
HAL Id: hal-00448031
https://hal.science/hal-00448031v1

Submitted on 20 Jan 2010 (v1), last revised 16 Oct 2011 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pairing the Volcano
Sorina Ionica, Antoine Joux

To cite this version:

Sorina Ionica, Antoine Joux. Pairing the Volcano. 2010. �hal-00448031v1�

https://hal.science/hal-00448031v1
https://hal.archives-ouvertes.fr


Pairing the volanoSorina Ionia1 and Antoine Joux1,2

1 Université de Versailles Saint-Quentin-en-Yvelines, 45 avenue des États-Unis,78035 Versailles CEDEX, Frane
2 DGAsorina.ionia,antoine.joux�m4x.orgAbstrat. Isogeny volanoes are graphs whose verties are ellipti urvesand whose edges are l-isogenies. Algorithms allowing to travel on thesegraphs were developed by Kohel in his thesis (1996) and later on, by Fou-quet and Morain (2001). However, up to now, no method was known, topredit, before taking a step on the volano, the diretion of this step.Consequently, in Kohel's and Fouquet-Morain's algorithms, we alwaystake more steps than neessary, before hoosing the right diretion. Sup-pose we know the ardinality of the urve. Given a point P of order l onthe ellipti urve, we develop a method to deide whether the subgroupgenerated by P is the kernel of a horizontal isogeny, a desending oran asending one. In most ases, our method is very e�ient and givessimple algorithms, whih are more e�ient than previous ones. In theother ases, we show that the two methods should be ombined in orderto obtain e�ient algorithms.1 IntrodutionLet E be an ellipti urve de�ned over a �nite �eld Fq, where q = pr is aprime power. Let π be the Frobenius endomorphism, i.e. π(x, y) 7→ (xq , yq) anddenote by t its trae. Moreover, we assume that E is an ordinary urve, so itsendomorphism ring, whih we denote byOE , is an order in a quadrati imaginary�eld K ( [16, Theorem V.3.1℄). Let dπ = t2 − 4q be the disriminant of π. Wean write dπ = g2dK , where dK is the disriminant of the quadrati �eld K. Sothere are only a �nite number of possibilities for OE , sine

Z[π] ⊂ OE ⊂ OdK .This also means that the ondutor of OE , whih we denote by f , divides g, theondutor of Z[π].The number of points of E over Fq is given by #E(Fq) = q+1−t. Two isogenousellipti urves over Fq have the same ardinality, and therefore the same trae
t. In his thesis [11℄, Kohel studies how the urves in Ellt(Fq), the set of urvesde�ned over Fq with trae t, are related via isogenies of degree ℓ. More preisely,he desribes the struture of the graph of ℓ-isogenies de�ned on Ellt(Fq) and alsoexplains how this graph is related to orders in OK . He uses modular polynomialsto �nd the ondutor of End(E), assuming that g is known.In [7℄, Fouquet and Morain all the onneted omponents of this graphisogeny volanoes. They extend Kohel's work, by showing that it is atually



possible to �nd both g and f (also by using modular polynomials to move fromone vertie of the volano to another one). They also give an algorithm thatomputes the l-adi valuation of t, for l|g. This information an be used inShoof's algorithm [15℄. Reently, new appliations to isogeny volanoes werefound: the omputation of the Hilbert lass polynomial ([1℄, [18℄), that of modularpolynomials ([19℄) and that of the endomorphism ring of the urve ([20℄).More preisely, the methods enumerated above make use of algorithms thataim at travelling e�iently on the volano. These algorithms an either walk onthe rater, desend from the rater to the �oor or, onversely, asend from the�oor to the rater. As explained in [13℄ and [14℄, the struture of the ℓ-Sylowsubgroup of the ellipti urve may, in many ases, help deiding whether wehave taken a step on the rater, or we have desended or asended. However,no known method an distinguish in advane horizontal isogenies from desend-ing isogenies, or desending isogenies from asending ones. In this paper, wedesribe a new method to predit, given a point P of order ℓ, the type of theisogeny whose kernel is generated by P . Our approah, whih implies only theomputation of a pairing on E, presents several advantages. It allows, in mostases, to ompute the ondutor of the urve E without taking any steps onthe volano. This is important beause omputing isogenies of degree ℓ, evenfor moderately large values of ℓ, is a di�ult task, sine algorithms for isogenyomputation are exponential (exept for some partiular ases, see [3℄). We alsoshow that our algorithms for traveling on the volano are, in most ases, fasterthan the ones from [11℄ and [7℄.The remainder of this paper is organised as follows: setions 2 and 3 presentde�nitions and properties of isogeny volanoes and pairings. Setion 4 explainsour method to �nd the type of the isogeny by means of pairing omputation.Finally, in setion 5, we present new algorithms for �nding the level of a urvein a ℓ-volano, for asending and for walking on the rater of the volano.2 Bakground on isogeny volanoesIn this paper we will rely on some results from omplex multipliation theory andon the Deuring lifting theorem. We denote by Elld(C) the set of C-isomorphismlasses of ellipti urves whose endomorphism ring equals Od, for some d < 0. Inthis setting there is an ation of the lass group of the order Od on Elld(C). Let
E ∈ Elld(C), Λ its orresponding lattie and a an Od-ideal. We have a naturalhomomorphism

C/Λ → C/a
−1Λ, z → z,whih indues an isogeny that we denote by E → â ∗E. The ation desribed inthis way is transitive and free (see [17℄, prop.II.1.2). Moreover, the degree of theappliation E → â ∗ E is N(a), the norm of the ideal a (also [17℄, or.II.1.5).Now from Deuring's theorems (see [5℄), if p is a prime number that splitsompletely, we get a bijetion Elld(C) → Elld(Fq), where q = pr. Furthermore,the lass group ation in harateristi zero respets this bijetion, so we get anation of the lass group also on Elld(Fq).



2.1 Isogeny volanoes and modular polynomialsConsider E an ellipti urve de�ned over a �nite �eld Fq. Let ℓ be a primedi�erent from har(Fq) and I : E → E
′ be a ℓ-isogeny, i.e. a isogeny of degree

ℓ. As shown in [11℄, this means that OE ontains OE′ or OE′ ontains OE orthe two endomorphism rings oinide. If OE ontains OE′ , we say that I is adesending isogeny. Otherwise, if OE is ontained in OE′ , we say that I is aasending isogeny. If OE and OE′ are equal, then we all the isogeny horizontal.In his thesis, Kohel shows that horizontal isogenies exist only if the ondutorof OE is not divisible by l. Moreover, in this ase there are exatly (

d
ℓ

)

+ 1horizontal isogenies of degree ℓ. If (

d
ℓ

)

= 1, then ℓ is split in OE and the twohorizontal isogenies orrespond to the ation of the two ideals l and l̄ via theation desribed at the beginning of this setion. In a similar way, if (

d
ℓ

)

= 0,then ℓ is rami�ed in OE there is one horizontal isogeny starting from E andthis isogeny orresponds to the only prime ideal of norm ℓ in OE . In order todesribe the struture of the graph whose verties are urves with a �xed numberof points and whose edges are ℓ-isogenies, we introdue the following de�nition(taken from [18℄):De�nition 1. An ℓ-volano is a onneted undireted graph with verties par-tioned into levels V0, . . . , Vh, in whih a subgraph on V0 (the rater) is a regularonneted graph of degree at most 2 and:(a) For i > 0, eah vertex in Vi has exatly one edge leading to a vertex in Vi−1,and every edge not on the rater is of this form.(b) For i < h, eah vertex in Vi has degree ℓ + 1.We all the level Vh the �oor of the volano. Verties lying on the �oor havedegree 1. Let Ellt(Fq) be the set of ellipti urves de�ned over Fq with trae t.The following proposition, formulated in [18℄ follows essentially from Proposition23 in [11℄.Proposition 1. Let p be a prime number, q = pr, and dπ = t2 − 4q. Take ℓ 6= panother prime number. Let G be the undireted graph with vertex set Ellt(Fq) andedges ℓ-isogenies de�ned over Fq. We denote by ℓh the largest power of ℓ dividingthe ondutor of dπ. Then the onneted omponents of G are ℓ-volanoes ofheight h and for eah omponent V :(a) The ellipti urve whose j-invariants lie in V0 have endomorphism ringsisomorphi to some Od0 ⊇ Odπ whose ondutor is not divisible by l.(b) The ellipti urve whose j-invariants lie in Vi have endomorphism ringsisomorphi to Odi , where di = l2id0.Ellipti urves are determined by their j-invariant, up to a twist (the readershould refer to [16℄ for a de�nition of the twist of an ellipti urve). In theremainder of this paper, we refer to a vertex in a volano either by naming theurve or its j-invariant.Given a urve E, two methods are known to onstrut urves whih are ℓ-isogenous to E and therefore to travel on the volano. One relies on modularpolynomials and the other on Vélu's formulae. We give below a brief survey ofthe two methods.



Modular polynomials The ℓthmodular polynomial, usually denoted by Φℓ(X, Y )is a polynomial with integer oe�ients, whih satis�es the following property:given two ellipti urves E and E′, there is a ℓ-isogeny de�ned over Fq, if andonly if, #E(Fq) = #E′(Fq) and Φℓ(j(E), j(E′)) = 0, where j(E) and j(E′) arethe j-invariants of urves E and E′. So in order to �nd the urves related to
E via a ℓ-isogeny, we need to solve the equation Φℓ(X, j(E)) = 0. As statedin [15℄, this polynomial may have 1, 2 or ℓ + 1 roots in Fq. So in order to �ndan edge on the volano, it su�es to �nd a root j′ of this polynomial. Note thatthe j-invariant determines the urve up to a twist. The formula for �nding theequation of the urve E′ ∈ Ellt(Fq) from j(E′) is also given in [15℄.The group struture of the ellipti urve on the volano Lenstra [10℄relates the struture of the urve to the endomorphism ring by proving that:

E(Fq) ≃ OE/(π − 1) (1)as OE-modules. It is thus natural to see how this struture relates to the isogenyvolano. From (1), we an dedue that E(Fq) ≃ Z/mZ × Z/nZ, where n =gd(a − 1, g/f), with
a =

{

(t − g)/2 if dK ≡ 1 (mod 4),
t/2 if dK ≡ 2, 3 (mod 4),where dK is the disriminant of the quadrati imaginary �eld ontaining OE .Moreover, n|m, n|(q − 1) and mn = #E(Fq). This means that on a ℓ-volanothe struture of all the urves in a given level is the same.Let E be a urve on the isogeny volano suh that vℓ(n) < vℓ(m). As explainedin [13℄ (in the ase ℓ = 2, but the result holds in the general ase), we have thefollowing inequality:

vℓ(a − 1) ≥ min{vℓ(g), vℓ(#E(Fq))/2}As n = gd(a − 1, g/f) and n ≤ vℓ(#E(Fq))/2, it follows that n = vℓ(g/f). Aswe desend, the valuation at ℓ of the ondutor f inreases by 1 at eah level(by proposition 1b). This implies that the ℓ-valuation of n for urves at eahlevel dereases by 1 and is equal to 0 for urves lying on the �oor. Note that if
vℓ(#E(Fq)) is even and the height of the volano is greater than vℓ(#E(Fq)),the struture of the ℓ-torsion group is unaltered from the rater down to thelevel vℓ(#E(Fq))/2. From this level down, the struture of the ℓ-torsion groupsstarts hanging as explained above. In the sequel we all this level the stabilitylevel. The volanoes whose ℓ-torsion is di�erent at eah level are alled regularvolanoes (see Figure 1). Their stability level is on the rater. This terminologyis taken from [13℄. Apart from modular polynomials, the problem of �nding a
ℓ-isogeny de�ned on E has another solution. Given P a point of order ℓ on E, the
ℓ-isogeny I : E → E′ whose kernel G is generated by P an be found by usingVélu's formulae (see [21℄)). If we want to use this approah, we are interestedin expliitly omputing the oordinates of points of order ℓ on E. We denoteby Gi, 1 ≤ i ≤ ℓ + 1, the ℓ + 1 subgroups of order ℓ of E. In [13℄ Miret and



Fig. 1. A regular volano
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Z/ℓn1+n2Zal. give the degree ri of the smallest extension �eld of Fq suh that Gi ⊂ Fqri ,
1 ≤ i ≤ ℓ + 1. This degree is related to the order of q in the group F∗

ℓ , thatwe denote by ordℓ(q). Notie that in the speial ase of ℓ = 2, this degree isalways 1.Proposition 2. Let E de�ned over Fq be an ellipti urve with k rational ℓ-isogenies, ℓ > 2, and let Gi, 1 ≤ i ≤ k, be their kernels, and let ri be theminimum value for whih Gi ⊂ E(Fqri ).(a) If k = 1 then r1 = ordℓ(q) or r1 = 2ordℓ(q).(b) If k = ℓ + 1 then either ri = ordℓ(q) for all i, or ri = 2ordℓ(q) for all i.() If k = 2 then ri|ℓ − 1, i = 1, 2.The following orollary [13℄ will also be useful in the remainder of this paper.Corollary 1. Let E/Fq be an ellipti urve over Fq. If E/Fq has 1 or ℓ + 1rational ℓ-isogenies, then #E(Fordlq
q ) or #Ẽ(Fordℓq

q ) is a multiple of ℓ. Moreover,if E/Fordℓq
q has ℓ + 1 rational isogenies, then it is also a multiple of ℓ2.Notations. Let n ≥ 0. In the sequel, we denote by E[ℓn] the subgroup of pointsof order ℓn on the urve E, by E[ℓn](K) the subgroup of points of order n de�nedover K and by E[ℓ∞](K) the subgroup of points de�ned over K whose ordersare powers of ℓ.Given a point P ∈ E[ℓn](Fq), we also need to know the degree of the extension�eld in whih there is a ℓn+1-torsion point suh that ℓP̃ = P . The following resultis taken from [6℄.Proposition 3. Let E/Fq be an ellipti urve whih lies on a ℓ-volano whoseheight h(V ) is di�erent from 0. Then the height of V ′, the ℓ-volano of the urve

E/Fqs is
h(V ′) = h(V ) + vℓ(s)



From this proposition, it follows easily that if the struture of ℓ-torsion on theurve E/Fq is Z/ℓn1Z×Z/ℓn2Z, then the smallest extension in whih the stru-ture of the ℓ-torsion hanges is Fqℓ . Indeed, it su�es to see that the strutureof the ℓ-volano ontaining E modi�es only over Fqℓ . Moreover, if we onsider aurve E′ lying on the �oor of V/Fq, this means this urve has one point of order
ℓ de�ned over Fq and ℓ+1 isogenies de�ned over Fqℓ . We onlude that E′ has allthe ℓ + 1 subgroups of order ℓ de�ned over Fq, whih means that (by asendingon the volano) the struture of the ℓ-torsion of E over Fqℓ is neessarily

E[ℓ∞](Fqℓ) ∼ Z/ℓn1+1
Z × Z/ℓn2+1

Z.This observation will be very useful in the sequel.3 Bakground on pairingsLet E be an ellipti urve de�ned over some �nite �eld Fq, m a number oprimeto q, suh that m|#E(Fq) and assume m|(q − 1). Let P ∈ E[m](Fq) and Q ∈
E(Fq)/mE(Fq). Let fm,P be the funtion whose divisor is m(P )−m(O), where Ois the point at in�nity of the urve E (for bakground on divisors see [16℄). Take
R a random point in E(Fq) suh as the support of the divisor D = (Q+R)−(R)is disjoint from the support of fm,P . Then we an de�ne the Tate pairing asfollows:

tm : E[m] × E(Fq)/mE(Fq) → F
∗

q/(F∗

q)
m

(P, Q) → fm,P (Q + R)/fm,P (R)The Tate pairing is a bilinear non-degenerate appliation, i.e. for all P ∈
E[m](Fq) di�erent from O there is aQ ∈ E(Fq)/mE(Fq) suh that Tm(P, Q) 6= 1.So the output of the pairing is only de�ned up to a oset of (F∗

qk)n. However, forryptographi use, we generally need a unique value and we de�ne the reduedTate pairing:
Tm(P, Q) = tm(P, Q)(q−1)/m ∈ µm,where by µm we denote the group of mth roots of unity. Pairing omputationan be done in time O(log m) using Miller's algorithm [12℄. For more details onpairings, the reader should refer to [8℄.Suppose now that m = ℓn, with n ≥ 1 and ℓ prime. Now let P and Q be twolinearly independant ℓn-torsion points on E. Then all ℓn-torsion points R anbe expressed as R = aP + bQ. We de�ne the following symmetri pairing [9℄:
S(P, Q) = (Tℓn(P, Q)Tℓn(Q, P ))

1
2 . (2)Note that for any point P , Tℓn(P, P ) = S(P, P ). In the remainder of this paper,we all S(P, P ) the self pairing of P . Any ℓn-torsion points R an be expressedas R = aP + bQ. By bilinearity and symmetry of the S-pairing we get:log(S(R, R)) = a2log(S(P, P )) + 2ab log(S(P, Q)) + b2 log(S(Q, Q)).



where log is a disrete logarithm funtion in µln . We denote by k the largestinteger suh that the polynomial
P (a, b) = a2log(S(P, P )) + 2ab log(S(P, Q)) + b2 log(S(Q, Q)) (3)is nonzero modulo ℓk+1 and zero modulo ℓk. Obviously, 0 ≤ k ≤ n. Dividing by

ℓk, we may thus regard P as a polynomial in Fℓ[a, b]. Therefore it has at mosttwo roots, whih means that that from all the ℓ + 1 subgroups of order ℓn, atmost 2 have self pairings in µℓk (see also [9℄). In the remainder of this paper,we denote by NE,ℓn the number of zeros of any polynomial like the one at (3).Note that this number does not depend on the hoie of the two generators Pand Q of the ℓn-torsion subgroup E[ℓn]. We also denote by PE,ℓn any quadratipolynomial as the one in equation (3). Moreover, we say that a ℓn-torsion point
R has degenerated self-pairing if Tℓn(R, R) is a primitive ℓk-th root of unityand that R has non-degenerated self-pairing otherwise. Also, if Tℓn(R, R) is aprimitive ℓn-th root of unity, we say that R has primitive non-degenerated selfpairing.4 Preliminary results. Determining diretions on thevolanoIn this setion we explain how we an distinguish between di�erent diretionson the volano by making use of pairings. We start by some lemmas, meant toexplain the relations between pairings on two urves, whenever there exists anisogeny between the two urves.Lemma 1. Suppose E/Fq is an ellipti urve and P, Q are points in E(Fq) oforder ℓn, n ≥ 1. Suppose there are P̃ , Q̃ ∈ E[F̄q] suh that ℓP̃ = P and ℓQ̃ = Q.Then we have the following relation for the Tate pairing:(a) If P̃ , Q̃ ∈ E[Fq], then

Tℓn+1(P̃ , Q̃)ℓ2 = Tℓn(P, Q).(b) Suppose ℓ ≥ 3. If Q̃ ∈ E[Fqℓ ]\E[Fq], then
Tℓn+1(P̃ , Q̃)ℓ = Tℓn(P, Q).Proof 1. By writing down the divisors of the funtions fℓn+1,P̃ , fℓn,P̃ , fℓn,P , onean easily hek that

fℓn+1,P̃ = (fℓ,P̃ )ℓn

· fℓn,P .We evaluate these fontions at some points Q + R and R (where R is arefullyhosen) and raise the equality to the power (q − 1)/ℓn.2. Due to the equality on divisors div(fℓn+1,P ) = div(f ℓ
ℓn,P ), we have

Tℓn+1(P̃ , Q̃)l = T
(F

qℓ )

ℓn (P, Q̃),where T
(F

qℓ)

ℓn is the ℓn-Tate pairing for E de�ned over Fqℓ . It su�es then toshow that



T
(F

qℓ)

ℓn (P, Q̃) = Tℓn(P, Q).We have
T

(F
qℓ)

ℓn (P, Q̃) = fℓn,P ([Q̃ + R] − [R])
(1+q+···+qℓ−1)(q−1)

ℓn

= fℓn,P ((Q̃ + R) + (π(Q̃) + R) + (π2(Q̃) + R) + . . .

+ (πℓ−1(Q̃) + R) − ℓ(R))
(q−1)

ℓn (4)where R is a random point de�ned over Fq. It is now easy to see that for ℓ ≥ 3,
Q̃ + π(Q̃) + π2(Q̃) + . . . + πℓ−1(Q̃) = ℓQ̃ = Q,beause π(Q̃) = Q̃ + T , where T is a point of order l. By applying Weil's rei-proity law ( [16, Ex. II.2.11℄), it follows that the equation (4) beomes:

T
(F

qℓ )

ℓn (P, Q̃) =

(

fℓn,P (Q + R)

fℓn,P (R)

)
q−1
ℓn

f((P ) − (O))q−1,where f is suh that div(f) = (Q̃ + R) + (π(Q̃) + R) + (π2(Q̃) + R) + ... +
(πℓ−1(Q̃) + R) − (Q + R) − (ℓ − 1)(R). Note that this divisor is Fq-rational, so
f((P ) − (O))q−1 = 1. This onludes the proof. ⊓⊔.Lemma 2. (a) Let φ : E → E′ be a separable isogeny of degree d de�ned over

Fq, P a ℓ-torsion on the urve E suh that φ(P ) is a ℓ-torsion point on E′,and Q a point on E. Then we have
Tℓ(φ(P ), φ(Q)) = Tℓ(P, Q)d.(b) Let φ : E → E′ be a separable isogeny of degree ℓ de�ned over Fq, P a

ℓℓ′-torsion point suh that Ker φ =< ℓ′P > and Q a point on the urve E.Then we have
Tℓ(φ(P ), φ(Q)) = Tℓℓ′(P, Q)ℓ.Proof.(a) We have

(φ)∗(fℓ,φ(P )) = ℓ
∑

K∈Kerφ(P + K) − ℓ
∑

K∈Kerφ(K)

= ℓ
∑

K∈Kerφ((P + K) − (K)) = ℓ
∑

K∈Kerφ((P ) − (O)) + div









∏

K∈Kerφ lK,P

vK+P





ℓ





,where lK,P is the straight line passing through K and P and vK+P is thevertial line passing through K + P .It follows that



fℓ,φ(P ) ◦ φ(Q) = fd
ℓ,P (Q)





∏

K∈Kerφ lK,P (Q)

vK+P (Q)





ℓSo we obtain the desired formula by evaluating the equality above at twopoints arefully hosen Q + R and R, and then by raising to the power q−1
ℓ .(b) The proof is similar to the one at point (a). ⊓⊔Remark 1. Atually the statement at (a) stands for all isogenies, as shown inTheorem IX.9.4 of [2℄. We kept our proof beause a similar tehnique an beapplied to prove (b).Proposition 4. Let E be an ellipti urve de�ned a �nite �eld Fq and assumethat E[ℓ∞](Fp) is isomorphi to Z/ℓn1Z × Z/ℓn2Z (with n1 ≥ n2). Suppose thatthere is a ℓn2-torsion point P suh that Tℓn2 (P, P ) is a primitive ℓn2th root ofunity. Then the ℓ-isogeny whose kernel is generated by ℓn2−1P is desending.Moreover, the urve E does not lie above the stability level of the orresponding

ℓ-volano.Proof. Consider I1 : E → E1 the isogeny whose kernel is generated by ℓn2−1Pand suppose this isogeny is asending or horizontal. This means that E1[ℓ
n2 ] isde�ned over Fq. Take Q another ℓn2-torsion point on E, suh that E[ℓn2 ] =<

P, Q > and denote by Q1 = I1(Q). One an easily hek that the dual of I1 haskernel generated by ℓn2−1Q1. It follows that there is a point P1 ∈ E1[ℓ
n2 ] suhthat P = Î1(P1). By Lemma 2 this means that Tℓ(P, P ) ∈ µℓn2−1 , whih is false.This proves not only that the isogeny is desending, but also that the strutureof the ℓ-torsion is di�erent at the level of E1, so E annot be above the stabilitylevel. ⊓⊔Proposition 5. Let ℓ ≥ 3 a prime number and suppose that E/Fq is a urvewhih lies in a ℓ-volano and on the stability level. Suppose E[ℓ∞](Fq) ≃ Z/ℓn1Z×

Z/ln2Z, n1 ≥ n2. Then there is at least one ln2-torsion point on R ∈ E(Fq) whosepairing Tln2 (R, R) is a primitive ln2-th root of unity.Proof. Let P be a ℓn1-torsion point and Q be a ℓn2-torsion point suh that {P, Q}generates E[ℓ∞](Fq).Case 1. Suppose n1 ≥ n2 ≥ 2. Let E
I1−→ E1 be a desending ℓ-isogeny anddenote by P1 and Q1 the ℓn1+1 and ℓn2−1-torsion points generating E1[ℓ

∞](Fp).Moreover, without loss of generality, we may assume that I1(P ) = ℓP1 and
I1(Q) = Q1. If Tℓn2−1(Q1, Q1) is a primitive ℓn2−1-th root of unity, Tℓn2 (Q, Q) isa primitive ℓn2-th root of unity by Lemme 2. If not, from the non-degenerationof the pairing, we dedue that Tℓn2−1(Q1, P1) is a primitive ℓn2−1-th root ofunity, whih means that Tℓn2−1(Q1, ℓP1) is a ℓn2−2-th primitive root of unity.By applying Lemme 2, we get Tℓn2 (Q, P ) ∈ µℓn2−1 at best. It follows that
Tℓn2 (Q, Q) ∈ µℓn2 by the non-degeneray of the pairing.Case 2. If n2 = 1, then onsider the volano de�ned over the extension �eld Fqℓ .There is a ℓ2-torsion point Q̃ ∈ E(Fqℓ) with Q = ℓQ̃. We obviously have ℓ2|qℓ−1



and from Lemma 1, we get Tℓ2(P̃ , P̃ )ℓ = Tℓ(P, P ). By applying Case 1, we getthat Tℓ2(P̃ , P̃ ) is a primitive ℓ2-th root of unity, so Tℓ(P, P ) is a primitive ℓ-throot of unity.We will now make use of a result onerning the representation of ideal lassesof orders in imaginary quadrati �elds:Lemma 3. Let O be an order in an imaginary quadrati �eld. Given a nonzerointeger M , then every ideal lass in Cl(O) ontains a proper O-ideal whose normis relatively prime to M .Proof. See [4℄, Corollary 7.17.Proposition 6. We use the notations and assumptions from Proposition 1. Fur-thermore, we assume that for all urves Ei lying at a �xed level i in V the urvestruture is Z/ℓn1Z × Z/ℓn2Z, with n1 ≥ n2. The value of NEi,ℓn2 , the numberof zeros of the polynomial de�ned at 3, is onstant for all urves lying at level iin the volano.Proof. Let E1 and E2 be two urves lying at level i in the volano V . Thenby Proposition 1 they both have endomorphism ring isomorphi to some order
Odi . Now by taking into aount the fat that the ation of Cl(Odi) on Elldi(Fq)is transitive, we onsider an isogeny φ : E1 → E2 of degree ℓ1. By applyingLemma 3, we may assume that (ℓ1, ℓ) = 1. Take now P and Q two indepen-dant ℓn2-torsion points on E1 and denote by PE1,ℓn2 the quadrati polynomialorresponding to the ℓn2-torsion on E1:

PE1,ℓn2 (a, b) = a2 log(S(P, P )) + 2ab log(S(P, Q)) + b2log(S(Q, Q)).We use Lemma 2 to ompute S(φ(P ), φ(P )), S(φ(P ), φ(Q)) and S(φ(Q), φ(Q))and dedue easily that there is a polynomial PE2,ℓn2 (a, b) on the urve E2 suhthat
PE1,ℓn2 (a, b) = PE2,ℓn2 (a, b)This means that NE1,ℓn2 and NE2,ℓn2 oinide, whih onludes the proof.⊓⊔Moreover, we have showed that the value of k for two urves lying on thesame level of a volano is the same.Proposition 7. Let E be an ellipti urve de�ned a �nite �eld Fq and let

E[ℓ∞](Fq) be isomorphi to Z/ℓn1Z × Z/ℓn2Z with ℓ ≥ 3 and n1 ≥ n2 ≥ 1.Suppose NE,ℓn2 ∈ {1, 2} and let P be a ℓn2-torsion point with degenerated selfpairing. Then the ℓ-isogeny whose kernel is generated by ℓn2−1P is either as-ending or horizontal. Moreover, for any ℓn2-torsion point Q whose self-pairingis non-degenerated, the isogeny with kernel spanned by < ℓn2−1Q > is desend-ing.Proof. Case 1. Suppose Tℓn2 (P, P ) ∈ µℓk , k ≥ 1 and that Tℓn2 (Q, Q) ∈
µℓk+1\µℓk . Denote by I1 : E → E1 the isogeny whose kernel is generated by
ℓn2−1P and I2 : E → E2 the isogeny whose kernel is generated by ℓn2−1Q. By



repeatedly applying Lemmas 1 and 2, we get the following relations for pointsgenerating the ℓn2−1-torsion on E1 and E2:
Tℓn2−1(I1(P ), I1(P )) ∈ µℓk−1 , Tℓn2−1(ℓI1(Q), ℓI1(Q)) ∈ µℓk−2\µℓk−3

Tℓn2−1(ℓI2(P ), ℓI2(P )) ∈ µℓk−3 , Tℓn2−1(I2(Q), I2(Q)) ∈ µℓk\µℓk−1with the onvention that µℓh = ∅ whenever h ≤ 0. From the relations above, wededue that on the ℓ-volano having E, E1 and E2 as verties, E1 and E2 do notlie at the same level. Given the fat that there are at least l−1 desending rational
ℓ-isogenies parting from E and that Q is any of the ℓ − 1 (or more) ℓn2 -torsionpoints with non-degenerated self-pairing, we onlude that I1 is horizontal orasending and that I2 is desending.Case 2. Suppose now that k = 0. Note that the ase n2 = 1 was already treatedin proposition 4. Otherwise, onsider the urve E de�ned over Fqℓ . By lemma 1we have k = 1 for points on E/Fqℓ , so we may apply Case 1. ⊓⊔Note 1. All statements in the proof of Case 1 are true for ℓ = 2 also. Thestatement in Proposition 4 is also true for ℓ = 2. The only ase that is notlear is what happens when k = 0 and n2 ≥ 1. We did not �nd a proof for thestatement in proposition 5 for ℓ = 2, but in our omputations with MAGMA wedid not �nd any ounterexamples either.Example 1. Let E be the ellipti urve whose Weierstrass equation is given by
y2 = x3 +521631762x+248125891 de�ned over F1992187501. The 55-torsion is en-tirely de�ned over F1992187501. We take P = (749718987, 838497160) a 55-torsionpoint with degenerated self-pairing, beause T55(P, P ) ∈ µ54 . The orrespondingisogeny I1 : E → E1 is a horizontal one. Consider now a point of order 55 withnon-degenerated self-pairing, for example Q = (139364112, 1455554413). Onemay easily hek that T55(Q, Q) ∈ µ55\µ54 and that I2 : E → E2 (whose kernelis generated by 54Q is desending.Consider now a urve E de�ned over Fq suh that

E[ℓ∞](Fq) ≃ Z/ℓn1Z × Z/ℓn2ZWe onlude this setion by presenting two algorithms whih �nd a ℓ-torsionpoint on E generating the kernel of a desending isogeny and of an asending(horizontal) one, respetively. We assume ℓ ≥ 3, even though in many ases thesemethods work also for ℓ = 2.Algorithm 1 Finding the kernel of a desending isogeny Input: A urve E, thestruture of E[ℓ∞](Fq).Output: A ℓ-torsion point generating the kernel of a desending isogeny.1. If n2 = 0 exit.2. Take a random P1 of order ℓn2 . If Tℓn2 (P1, P1) is a primitive ℓn2th root ofunity, return ℓn2−1P1.



3. Take a random P2 of order ℓn2 . If Wℓn2
(P1, P2) ∈ µℓn2−1

3 , take anotherrandom point P2. If Tℓn2 (P2, P2) is a primitive ℓn2th root of unity, return
ℓn2−1P2.4. Compute PE,ℓn2 . If PE,ℓn2 6= 0 and both P1 and P2 have degenerated pair-ings, take P1 + P2. Else onsider E over Fqℓ and return to step 2.Algorithm 2 Finding the kernel of a asending (horizontal) isogenyInput: A urve E, the struture of E[ℓ∞](Fq).Output: A ℓ-torsion point generating the kernel of a asending isogeny.1. If n2 = 0 then take a random point P1 of ℓn1 torsion and return ℓn1−1P1.2. Else ompute PE,ℓn2 . If PE,ℓn2 6= 0, ompute its roots and �nd a point Pwith self-degenerated pairing. Return ℓn2−1P . Else onsider E over Fqℓ andreturn to step 2.Note that proposition 5 guarantees that these algorithms terminate, beausethe existene of nondegenerated primitive self pairings on the stability levelimplies (by applying lemma 1 if neessary) that for any urve E lying on upperlevels, there is an extension of Fqe and points in E[ℓ∞](Fqe) with nondegeneratedself pairings.5 Walking the volano: some new algorithmsIn his thesis [11℄, Kohel gave a deterministi algorithm to ompute the ondutorof the endomorphism ring of an ordinary urve E, assuming the trae t of theurve is known. His idea is to determine the ℓ-adi valuation of the ondutorby determining the level of the vertex E in the ℓ-volano.Reently, new appliations using e�ient algorithms to travel along the vol-ano were given: the omputation of the Hilbert lass polynomial [1℄, [18℄, thatof modular polynomials [19℄ and that of the endomorphism ring of the urve[20℄. All these algorithms use modular polynomials or Vélu's formulae [21℄ tomove from one ellipti urve to another urve on the volano. In this setion,we brie�y desribe existing algorithms used to ompute the level of a urve on avolano, to asend one level on the volano and to walk a path along the rater.These algorithms atually rely on methods given by Kohel [11℄ and by Fouquetand Morain in [7℄).We then present our new algorithms, whih use the methods in Algorithms 1and 2 to predit the diretion of isogenies. We estimate the number of visitedverties during the exeution of eah algorithm and prove that in most ases ourmethod is more e�ient.Before going into the details of the algorithms, we ompare the osts oftaking one step on a volano by using the two methods existing in the litera-ture: modular polynomials and Vélu's formulae. Suppose we have walked a path3 The Weil pairing Wm(see [16℄ for the de�nition) has the property that Wm(P, P ) = 1for all points of order m, so we an test wheather two points are independant bytesting wheather their pairing is a primitive mth root of unity.



E1, ..., Ei−1 on the volano and we would like to take a new step (Ei−1, Ei). Inthe modular polynomial approah, we have to fator the polynomial f(X) =
Φℓ(X, j(Ei−1))/(X − j(Ei−2)). The ost of the step is then of

O(ℓ2 + M(ℓ)logq)operations in Fq, where M(ℓ) = ℓlogℓlog logℓ. In this formula, the �rst term isthe time to evaluate Φℓ(X, j(Ei−1) and the seond term is the time to ompute
Xq mod f . Now omputing the isogeny with Vélu's formulae an be done in
O(ℓ) operations, if we onsider the time to ompute ℓ-torsion points neglige-able. However, in many ases, even though the ℓ-isogeny is de�ned over Fq, thepoints of order ℓ are de�ned in an extension �eld of degree smaller than ℓ (seeorollary 1). As a onsequene, we need

O(ℓ2 log ℓ)operations in Fq in order to ompute the isogeny with Vélu's formulae. So usingVélu formulae is slightly more expensive. However, it beomes more e�ient withour tehnique sine we an determine the diretion of the isogeny in advane.Moreover, in our algorithms, we need to perform a small number of pairingomputations, whih ost O(log ℓ), if we use Miller's algorithm ??. One theseomputations performed, the alulation of the polynomial PE,ℓn2 osts O(log ℓ)in time. The most expensive part of this omputation is the omputation of logsin the �nite �eld Fℓ. This an be done by preomputing all the logs, storingthem in a ordered table ( whih osts O(ℓ) in memory), and then performinga dihotomi searh every time we need to ompute a log. This searh osts
O(log ℓ) in time.Suppose that we wish to ompute the level of a urve in a volano of height d.If deg(E) 6= ℓ + 1, then we are already on the �oor and the level is d. Otherwisewe start walking two paths, that we extend as far as possible, but never beyondlength d. If E is on the surfae, then both paths have length d. Otherwise at leastone of them is a desending path of length k2 and E is on the level d − k2. Thetime omplexity for this algorithm is O(2d(ℓ2 +M(ℓ) log q)). The pseudoode forthis algorithm, given by Kohel [11℄, is given in [18℄.There is a seond approah to this problem given by Fouquet and Morain in [7℄.The idea is to start walking three paths in parallel and extend them as far aspossible. As at least one of them is desending, we stop when one path reahesthe �oor for the �rst time and return the length of this path. The omplexityis O(3d(ℓ2 + M(ℓ) log q)). This algorithm is 50 perent slower, but it has theadvantage of working for volanoes whose height is not neessarily known.Our new algorithm, based on the method presented in Algorithm 1 for �ndingthe kernel of a desending isogeny, is very simple. We only need to apply Vélu'sformulae in order to ompute the desending isogeny. If the points of order ℓ arenot de�ned over Fq, but over an extension �eld Fqd , the ost of our algorithmis O(ℓ(log ℓ)2 + ℓ2 log ℓ), where the �rst term omes from the omputation of asmall number of pairings and the seond one is the omplexity of the isogenyomputation using Vélu's formulae. Of ourse, we have assumed that we ourvolano is regular, so the polynomial PE,ℓn2 is not zero over Fqd .



Suppose now we want to asend one level in the volano. If we are on the�oor (i.e deg(E) 6= ℓ+1 or n2 = 0), we take the urve given by the only rational
ℓ-isogeny. Otherwise, we start walking desending paths for eah of the ℓ + 1urves isogenous to E. We then ompare the lengths of all paths and the longestone is the one given by the neighbor of E lying one level above. The running timeof the algorithm is O(ℓd(ℓ2 + M(ℓ) log q)). The pseudoode for this algorithman be found in [18℄.Our new algorithm for �nding a urve on the upper level in a volano usesAlgorithm 2 in order to �nd the kernel of the asending isogeny and then om-putes the isogeny with Vélu's formulae. On regular volanoes, the omplexity ofthis algorithm is O(ℓ(log ℓ)3 + ℓ2 log ℓ + 1), where the �rst term is the ost of4 pairing omputation and their logs, the seond one is the ost of the isogenyomputation and the last one omes from the fatorization of a polynomial ofdegree 2.In [18℄, Sutherland also makes use of an algorithm whih, given a urve E onthe rater of a volano of height d, omputes a path of length n on the raterstarting at E. When d = 0, the algorithm neessarily returns a path ontained in
V0. Otherwise, we onstrut a path of length d+1 and retain in the list of vertieson the rater the vertex E′ obtained at the �rst step in our path. We ontinue theproess, this time replaingE with E′, until we get n urves on the rater. See [18℄for a detailed desription of the algorithm. Aording to [18, Proposition 4℄, thenumber of examined verties is O(ℓdn), so the running time of the algorithm is
O(ℓdn(ℓ2 + M(ℓ) log q)). Our new algorithm for walking n steps on the rateralls Algorithm 2 in order to �nd the kernel of the horizontal isogeny startingfrom E and uses Vélu's formulae to take a step on the rater. This proess isrepeated until n steps on the rater have been taken. The omplexity of ouralgorithm on a regular volano is O(nℓ(log ℓ)3 + nℓ2 log ℓ + n).Assume that, for a �xed q, the traes of ellipti urves are uniformly dis-tributed in Hasse's interval. Then the probability of piking a urve whose vol-ano is not regular, among urves lying on volanoes of height greater than 0, isof approximatively 1

ℓ2 . This is not negligeable for small values of ℓ, and in theseases we believe both methods should be ombined to ahieve best performanes.This means that on suh a volano, one should use the strategies given by Koheland Fouquet and Morain for urves lying above the stability level and use ourmethods when the urves are on the stability level or underneath it.Finally, in some appliations, it might be possible, to restrit ourselves toregular volanoes. The use of Vélu's formulae also has the advantage of avoid-ing the expensive preomputations of the modular polynomials or of the Hilbertpolynomial. In the ase of algorithms omputing modular polynomials, for ex-ample, we do not need the preomputation of the Hilbert polynomial as in [19℄.Moreover, our method of enumerating urves on the rater of the volano isfaster than the one using the ation of the lass group in [19℄.6 Conlusion and perspetivesIn this paper, we have proposed a method whih allows, in the regular part ofan isogeny volano, to determine, given a urve E and a ℓ-torsion point P , the
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