S(P, Q)) + b2 log(S(Q, Q)) (3)is nonzero modulo ℓk+1 and zero modulo ℓk. Obviously, 0 ≤ k ≤ n. Dividing by

ℓk, we may thus regard P as a polynomial in Fℓ[a, b]. Therefore it has at mosttwo roots, whi
h means that that from all the ℓ + 1 subgroups of order ℓn, atmost 2 have self pairings in µℓk (see also [9℄). In the remainder of this paper,we denote by NE,ℓn the number of zeros of any polynomial like the one at (3).Note that this number does not depend on the 
hoi
e of the two generators Pand Q of the ℓn-torsion subgroup E[ℓn]. We also denote by PE,ℓn any quadrati
polynomial as the one in equation (3). Moreover, we say that a ℓn-torsion point
R has degenerated self-pairing if Tℓn(R, R) is a primitive ℓk-th root of unityand that R has non-degenerated self-pairing otherwise. Also, if Tℓn(R, R) is aprimitive ℓn-th root of unity, we say that R has primitive non-degenerated selfpairing.4 Preliminary results. Determining dire
tions on thevol
anoIn this se
tion we explain how we 
an distinguish between di�erent dire
tionson the vol
ano by making use of pairings. We start by some lemmas, meant toexplain the relations between pairings on two 
urves, whenever there exists anisogeny between the two 
urves.Lemma 1. Suppose E/Fq is an ellipti
 
urve and P, Q are points in E(Fq) oforder ℓn, n ≥ 1. Suppose there are P̃ , Q̃ ∈ E[F̄q] su
h that ℓP̃ = P and ℓQ̃ = Q.Then we have the following relation for the Tate pairing:(a) If P̃ , Q̃ ∈ E[Fq], then

Tℓn+1(P̃ , Q̃)ℓ2 = Tℓn(P, Q).(b) Suppose ℓ ≥ 3. If Q̃ ∈ E[Fqℓ ]\E[Fq], then
Tℓn+1(P̃ , Q̃)ℓ = Tℓn(P, Q).Proof 1. By writing down the divisors of the fun
tions fℓn+1,P̃ , fℓn,P̃ , fℓn,P , one
an easily 
he
k that

fℓn+1,P̃ = (fℓ,P̃ )ℓn

· fℓn,P .We evaluate these fon
tions at some points Q + R and R (where R is 
arefully
hosen) and raise the equality to the power (q − 1)/ℓn.2. Due to the equality on divisors div(fℓn+1,P ) = div(f ℓ
ℓn,P ), we have

Tℓn+1(P̃ , Q̃)l = T
(F

qℓ )

ℓn (P, Q̃),where T
(F

qℓ)

ℓn is the ℓn-Tate pairing for E de�ned over Fqℓ . It su�
es then toshow that



T
(F

qℓ)

ℓn (P, Q̃) = Tℓn(P, Q).We have
T

(F
qℓ)

ℓn (P, Q̃) = fℓn,P ([Q̃ + R] − [R])
(1+q+···+qℓ−1)(q−1)

ℓn

= fℓn,P ((Q̃ + R) + (π(Q̃) + R) + (π2(Q̃) + R) + . . .

+ (πℓ−1(Q̃) + R) − ℓ(R))
(q−1)

ℓn (4)where R is a random point de�ned over Fq. It is now easy to see that for ℓ ≥ 3,
Q̃ + π(Q̃) + π2(Q̃) + . . . + πℓ−1(Q̃) = ℓQ̃ = Q,be
ause π(Q̃) = Q̃ + T , where T is a point of order l. By applying Weil's re
i-pro
ity law ( [16, Ex. II.2.11℄), it follows that the equation (4) be
omes:

T
(F

qℓ )

ℓn (P, Q̃) =

(

fℓn,P (Q + R)

fℓn,P (R)

)
q−1
ℓn

f((P ) − (O))q−1,where f is su
h that div(f) = (Q̃ + R) + (π(Q̃) + R) + (π2(Q̃) + R) + ... +
(πℓ−1(Q̃) + R) − (Q + R) − (ℓ − 1)(R). Note that this divisor is Fq-rational, so
f((P ) − (O))q−1 = 1. This 
on
ludes the proof. ⊓⊔.Lemma 2. (a) Let φ : E → E′ be a separable isogeny of degree d de�ned over

Fq, P a ℓ-torsion on the 
urve E su
h that φ(P ) is a ℓ-torsion point on E′,and Q a point on E. Then we have
Tℓ(φ(P ), φ(Q)) = Tℓ(P, Q)d.(b) Let φ : E → E′ be a separable isogeny of degree ℓ de�ned over Fq, P a

ℓℓ′-torsion point su
h that Ker φ =< ℓ′P > and Q a point on the 
urve E.Then we have
Tℓ(φ(P ), φ(Q)) = Tℓℓ′(P, Q)ℓ.Proof.(a) We have

(φ)∗(fℓ,φ(P )) = ℓ
∑

K∈Kerφ(P + K) − ℓ
∑

K∈Kerφ(K)

= ℓ
∑

K∈Kerφ((P + K) − (K)) = ℓ
∑

K∈Kerφ((P ) − (O)) + div









∏

K∈Kerφ lK,P

vK+P





ℓ





,where lK,P is the straight line passing through K and P and vK+P is theverti
al line passing through K + P .It follows that



fℓ,φ(P ) ◦ φ(Q) = fd
ℓ,P (Q)





∏

K∈Kerφ lK,P (Q)

vK+P (Q)





ℓSo we obtain the desired formula by evaluating the equality above at twopoints 
arefully 
hosen Q + R and R, and then by raising to the power q−1
ℓ .(b) The proof is similar to the one at point (a). ⊓⊔Remark 1. A
tually the statement at (a) stands for all isogenies, as shown inTheorem IX.9.4 of [2℄. We kept our proof be
ause a similar te
hnique 
an beapplied to prove (b).Proposition 4. Let E be an ellipti
 
urve de�ned a �nite �eld Fq and assumethat E[ℓ∞](Fp) is isomorphi
 to Z/ℓn1Z × Z/ℓn2Z (with n1 ≥ n2). Suppose thatthere is a ℓn2-torsion point P su
h that Tℓn2 (P, P ) is a primitive ℓn2th root ofunity. Then the ℓ-isogeny whose kernel is generated by ℓn2−1P is des
ending.Moreover, the 
urve E does not lie above the stability level of the 
orresponding

ℓ-vol
ano.Proof. Consider I1 : E → E1 the isogeny whose kernel is generated by ℓn2−1Pand suppose this isogeny is as
ending or horizontal. This means that E1[ℓ
n2 ] isde�ned over Fq. Take Q another ℓn2-torsion point on E, su
h that E[ℓn2 ] =<

P, Q > and denote by Q1 = I1(Q). One 
an easily 
he
k that the dual of I1 haskernel generated by ℓn2−1Q1. It follows that there is a point P1 ∈ E1[ℓ
n2 ] su
hthat P = Î1(P1). By Lemma 2 this means that Tℓ(P, P ) ∈ µℓn2−1 , whi
h is false.This proves not only that the isogeny is des
ending, but also that the stru
tureof the ℓ-torsion is di�erent at the level of E1, so E 
annot be above the stabilitylevel. ⊓⊔Proposition 5. Let ℓ ≥ 3 a prime number and suppose that E/Fq is a 
urvewhi
h lies in a ℓ-vol
ano and on the stability level. Suppose E[ℓ∞](Fq) ≃ Z/ℓn1Z×

Z/ln2Z, n1 ≥ n2. Then there is at least one ln2-torsion point on R ∈ E(Fq) whosepairing Tln2 (R, R) is a primitive ln2-th root of unity.Proof. Let P be a ℓn1-torsion point and Q be a ℓn2-torsion point su
h that {P, Q}generates E[ℓ∞](Fq).Case 1. Suppose n1 ≥ n2 ≥ 2. Let E
I1−→ E1 be a des
ending ℓ-isogeny anddenote by P1 and Q1 the ℓn1+1 and ℓn2−1-torsion points generating E1[ℓ

∞](Fp).Moreover, without loss of generality, we may assume that I1(P ) = ℓP1 and
I1(Q) = Q1. If Tℓn2−1(Q1, Q1) is a primitive ℓn2−1-th root of unity, Tℓn2 (Q, Q) isa primitive ℓn2-th root of unity by Lemme 2. If not, from the non-degenerationof the pairing, we dedu
e that Tℓn2−1(Q1, P1) is a primitive ℓn2−1-th root ofunity, whi
h means that Tℓn2−1(Q1, ℓP1) is a ℓn2−2-th primitive root of unity.By applying Lemme 2, we get Tℓn2 (Q, P ) ∈ µℓn2−1 at best. It follows that
Tℓn2 (Q, Q) ∈ µℓn2 by the non-degenera
y of the pairing.Case 2. If n2 = 1, then 
onsider the vol
ano de�ned over the extension �eld Fqℓ .There is a ℓ2-torsion point Q̃ ∈ E(Fqℓ) with Q = ℓQ̃. We obviously have ℓ2|qℓ−1



and from Lemma 1, we get Tℓ2(P̃ , P̃ )ℓ = Tℓ(P, P ). By applying Case 1, we getthat Tℓ2(P̃ , P̃ ) is a primitive ℓ2-th root of unity, so Tℓ(P, P ) is a primitive ℓ-throot of unity.We will now make use of a result 
on
erning the representation of ideal 
lassesof orders in imaginary quadrati
 �elds:Lemma 3. Let O be an order in an imaginary quadrati
 �eld. Given a nonzerointeger M , then every ideal 
lass in Cl(O) 
ontains a proper O-ideal whose normis relatively prime to M .Proof. See [4℄, Corollary 7.17.Proposition 6. We use the notations and assumptions from Proposition 1. Fur-thermore, we assume that for all 
urves Ei lying at a �xed level i in V the 
urvestru
ture is Z/ℓn1Z × Z/ℓn2Z, with n1 ≥ n2. The value of NEi,ℓn2 , the numberof zeros of the polynomial de�ned at 3, is 
onstant for all 
urves lying at level iin the vol
ano.Proof. Let E1 and E2 be two 
urves lying at level i in the vol
ano V . Thenby Proposition 1 they both have endomorphism ring isomorphi
 to some order
Odi . Now by taking into a

ount the fa
t that the a
tion of Cl(Odi) on Elldi(Fq)is transitive, we 
onsider an isogeny φ : E1 → E2 of degree ℓ1. By applyingLemma 3, we may assume that (ℓ1, ℓ) = 1. Take now P and Q two indepen-dant ℓn2-torsion points on E1 and denote by PE1,ℓn2 the quadrati
 polynomial
orresponding to the ℓn2-torsion on E1:

PE1,ℓn2 (a, b) = a2 log(S(P, P )) + 2ab log(S(P, Q)) + b2log(S(Q, Q)).We use Lemma 2 to 
ompute S(φ(P ), φ(P )), S(φ(P ), φ(Q)) and S(φ(Q), φ(Q))and dedu
e easily that there is a polynomial PE2,ℓn2 (a, b) on the 
urve E2 su
hthat
PE1,ℓn2 (a, b) = PE2,ℓn2 (a, b)This means that NE1,ℓn2 and NE2,ℓn2 
oin
ide, whi
h 
on
ludes the proof.⊓⊔Moreover, we have showed that the value of k for two 
urves lying on thesame level of a vol
ano is the same.Proposition 7. Let E be an ellipti
 
urve de�ned a �nite �eld Fq and let

E[ℓ∞](Fq) be isomorphi
 to Z/ℓn1Z × Z/ℓn2Z with ℓ ≥ 3 and n1 ≥ n2 ≥ 1.Suppose NE,ℓn2 ∈ {1, 2} and let P be a ℓn2-torsion point with degenerated selfpairing. Then the ℓ-isogeny whose kernel is generated by ℓn2−1P is either as-
ending or horizontal. Moreover, for any ℓn2-torsion point Q whose self-pairingis non-degenerated, the isogeny with kernel spanned by < ℓn2−1Q > is des
end-ing.Proof. Case 1. Suppose Tℓn2 (P, P ) ∈ µℓk , k ≥ 1 and that Tℓn2 (Q, Q) ∈
µℓk+1\µℓk . Denote by I1 : E → E1 the isogeny whose kernel is generated by
ℓn2−1P and I2 : E → E2 the isogeny whose kernel is generated by ℓn2−1Q. By



repeatedly applying Lemmas 1 and 2, we get the following relations for pointsgenerating the ℓn2−1-torsion on E1 and E2:
Tℓn2−1(I1(P ), I1(P )) ∈ µℓk−1 , Tℓn2−1(ℓI1(Q), ℓI1(Q)) ∈ µℓk−2\µℓk−3

Tℓn2−1(ℓI2(P ), ℓI2(P )) ∈ µℓk−3 , Tℓn2−1(I2(Q), I2(Q)) ∈ µℓk\µℓk−1with the 
onvention that µℓh = ∅ whenever h ≤ 0. From the relations above, wededu
e that on the ℓ-vol
ano having E, E1 and E2 as verti
es, E1 and E2 do notlie at the same level. Given the fa
t that there are at least l−1 des
ending rational
ℓ-isogenies parting from E and that Q is any of the ℓ − 1 (or more) ℓn2 -torsionpoints with non-degenerated self-pairing, we 
on
lude that I1 is horizontal oras
ending and that I2 is des
ending.Case 2. Suppose now that k = 0. Note that the 
ase n2 = 1 was already treatedin proposition 4. Otherwise, 
onsider the 
urve E de�ned over Fqℓ . By lemma 1we have k = 1 for points on E/Fqℓ , so we may apply Case 1. ⊓⊔Note 1. All statements in the proof of Case 1 are true for ℓ = 2 also. Thestatement in Proposition 4 is also true for ℓ = 2. The only 
ase that is not
lear is what happens when k = 0 and n2 ≥ 1. We did not �nd a proof for thestatement in proposition 5 for ℓ = 2, but in our 
omputations with MAGMA wedid not �nd any 
ounterexamples either.Example 1. Let E be the ellipti
 
urve whose Weierstrass equation is given by
y2 = x3 +521631762x+248125891 de�ned over F1992187501. The 55-torsion is en-tirely de�ned over F1992187501. We take P = (749718987, 838497160) a 55-torsionpoint with degenerated self-pairing, be
ause T55(P, P ) ∈ µ54 . The 
orrespondingisogeny I1 : E → E1 is a horizontal one. Consider now a point of order 55 withnon-degenerated self-pairing, for example Q = (139364112, 1455554413). Onemay easily 
he
k that T55(Q, Q) ∈ µ55\µ54 and that I2 : E → E2 (whose kernelis generated by 54Q is des
ending.Consider now a 
urve E de�ned over Fq su
h that

E[ℓ∞](Fq) ≃ Z/ℓn1Z × Z/ℓn2ZWe 
on
lude this se
tion by presenting two algorithms whi
h �nd a ℓ-torsionpoint on E generating the kernel of a des
ending isogeny and of an as
ending(horizontal) one, respe
tively. We assume ℓ ≥ 3, even though in many 
ases thesemethods work also for ℓ = 2.Algorithm 1 Finding the kernel of a des
ending isogeny Input: A 
urve E, thestru
ture of E[ℓ∞](Fq).Output: A ℓ-torsion point generating the kernel of a des
ending isogeny.1. If n2 = 0 exit.2. Take a random P1 of order ℓn2 . If Tℓn2 (P1, P1) is a primitive ℓn2th root ofunity, return ℓn2−1P1.



3. Take a random P2 of order ℓn2 . If Wℓn2
(P1, P2) ∈ µℓn2−1

3 , take anotherrandom point P2. If Tℓn2 (P2, P2) is a primitive ℓn2th root of unity, return
ℓn2−1P2.4. Compute PE,ℓn2 . If PE,ℓn2 6= 0 and both P1 and P2 have degenerated pair-ings, take P1 + P2. Else 
onsider E over Fqℓ and return to step 2.Algorithm 2 Finding the kernel of a as
ending (horizontal) isogenyInput: A 
urve E, the stru
ture of E[ℓ∞](Fq).Output: A ℓ-torsion point generating the kernel of a as
ending isogeny.1. If n2 = 0 then take a random point P1 of ℓn1 torsion and return ℓn1−1P1.2. Else 
ompute PE,ℓn2 . If PE,ℓn2 6= 0, 
ompute its roots and �nd a point Pwith self-degenerated pairing. Return ℓn2−1P . Else 
onsider E over Fqℓ andreturn to step 2.Note that proposition 5 guarantees that these algorithms terminate, be
ausethe existen
e of nondegenerated primitive self pairings on the stability levelimplies (by applying lemma 1 if ne
essary) that for any 
urve E lying on upperlevels, there is an extension of Fqe and points in E[ℓ∞](Fqe) with nondegeneratedself pairings.5 Walking the vol
ano: some new algorithmsIn his thesis [11℄, Kohel gave a deterministi
 algorithm to 
ompute the 
ondu
torof the endomorphism ring of an ordinary 
urve E, assuming the tra
e t of the
urve is known. His idea is to determine the ℓ-adi
 valuation of the 
ondu
torby determining the level of the vertex E in the ℓ-vol
ano.Re
ently, new appli
ations using e�
ient algorithms to travel along the vol-
ano were given: the 
omputation of the Hilbert 
lass polynomial [1℄, [18℄, thatof modular polynomials [19℄ and that of the endomorphism ring of the 
urve[20℄. All these algorithms use modular polynomials or Vélu's formulae [21℄ tomove from one ellipti
 
urve to another 
urve on the vol
ano. In this se
tion,we brie�y des
ribe existing algorithms used to 
ompute the level of a 
urve on avol
ano, to as
end one level on the vol
ano and to walk a path along the 
rater.These algorithms a
tually rely on methods given by Kohel [11℄ and by Fouquetand Morain in [7℄).We then present our new algorithms, whi
h use the methods in Algorithms 1and 2 to predi
t the dire
tion of isogenies. We estimate the number of visitedverti
es during the exe
ution of ea
h algorithm and prove that in most 
ases ourmethod is more e�
ient.Before going into the details of the algorithms, we 
ompare the 
osts oftaking one step on a vol
ano by using the two methods existing in the litera-ture: modular polynomials and Vélu's formulae. Suppose we have walked a path3 The Weil pairing Wm(see [16℄ for the de�nition) has the property that Wm(P, P ) = 1for all points of order m, so we 
an test wheather two points are independant bytesting wheather their pairing is a primitive mth root of unity.



E1, ..., Ei−1 on the vol
ano and we would like to take a new step (Ei−1, Ei). Inthe modular polynomial approa
h, we have to fa
tor the polynomial f(X) =
Φℓ(X, j(Ei−1))/(X − j(Ei−2)). The 
ost of the step is then of

O(ℓ2 + M(ℓ)logq)operations in Fq, where M(ℓ) = ℓlogℓlog logℓ. In this formula, the �rst term isthe time to evaluate Φℓ(X, j(Ei−1) and the se
ond term is the time to 
ompute
Xq mod f . Now 
omputing the isogeny with Vélu's formulae 
an be done in
O(ℓ) operations, if we 
onsider the time to 
ompute ℓ-torsion points neglige-able. However, in many 
ases, even though the ℓ-isogeny is de�ned over Fq, thepoints of order ℓ are de�ned in an extension �eld of degree smaller than ℓ (see
orollary 1). As a 
onsequen
e, we need

O(ℓ2 log ℓ)operations in Fq in order to 
ompute the isogeny with Vélu's formulae. So usingVélu formulae is slightly more expensive. However, it be
omes more e�
ient withour te
hnique sin
e we 
an determine the dire
tion of the isogeny in advan
e.Moreover, in our algorithms, we need to perform a small number of pairing
omputations, whi
h 
ost O(log ℓ), if we use Miller's algorithm ??. On
e these
omputations performed, the 
al
ulation of the polynomial PE,ℓn2 
osts O(log ℓ)in time. The most expensive part of this 
omputation is the 
omputation of logsin the �nite �eld Fℓ. This 
an be done by pre
omputing all the logs, storingthem in a ordered table ( whi
h 
osts O(ℓ) in memory), and then performinga di
hotomi
 sear
h every time we need to 
ompute a log. This sear
h 
osts
O(log ℓ) in time.Suppose that we wish to 
ompute the level of a 
urve in a vol
ano of height d.If deg(E) 6= ℓ + 1, then we are already on the �oor and the level is d. Otherwisewe start walking two paths, that we extend as far as possible, but never beyondlength d. If E is on the surfa
e, then both paths have length d. Otherwise at leastone of them is a des
ending path of length k2 and E is on the level d − k2. Thetime 
omplexity for this algorithm is O(2d(ℓ2 +M(ℓ) log q)). The pseudo
ode forthis algorithm, given by Kohel [11℄, is given in [18℄.There is a se
ond approa
h to this problem given by Fouquet and Morain in [7℄.The idea is to start walking three paths in parallel and extend them as far aspossible. As at least one of them is des
ending, we stop when one path rea
hesthe �oor for the �rst time and return the length of this path. The 
omplexityis O(3d(ℓ2 + M(ℓ) log q)). This algorithm is 50 per
ent slower, but it has theadvantage of working for vol
anoes whose height is not ne
essarily known.Our new algorithm, based on the method presented in Algorithm 1 for �ndingthe kernel of a des
ending isogeny, is very simple. We only need to apply Vélu'sformulae in order to 
ompute the des
ending isogeny. If the points of order ℓ arenot de�ned over Fq, but over an extension �eld Fqd , the 
ost of our algorithmis O(ℓ(log ℓ)2 + ℓ2 log ℓ), where the �rst term 
omes from the 
omputation of asmall number of pairings and the se
ond one is the 
omplexity of the isogeny
omputation using Vélu's formulae. Of 
ourse, we have assumed that we ourvol
ano is regular, so the polynomial PE,ℓn2 is not zero over Fqd .



Suppose now we want to as
end one level in the vol
ano. If we are on the�oor (i.e deg(E) 6= ℓ+1 or n2 = 0), we take the 
urve given by the only rational
ℓ-isogeny. Otherwise, we start walking des
ending paths for ea
h of the ℓ + 1
urves isogenous to E. We then 
ompare the lengths of all paths and the longestone is the one given by the neighbor of E lying one level above. The running timeof the algorithm is O(ℓd(ℓ2 + M(ℓ) log q)). The pseudo
ode for this algorithm
an be found in [18℄.Our new algorithm for �nding a 
urve on the upper level in a vol
ano usesAlgorithm 2 in order to �nd the kernel of the as
ending isogeny and then 
om-putes the isogeny with Vélu's formulae. On regular vol
anoes, the 
omplexity ofthis algorithm is O(ℓ(log ℓ)3 + ℓ2 log ℓ + 1), where the �rst term is the 
ost of4 pairing 
omputation and their logs, the se
ond one is the 
ost of the isogeny
omputation and the last one 
omes from the fa
torization of a polynomial ofdegree 2.In [18℄, Sutherland also makes use of an algorithm whi
h, given a 
urve E onthe 
rater of a vol
ano of height d, 
omputes a path of length n on the 
raterstarting at E. When d = 0, the algorithm ne
essarily returns a path 
ontained in
V0. Otherwise, we 
onstru
t a path of length d+1 and retain in the list of verti
eson the 
rater the vertex E′ obtained at the �rst step in our path. We 
ontinue thepro
ess, this time repla
ingE with E′, until we get n 
urves on the 
rater. See [18℄for a detailed des
ription of the algorithm. A

ording to [18, Proposition 4℄, thenumber of examined verti
es is O(ℓdn), so the running time of the algorithm is
O(ℓdn(ℓ2 + M(ℓ) log q)). Our new algorithm for walking n steps on the 
rater
alls Algorithm 2 in order to �nd the kernel of the horizontal isogeny startingfrom E and uses Vélu's formulae to take a step on the 
rater. This pro
ess isrepeated until n steps on the 
rater have been taken. The 
omplexity of ouralgorithm on a regular vol
ano is O(nℓ(log ℓ)3 + nℓ2 log ℓ + n).Assume that, for a �xed q, the tra
es of ellipti
 
urves are uniformly dis-tributed in Hasse's interval. Then the probability of pi
king a 
urve whose vol-
ano is not regular, among 
urves lying on vol
anoes of height greater than 0, isof approximatively 1

ℓ2 . This is not negligeable for small values of ℓ, and in these
ases we believe both methods should be 
ombined to a
hieve best performan
es.This means that on su
h a vol
ano, one should use the strategies given by Koheland Fouquet and Morain for 
urves lying above the stability level and use ourmethods when the 
urves are on the stability level or underneath it.Finally, in some appli
ations, it might be possible, to restri
t ourselves toregular vol
anoes. The use of Vélu's formulae also has the advantage of avoid-ing the expensive pre
omputations of the modular polynomials or of the Hilbertpolynomial. In the 
ase of algorithms 
omputing modular polynomials, for ex-ample, we do not need the pre
omputation of the Hilbert polynomial as in [19℄.Moreover, our method of enumerating 
urves on the 
rater of the vol
ano isfaster than the one using the a
tion of the 
lass group in [19℄.6 Con
lusion and perspe
tivesIn this paper, we have proposed a method whi
h allows, in the regular part ofan isogeny vol
ano, to determine, given a 
urve E and a ℓ-torsion point P , the



type of the ℓ-isogeny whose kernel is spanned by P . In addition, this methodalso permits, given a basis for the ℓ-torsion, to �nd the as
ending isogeny (orhorizontal isogenies) from E. We expe
t that this method 
an be used to improvethe performan
e of several vol
ano-based algorithms, su
h as the 
omputationof the Hilbert's [18℄ or modular [19℄ polynomials.7 A
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