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Abstract. Isogeny volcanoes are graphs whose vertices are elliptic curves
and whose edges are [-isogenies. Algorithms allowing to travel on these
graphs were developed by Kohel in his thesis (1996) and later on, by Fou-
quet and Morain (2001). However, up to now, no method was known, to
predict, before taking a step on the volcano, the direction of this step.
Consequently, in Kohel’s and Fouquet-Morain’s algorithms, we always
take more steps than necessary, before choosing the right direction. Sup-
pose we know the cardinality of the curve. Given a point P of order [ on
the elliptic curve, we develop a method to decide whether the subgroup
generated by P is the kernel of a horizontal isogeny, a descending or
an ascending one. In most cases, our method is very efficient and gives
simple algorithms, which are more efficient than previous ones. In the
other cases, we show that the two methods should be combined in order
to obtain efficient algorithms.

1 Introduction

Let E be an elliptic curve defined over a finite field F;, where ¢ = p" is a
prime power. Let 7 be the Frobenius endomorphism, i.e. w(x,y) — (29, y?) and
denote by ¢ its trace. Moreover, we assume that F is an ordinary curve, so its
endomorphism ring, which we denote by O, is an order in a quadratic imaginary
field K ( [16, Theorem V.3.1]). Let d, = t* — 4q be the discriminant of 7. We
can write d, = g?dg, where di is the discriminant of the quadratic field K. So
there are only a finite number of possibilities for Op, since

Zlr] C O C Oy, .

This also means that the conductor of O, which we denote by f, divides g, the
conductor of Z[r].
The number of points of E over F, is given by #E(F,) = g+1—t. Two isogenous
elliptic curves over F, have the same cardinality, and therefore the same trace
t. In his thesis [11], Kohel studies how the curves in Ell;(F,), the set of curves
defined over [, with trace ¢, are related via isogenies of degree £. More precisely,
he describes the structure of the graph of ¢-isogenies defined on Ell;(F,) and also
explains how this graph is related to orders in O . He uses modular polynomials
to find the conductor of End(F), assuming that g is known.

In [7], Fouquet and Morain call the connected components of this graph
1sogeny volcanoes. They extend Kohel’s work, by showing that it is actually



possible to find both g and f (also by using modular polynomials to move from
one vertice of the volcano to another one). They also give an algorithm that
computes the [-adic valuation of ¢, for I|g. This information can be used in
Schoof’s algorithm [15]. Recently, new applications to isogeny volcanoes were
found: the computation of the Hilbert class polynomial ([1], [18]), that of modular
polynomials ([19]) and that of the endomorphism ring of the curve ([20]).

More precisely, the methods enumerated above make use of algorithms that
aim at travelling efficiently on the volcano. These algorithms can either walk on
the crater, descend from the crater to the floor or, conversely, ascend from the
floor to the crater. As explained in [13] and [14], the structure of the ¢-Sylow
subgroup of the elliptic curve may, in many cases, help deciding whether we
have taken a step on the crater, or we have descended or ascended. However,
no known method can distinguish in advance horizontal isogenies from descend-
ing isogenies, or descending isogenies from ascending ones. In this paper, we
describe a new method to predict, given a point P of order ¢, the type of the
isogeny whose kernel is generated by P. Our approach, which implies only the
computation of a pairing on E, presents several advantages. It allows, in most
cases, to compute the conductor of the curve E without taking any steps on
the volcano. This is important because computing isogenies of degree ¢, even
for moderately large values of /, is a difficult task, since algorithms for isogeny
computation are exponential (except for some particular cases, see [3]). We also
show that our algorithms for traveling on the volcano are, in most cases, faster
than the ones from [11] and [7].

The remainder of this paper is organised as follows: sections 2 and 3 present
definitions and properties of isogeny volcanoes and pairings. Section 4 explains
our method to find the type of the isogeny by means of pairing computation.
Finally, in section 5, we present new algorithms for finding the level of a curve
in a ¢-volcano, for ascending and for walking on the crater of the volcano.

2 Background on isogeny volcanoes

In this paper we will rely on some results from complex multiplication theory and
on the Deuring lifting theorem. We denote by Ellz(C) the set of C-isomorphism
classes of elliptic curves whose endomorphism ring equals Oy, for some d < 0. In
this setting there is an action of the class group of the order O, on Ell;(C). Let
E € Ell4(C), A its corresponding lattice and a an Og-ideal. We have a natural
homomorphism

C/A—C/a"tA, z— z,

which induces an isogeny that we denote by E — a* E. The action described in
this way is transitive and free (see [17], prop.I1.1.2). Moreover, the degree of the
application F — a x E is N(a), the norm of the ideal a (also [17], cor.IL.1.5).

Now from Deuring’s theorems (see [5]), if p is a prime number that splits
completely, we get a bijection Ell;(C) — Elly(F,), where ¢ = p”. Furthermore,
the class group action in characteristic zero respects this bijection, so we get an
action of the class group also on Ellg(Fy).



2.1 Isogeny volcanoes and modular polynomials

Consider E an elliptic curve defined over a finite field F,. Let £ be a prime
different from char(F,) and I : £ — E' be a (-isogeny, i.e. a isogeny of degree
£. As shown in [11], this means that Og contains O or O contains O or
the two endomorphism rings coincide. If O contains O, we say that I is a
descending isogeny. Otherwise, if O is contained in Op, we say that I is a
ascending isogeny. If O and O are equal, then we call the isogeny horizontal.
In his thesis, Kohel shows that horizontal isogenies exist only if the conductor
of Op is not divisible by [. Moreover, in this case there are exactly (%) +1
horizontal isogenies of degree ¢. If (%) = 1, then £ is split in Op and the two
horizontal isogenies correspond to the action of the two ideals [ and [ via the
action described at the beginning of this section. In a similar way, if (%) =0,
then ¢ is ramified in Of there is one horizontal isogeny starting from E and
this isogeny corresponds to the only prime ideal of norm ¢ in Og. In order to
describe the structure of the graph whose vertices are curves with a fixed number
of points and whose edges are {-isogenies, we introduce the following definition
(taken from [18]):

Definition 1. An (-volcano is a connected undirected graph with vertices par-

tioned into levels Vqy, ..., Vy, in which a subgraph on Vy (the crater) is a reqular

connected graph of degree at most 2 and:

(a) For i >0, each vertex in V; has exactly one edge leading to a vertez in V;_1,
and every edge not on the crater is of this form.

(b) Fori < h, each vertex in V; has degree £ + 1.

We call the level V}, the floor of the volcano. Vertices lying on the floor have
degree 1. Let Ell;(F,;) be the set of elliptic curves defined over F, with trace t.
The following proposition, formulated in [18] follows essentially from Proposition
23 in [11].

Proposition 1. Let p be a prime number, ¢ = p", and d, = t> —4q. Take { # p

another prime number. Let G be the undirected graph with vertex set Ell;(F,) and

edges (-isogenies defined over F,. We denote by (" the largest power of ¢ dividing

the conductor of d.. Then the connected components of G are {-volcanoes of

height h and for each component V :

(a) The elliptic curve whose j-invariants lie in Vi have endomorphism rings
isomorphic to some Oq, O Oq, whose conductor is not divisible by I.

(b) The elliptic curve whose j-invariants lie in V; have endomorphism rings
isomorphic to Oy, where d; = 1*'dy.

Elliptic curves are determined by their j-invariant, up to a twist (the reader
should refer to [16] for a definition of the twist of an elliptic curve). In the
remainder of this paper, we refer to a vertex in a volcano either by naming the
curve or its j-invariant.

Given a curve F, two methods are known to construct curves which are /¢-
isogenous to E and therefore to travel on the volcano. One relies on modular
polynomials and the other on Vélu’s formulae. We give below a brief survey of
the two methods.



Modular polynomials The ¢th modular polynomial, usually denoted by &,(X,Y")
is a polynomial with integer coefficients, which satisfies the following property:
given two elliptic curves E and E’, there is a (-isogeny defined over F, if and
only if, #E(F,) = #E'(F,) and &,(j(E),j(E')) = 0, where j(E) and j(E') are
the j-invariants of curves E and E’. So in order to find the curves related to
E via a (-isogeny, we need to solve the equation @,(X,j(E)) = 0. As stated
in [15], this polynomial may have 1, 2 or £+ 1 roots in F,. So in order to find
an edge on the volcano, it suffices to find a root j’ of this polynomial. Note that
the j-invariant determines the curve up to a twist. The formula for finding the
equation of the curve E’ € Ell,(F,) from j(E’) is also given in [15].

The group structure of the elliptic curve on the volcano Lenstra [10]
relates the structure of the curve to the endomorphism ring by proving that:

E(F,) ~Op/(r—1) (1)

as Og-modules. It is thus natural to see how this structure relates to the isogeny
volcano. From (1), we can deduce that E(F,) ~ Z/mZ x Z/nZ, where n =

ged(a — 1,9/ f), with

[ (t—g)/2itdk =1 (mod 4),
“T\ 2 if die = 2,3 (mod 4),

where dg is the discriminant of the quadratic imaginary field containing Opg.
Moreover, n|m, n|(qg — 1) and mn = #E(F,;). This means that on a ¢-volcano
the structure of all the curves in a given level is the same.

Let E be a curve on the isogeny volcano such that ve(n) < ve(m). As explained
in [13] (in the case £ = 2, but the result holds in the general case), we have the
following inequality:

ve(a —1) = min{ve(g), ve(#E(Fy))/2}

Asn =ged(a—1,g/f) and n < v (#E(F,))/2, it follows that n = v,(g/f). As
we descend, the valuation at £ of the conductor f increases by 1 at each level
(by proposition 1b). This implies that the ¢-valuation of n for curves at each
level decreases by 1 and is equal to 0 for curves lying on the floor. Note that if
ve(#E(F,)) is even and the height of the volcano is greater than v, (#E(F,)),
the structure of the /-torsion group is unaltered from the crater down to the
level ve(#E(Fy))/2. From this level down, the structure of the ¢-torsion groups
starts changing as explained above. In the sequel we call this level the stability
level. The volcanoes whose /-torsion is different at each level are called regular
volcanoes (see Figure 1). Their stability level is on the crater. This terminology
is taken from [13]. Apart from modular polynomials, the problem of finding a
{-isogeny defined on F has another solution. Given P a point of order £ on F, the
l-isogeny I : E — E’ whose kernel G is generated by P can be found by using
Veélu’s formulae (see [21])). If we want to use this approach, we are interested
in explicitly computing the coordinates of points of order £ on E. We denote
by G;, 1 < i < ¢+ 1, the £+ 1 subgroups of order £ of E. In [13] Miret and



Fig. 1. A regular volcano
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al. give the degree r; of the smallest extension field of F, such that G; C Fgr:,
1 <4 < £+ 1. This degree is related to the order of ¢ in the group Fj, that
we denote by ord(q). Notice that in the special case of ¢ = 2, this degree is
always 1.

Proposition 2. Let E defined over F, be an elliptic curve with k rational ¢-
isogenies, £ > 2, and let G;, 1 < i < k, be their kernels, and let r; be the
minimum value for which G; C E(Fgr:).

(a) If k =1 then ry = ordy(q) or r1 = 20rdy(q).
(b) If k =0+ 1 then either r; = ordy(q) for all i, or r; = 20rdy(q) for all i.
(¢c) If k=2 then ri|¢ —1,i=1,2.

The following corollary [13] will also be useful in the remainder of this paper.

Corollary 1. Let E/F, be an elliptic curve over Fy. If E/F, has 1 or £ +1
rational (-isogenies, then #E(F™9) or #E(F™1) is a multiple of {. Moreover,
if E/Fgrd@q has ¢+ 1 rational isogenies, then it is also a multiple of £2.

Notations. Let n > 0. In the sequel, we denote by E[¢"] the subgroup of points
of order £ on the curve E, by E[¢"](K) the subgroup of points of order n defined
over K and by E[¢*°](K) the subgroup of points defined over K whose orders
are powers of /.

Given a point P € E[("|(F,), we also need to know the degree of the extension
field in which there is a £*T!-torsion point such that /P = P. The following result
is taken from [6].

Proposition 3. Let E/F, be an elliptic curve which lies on a ¢-volcano whose
height h(V') is different from 0. Then the height of V', the £-volcano of the curve
E/Fqs 18

h(V')y = h(V) + ve(s)



From this proposition, it follows easily that if the structure of ¢-torsion on the
curve E /R, is Z/{™Z x Z/€™*Z, then the smallest extension in which the struc-
ture of the /-torsion changes is IF .. Indeed, it suffices to see that the structure
of the /-volcano containing £/ modifies only over F .. Moreover, if we consider a
curve E’ lying on the floor of V/F,, this means this curve has one point of order
¢ defined over F; and £41 isogenies defined over IF .. We conclude that £’ has all
the ¢+ 1 subgroups of order ¢ defined over F,, which means that (by ascending
on the volcano) the structure of the /-torsion of I over FF ¢ is necessarily

E[>®)(Fye) ~ Z/ 02 x /012

This observation will be very useful in the sequel.

3 Background on pairings

Let E be an elliptic curve defined over some finite field F;, m a number coprime
to ¢, such that m|#E(F,) and assume m|(q — 1). Let P € E[m|(F;) and @ €
E(F,)/mE(F,). Let f, p be the function whose divisor is m(P)—m(O), where O
is the point at infinity of the curve E (for background on divisors see [16]). Take
R arandom point in E(F,) such as the support of the divisor D = (Q+ R) — (R)
is disjoint from the support of f,, p. Then we can define the Tate pairing as
follows:

tm @ E[m] x E(Fy)/mE(F,;) — F;/(FZ)T"
(P, Q) = fm,p(Q+ R)/fm,p(R)

The Tate pairing is a bilinear non-degenerate application, i.e. for all P €
E[m](F,) different from O thereisa Q € E(F,)/mE(F,) such that T, (P, Q) # 1.
So the output of the pairing is only defined up to a coset of (IE‘Zk)" However, for
cryptographic use, we generally need a unique value and we define the reduced
Tate pairing:

TP, Q) = tin(P,Q)™V/™ €y,

where by p,, we denote the group of mth roots of unity. Pairing computation
can be done in time O(log m) using Miller’s algorithm [12]. For more details on
pairings, the reader should refer to [8].

Suppose now that m = ", with n > 1 and ¢ prime. Now let P and @ be two
linearly independant ¢™-torsion points on E. Then all ¢£"-torsion points R can
be expressed as R = aP + bQ). We define the following symmetric pairing [9]:

S(P,Q) = (Ttn (P,Q)Ten (Q, P))=. (2)

Note that for any point P, Tyn (P, P) = S(P, P). In the remainder of this paper,
we call S(P, P) the self pairing of P. Any ¢™torsion points R can be expressed
as R = aP + bQ. By bilinearity and symmetry of the S-pairing we get:

log(S(R, R)) = a*log(S(P, P)) + 2ab log(S(P, Q)) + b*log(5(Q, Q).



where log is a discrete logarithm function in p». We denote by k the largest
integer such that the polynomial

P(a,b) = a’log(S(P, P)) + 2ab log(S(P, Q) + b° log(S(Q, Q) (3)

is nonzero modulo £¥*! and zero modulo ¢*. Obviously, 0 < k < n. Dividing by
¢*, we may thus regard P as a polynomial in Fy[a, b]. Therefore it has at most
two roots, which means that that from all the £ + 1 subgroups of order £", at
most 2 have self pairings in e (see also [9]). In the remainder of this paper,
we denote by Ng ¢» the number of zeros of any polynomial like the one at (3).
Note that this number does not depend on the choice of the two generators P
and @ of the ¢™-torsion subgroup E[¢"]. We also denote by Pg ¢» any quadratic
polynomial as the one in equation (3). Moreover, we say that a £™-torsion point
R has degenerated self-pairing if Ty»(R, R) is a primitive ¢*-th root of unity
and that R has non-degenerated self-pairing otherwise. Also, if Tyn (R, R) is a
primitive £"”-th root of unity, we say that R has primitive non-degenerated self
pairing.

4 Preliminary results. Determining directions on the
volcano

In this section we explain how we can distinguish between different directions
on the volcano by making use of pairings. We start by some lemmas, meant to
explain the relations between pairings on two curves, whenever there exists an
isogeny between the two curves.

Lemma 1. Suppose E/F, is an elliptic curve and P,Q are points in E(F,) of
order £, n > 1. Suppose there are P,Q € E[F,] such that {P = P and (Q = Q.

Then we have the following relation for the Tate pairing:

(a) If P,Q € E[F,], then

Ty (P, Q)" = Tin (P, Q).
(b) Suppose € > 3. If Q € E[F|\E[F,], then

Tpnr (P, Q) = Tin (P, Q).

Proof 1. By writing down the divisors of the functions f,..1 p, fim g, fer,p, one
can easily check that m
fonir p=(fo5) - fen,p.

We evaluate these fonctions at some points @ + R and R (where R is carefully
chosen) and raise the equality to the power (¢ —1)/¢".
2. Due to the equality on divisors div(fem+1 p) = div(ffn7p), we have

~ o~ (]Fq) ~
T€"+1(PaQ)l = Té“ ’ (PaQ)v

F
where Tg(n at) is the ¢"-Tate pairing for E defined over F .. It suffices then to
show that



75 (P,Q) = T (P,Q).

We have

(Atqt- +qf H@-1

7. (P.Q) = for (1@ + F) - [R)
= forp((Q+R) + (n(Q) + R) + (n*(Q) + R) +
+ (™ HQ)+ R) — U(R))

(4)

where R is a random point defined over F,. It is now easy to see that for £ > 3,

Q+7(Q)+ Q) +...+77HQ) =1Q = Q,

because 7(Q) = Q + T, where T is a point of order [. By applying Weil’s reci-
procity law ( [16, Ex. I1.2.11]), it follows that the equation (4) becomes:

Fo) iy Ay (fen,P(Q+R)
fen P(R)

where f is such that div(f) = (Q + R) + (7(Q) + R) + (7*(Q) + R) + ... +
(7"HQ) + R) — (Q + R) — (¢ — 1)(R). Note that this divisor is F -rational, so
f((P) - (0))4=! = 1. This concludes the proof. O

frmm—wWﬂ

Lemma 2. (a) Let ¢ : E — E’ be a separable isogeny of degree d defined over
F,, P a {-torsion on the curve E such that ¢(P) is a (-torsion point on E’,
and Q) a point on E. Then we have

(b) Let ¢ : E — E' be a separable isogeny of degree ¢ defined over Fy, P a
L0 -torsion point such that Ker ¢ =< {'P > and Q a point on the curve E.
Then we have

T€(¢(P)a ¢(Q)) = TM’(Pa Q)e

Proof.
(a) We have
(@) (fe.pp)) =1 Z (P+K) - Z
KeKerg KeKerg
lk.p
=/ ((P+ K) =/ ) + div d
X > I
cKerg KeKerg KeKerg

where [ p is the straight line passing through K and P and vgip is the
vertical line passing through K + P.
Tt follows that
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feory od@) = f2p@ | 11 Ixp(Q)

KeKerg vk+P(Q)

So we obtain the desired formula by evaluating the equality above at two
points carefully chosen @Q + R and R, and then by raising to the power %.
(b) The proof is similar to the one at point (a). O

Remark 1. Actually the statement at (a) stands for all isogenies, as shown in
Theorem IX.9.4 of [2]. We kept our proof because a similar technique can be
applied to prove (b).

Proposition 4. Let E be an elliptic curve defined a finite field F, and assume
that E[(>°)(F,) is isomorphic to Z/{™Z X Z/{"*Z (with n1 > na). Suppose that
there is a ™ -torsion point P such that Tyn: (P, P) is a primitive {"2th root of
unity. Then the l-isogeny whose kernel is generated by (™2~ 1P is descending.
Moreover, the curve E does not lie above the stability level of the corresponding
L-volcano.

Proof. Consider I : E — F; the isogeny whose kernel is generated by £*2~1 P
and suppose this isogeny is ascending or horizontal. This means that Fj[¢"2] is
defined over F,. Take @) another ¢">-torsion point on FE, such that E[{"?] =<
P,Q > and denote by Q1 = I1(Q). One can easily check that the dual of I; has
kernel generated by £"271Q;. Tt follows that there is a point P, € E;[€"?] such
that P = I;(P,). By Lemma 2 this means that Ty(P, P) € jiyns—1, which is false.
This proves not only that the isogeny is descending, but also that the structure
of the /-torsion is different at the level of F1, so E cannot be above the stability
level. ad

Proposition 5. Let { > 3 a prime number and suppose that E/F, is a curve
which lies in a £-volcano and on the stability level. Suppose E[{>°|(Fy) ~ Z/{™ Zx
Z]1™Z, n1 > ng. Then there is at least one 1" -torsion point on R € E(F,) whose
pairing Tin: (R, R) is a primitive I"2-th root of unity.

Proof. Let P be a £™*-torsion point and @ be a £™-torsion point such that { P, Q}
generates E[(>°](F,).

Case 1. Suppose n; > ng > 2. Let E i FE; be a descending f-isogeny and
denote by P; and Q; the ¢"1*1 and ¢"2~!-torsion points generating F;[¢(>°](F,).
Moreover, without loss of generality, we may assume that I;(P) = ¢P; and
L(Q) = Q1. I Tyny—1(Q1, Q1) is a primitive £"2~1-th root of unity, Ty=2 (Q, Q) is
a primitive ¢™2-th root of unity by Lemme 2. If not, from the non-degeneration
of the pairing, we deduce that Tyn,-1(Q1, P1) is a primitive £"2~1-th root of
unity, which means that Tyn,—1(Q1,£P;) is a £"2~2-th primitive root of unity.
By applying Lemme 2, we get Tyns(Q, P) € pymy-1 at best. It follows that
T2 (Q, Q) € pen2 by the non-degeneracy of the pairing.

Case 2. If na = 1, then consider the volcano defined over the extension field IF ..
There is a £2-torsion point Q € E(F ) with Q = Q. We obviously have 2|gt -1



and from Lemma 1, we get Ty (]5,]5)4 = Ty(P, P). By applying Case 1, we get
that Ty (]5, ]5) is a primitive £2-th root of unity, so Ty(P, P) is a primitive ¢-th
root of unity.

We will now make use of a result concerning the representation of ideal classes
of orders in imaginary quadratic fields:

Lemma 3. Let O be an order in an imaginary quadratic field. Given a nonzero
integer M , then every ideal class in Cl(O) contains a proper O-ideal whose norm
is relatively prime to M.

Proof. See [4], Corollary 7.17.

Proposition 6. We use the notations and assumptions from Proposition 1. Fur-
thermore, we assume that for all curves E; lying at a fized level i in V the curve
structure is Z/0™MZ x Z/€"*Z, with ny > ny. The value of Ng, yn2, the number
of zeros of the polynomial defined at 3, is constant for all curves lying at level i
in the volcano.

Proof. Let E; and E5 be two curves lying at level ¢ in the volcano V. Then
by Proposition 1 they both have endomorphism ring isomorphic to some order
Og4,. Now by taking into account the fact that the action of C1(Oy,) on Ellg, (F,)
is transitive, we consider an isogeny ¢ : E; — E5 of degree ¢1. By applying
Lemma 3, we may assume that (¢1,¢) = 1. Take now P and @ two indepen-
dant ¢"2-torsion points on E; and denote by Pg, 42 the quadratic polynomial
corresponding to the ¢™2-torsion on FEj:

Pg, n2(a,b) = a®log(S(P, P)) + 2ab log(S(P, Q)) + b*log(S(Q, Q)).
We use Lemma 2 to compute S(¢(P), ¢(P)), S(p(P), ¢§,C)2)) and S(6(Q), (Q))

and deduce easily that there is a polynomial Pg, ¢»>(a,b) on the curve E3 such
that

PEl,W12 (aa b) = PEQ,Z"2 (Cl, b)

This means that Ng, gn. and Ng, ¢n2 coincide, which concludes the proof.0
Moreover, we have showed that the value of k for two curves lying on the
same level of a volcano is the same.

Proposition 7. Let E be an elliptic curve defined a finite field F, and let
E[(=](F,) be isomorphic to Z/0™Z x Z/{™Z with £ > 3 and n1 > ny > 1.
Suppose Ng 2 € {1,2} and let P be a £™2-torsion point with degenerated self
pairing. Then the (-isogeny whose kernel is generated by (™2~ 1P is either as-
cending or horizontal. Moreover, for any £"2-torsion point Q whose self-pairing
is non-degenerated, the isogeny with kernel spanned by < ™~1Q > is descend-
ing.

Proof. Case 1. Suppose Tyno (P, P) € pp, k > 1 and that Tym (Q,Q) €
i1 \pier. Denote by Iy : E — Fj the isogeny whose kernel is generated by
¢2~1pP and I, : E — E, the isogeny whose kernel is generated by ¢*>~'Q. By



repeatedly applying Lemmas 1 and 2, we get the following relations for points
generating the "2~ !-torsion on E; and Fs:

Tyna—1 (I1(P), 11(P)) € prgr—r; Tyna=1 (11 (Q), £11(Q)) € pugr—2\papr-s
Tyno-1 (U2 (P), L12(P)) € ppn—s, Tyno-1(12(Q), 12(Q)) € pugr\prgr—1

with the convention that py = ) whenever h < 0. From the relations above, we
deduce that on the /-volcano having E, F4 and Es as vertices, Fy and E5 do not
lie at the same level. Given the fact that there are at least [—1 descending rational
{-isogenies parting from E and that @ is any of the £ — 1 (or more) £™2-torsion
points with non-degenerated self-pairing, we conclude that I is horizontal or
ascending and that I5 is descending.

Case 2. Suppose now that £ = 0. Note that the case no = 1 was already treated
in proposition 4. Otherwise, consider the curve E defined over F .. By lemma 1
we have k = 1 for points on E/F ., so we may apply Case 1. O

Note 1. All statements in the proof of Case 1 are true for £ = 2 also. The
statement in Proposition 4 is also true for ¢ = 2. The only case that is not
clear is what happens when & = 0 and ny > 1. We did not find a proof for the
statement in proposition 5 for £ = 2, but in our computations with MAGMA we
did not find any counterexamples either.

Ezample 1. Let E be the elliptic curve whose Weierstrass equation is given by
y? = 23+ 521631762z 4 248125891 defined over Fig92187501. The 55-torsion is en-
tirely defined over F1992187501. We take P = (7497189877 838497160) a 55—t0rsi0n
point with degenerated self-pairing, because T5s (P, P) € ps1. The corresponding
isogeny I, : E — Fj is a horizontal one. Consider now a point of order 5% with
non-degenerated self-pairing, for example @ = (139364112, 1455554413). One
may easily check that T5s(Q, Q) € pss\use and that I : E — FE5 (whose kernel
is generated by 52Q is descending.

Consider now a curve E defined over F,; such that
El>®|(F,) ~Z/MZ x /™7

We conclude this section by presenting two algorithms which find a ¢-torsion
point on E generating the kernel of a descending isogeny and of an ascending
(horizontal) one, respectively. We assume £ > 3, even though in many cases these
methods work also for £ = 2.

Algorithm 1 Finding the kernel of a descending isogeny Input: A curve E, the
structure of E[¢>°](F,).
Output: A /-torsion point generating the kernel of a descending isogeny.

1. If ny = 0 exit.
2. Take a random P; of order £™2. If Tyn, (Py, Py) is a primitive £"*2th root of
unity, return ("2~1p;.



3. Take a random P, of order £"2. If Wy, (Py, P2) € pigno—1? , take another
random point Py. If Tyna (P, Py) is a primitive £"2th root of unity, return
gng—lpz-

4. Compute Pg ¢n2. If Pg g2 # 0 and both P and P have degenerated pair-
ings, take Py + P». Else consider £ over Fy and return to step 2.

Algorithm 2 Finding the kernel of a ascending (horizontal) isogeny
Input: A curve E, the structure of E[¢*°](F,).
Output: A /-torsion point generating the kernel of a ascending isogeny.

1. If ny = 0 then take a random point P; of ¢™* torsion and return ¢"*~1P;.

2. Else compute Pg 2. If Pg o # 0, compute its roots and find a point P
with self-degenerated pairing. Return /"2~ P. Else consider E over F, and
return to step 2.

Note that proposition 5 guarantees that these algorithms terminate, because
the existence of nondegenerated primitive self pairings on the stability level
implies (by applying lemma 1 if necessary) that for any curve E lying on upper
levels, there is an extension of Fg. and points in E[¢*°](F,.) with nondegenerated
self pairings.

5 Walking the volcano: some new algorithms

In his thesis [11], Kohel gave a deterministic algorithm to compute the conductor
of the endomorphism ring of an ordinary curve F, assuming the trace ¢t of the
curve is known. His idea is to determine the /¢-adic valuation of the conductor
by determining the level of the vertex E in the ¢-volcano.

Recently, new applications using efficient algorithms to travel along the vol-
cano were given: the computation of the Hilbert class polynomial [1], [18], that
of modular polynomials [19] and that of the endomorphism ring of the curve
[20]. All these algorithms use modular polynomials or Vélu’s formulae [21] to
move from one elliptic curve to another curve on the volcano. In this section,
we briefly describe existing algorithms used to compute the level of a curve on a
volcano, to ascend one level on the volcano and to walk a path along the crater.
These algorithms actually rely on methods given by Kohel [11] and by Fouquet
and Morain in [7]).

We then present our new algorithms, which use the methods in Algorithms 1
and 2 to predict the direction of isogenies. We estimate the number of visited
vertices during the execution of each algorithm and prove that in most cases our
method is more efficient.

Before going into the details of the algorithms, we compare the costs of
taking one step on a volcano by using the two methods existing in the litera-
ture: modular polynomials and Vélu’s formulae. Suppose we have walked a path

# The Weil pairing W,, (see [16] for the definition) has the property that W,, (P, P) = 1
for all points of order m, so we can test wheather two points are independant by
testing wheather their pairing is a primitive mth root of unity.



Eq,...,E;_1 on the volcano and we would like to take a new step (F;_1, E;). In
the modular polynomial approach, we have to factor the polynomial f(X) =
Dy(X,7(Ei—1))/(X — j(E;—2)). The cost of the step is then of

O(£* + M (0)logg)

operations in F,, where M (¢) = flogflog logl. In this formula, the first term is
the time to evaluate @y(X, j(F;—1) and the second term is the time to compute
X% mod f. Now computing the isogeny with Vélu’s formulae can be done in
O(¢) operations, if we consider the time to compute f-torsion points neglige-
able. However, in many cases, even though the {-isogeny is defined over F,, the
points of order ¢ are defined in an extension field of degree smaller than ¢ (see
corollary 1). As a consequence, we need

O(£?log?)

operations in F; in order to compute the isogeny with Vélu’s formulae. So using
Vélu formulae is slightly more expensive. However, it becomes more efficient with
our technique since we can determine the direction of the isogeny in advance.

Moreover, in our algorithms, we need to perform a small number of pairing
computations, which cost O(log¢), if we use Miller’s algorithm ??. Once these
computations performed, the calculation of the polynomial Pg ¢gn> costs O(log¥)
in time. The most expensive part of this computation is the computation of logs
in the finite field Fy. This can be done by precomputing all the logs, storing
them in a ordered table ( which costs O(£) in memory), and then performing
a dichotomic search every time we need to compute a log. This search costs
O(log?) in time.

Suppose that we wish to compute the level of a curve in a volcano of height d.

If deg(E) # ¢+ 1, then we are already on the floor and the level is d. Otherwise
we start walking two paths, that we extend as far as possible, but never beyond
length d. If E is on the surface, then both paths have length d. Otherwise at least
one of them is a descending path of length k; and E is on the level d — k5. The
time complexity for this algorithm is O(2d(¢? + M (¢) log q)). The pseudocode for
this algorithm, given by Kohel [11], is given in [18].
There is a second approach to this problem given by Fouquet and Morain in [7].
The idea is to start walking three paths in parallel and extend them as far as
possible. As at least one of them is descending, we stop when one path reaches
the floor for the first time and return the length of this path. The complexity
is O(3d(¢%* + M(¢)logq)). This algorithm is 50 percent slower, but it has the
advantage of working for volcanoes whose height is not necessarily known.

Our new algorithm, based on the method presented in Algorithm 1 for finding
the kernel of a descending isogeny, is very simple. We only need to apply Vélu’s
formulae in order to compute the descending isogeny. If the points of order £ are
not defined over IF,, but over an extension field Fg4, the cost of our algorithm
is O(¢(log€)? + ¢?log ¢), where the first term comes from the computation of a
small number of pairings and the second one is the complexity of the isogeny
computation using Vélu’s formulae. Of course, we have assumed that we our
volcano is regular, so the polynomial Pg ¢n. is not zero over Fga.



Suppose now we want to ascend one level in the volcano. If we are on the
floor (i.e deg(E) # £+ 1 or ny = 0), we take the curve given by the only rational
l-isogeny. Otherwise, we start walking descending paths for each of the £ + 1
curves isogenous to E. We then compare the lengths of all paths and the longest
one is the one given by the neighbor of E lying one level above. The running time
of the algorithm is O(¢d(¢?> + M (¢)logq)). The pseudocode for this algorithm
can be found in [18].

Our new algorithm for finding a curve on the upper level in a volcano uses
Algorithm 2 in order to find the kernel of the ascending isogeny and then com-
putes the isogeny with Vélu’s formulae. On regular volcanoes, the complexity of
this algorithm is O(¢(log £)® + ¢*log ¢ + 1), where the first term is the cost of
4 pairing computation and their logs, the second one is the cost of the isogeny
computation and the last one comes from the factorization of a polynomial of
degree 2.

In [18], Sutherland also makes use of an algorithm which, given a curve E on
the crater of a volcano of height d, computes a path of length n on the crater
starting at . When d = 0, the algorithm necessarily returns a path contained in
Vb. Otherwise, we construct a path of length d+1 and retain in the list of vertices
on the crater the vertex E’ obtained at the first step in our path. We continue the
process, this time replacing E with E’, until we get n curves on the crater. See [18]
for a detailed description of the algorithm. According to [18, Proposition 4], the
number of examined vertices is O(4dn), so the running time of the algorithm is
O(dn(€? + M (¢)logq)). Our new algorithm for walking n steps on the crater
calls Algorithm 2 in order to find the kernel of the horizontal isogeny starting
from E and uses Vélu’s formulae to take a step on the crater. This process is
repeated until n steps on the crater have been taken. The complexity of our
algorithm on a regular volcano is O(nf(log £)® + nf?log ¢ + n).

Assume that, for a fixed ¢, the traces of elliptic curves are uniformly dis-
tributed in Hasse’s interval. Then the probability of picking a curve whose vol-
cano is not regular, among curves lying on volcanoes of height greater than 0, is
of approximatively e%' This is not negligeable for small values of £, and in these
cases we believe both methods should be combined to achieve best performances.
This means that on such a volcano, one should use the strategies given by Kohel
and Fouquet and Morain for curves lying above the stability level and use our
methods when the curves are on the stability level or underneath it.

Finally, in some applications, it might be possible, to restrict ourselves to
regular volcanoes. The use of Vélu’s formulae also has the advantage of avoid-
ing the expensive precomputations of the modular polynomials or of the Hilbert
polynomial. In the case of algorithms computing modular polynomials, for ex-
ample, we do not need the precomputation of the Hilbert polynomial as in [19].
Moreover, our method of enumerating curves on the crater of the volcano is
faster than the one using the action of the class group in [19].

6 Conclusion and perspectives

In this paper, we have proposed a method which allows, in the regular part of
an isogeny volcano, to determine, given a curve E and a /-torsion point P, the



type of the f-isogeny whose kernel is spanned by P. In addition, this method
also permits, given a basis for the f{-torsion, to find the ascending isogeny (or
horizontal isogenies) from E. We expect that this method can be used to improve
the performance of several volcano-based algorithms, such as the computation
of the Hilbert’s [18] or modular [19] polynomials.
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