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Optimal control theory :
a method for the design of wind instruments

G. Le Vey

Abstract

It has been asserted previously by the author that optimal control theory can be a valuable framework for theoretical studies
about the shape that a wind instrument should have in order tosatisfy some optimization criterion, inside a fairly general class.
The purpose of the present work is to develop this new approach with a look at a specific criterion to be optimized. In this
setting, the Webster horn equation is regarded as a controlled dynamical equation in the space variable. Pressure is thestate,
the control being made of two parts : one variable part, the inside diameter of the duct and one constant part, the weights
of the elementary time-harmonic components of the velocitypotential. Then one looks for a control that optimizes a criterion
related to the definition of an oscillation regime as the cooperation of several natural modes of vibration with the excitation,
the playing frequency being the one that maximizes the totalgeneration of energy, as exposed by A.H. Benade, following H.
Bouasse. At the same time the relevance of this criterion is questionned with the simulation results.

I. I NTRODUCTION

Designing high quality musical instruments has been the main concern of makers for centuries, accumulating know-how
from their predecessors by some kind of trial-and-error process, involving musicians. On another hand, since Bernouilli and
Lagrange in the XVIIIth century and the important writings of Helmholtz in the XIXth century a great deal of research
has also been conducted in order to understand the principles underlying sound production in traditional or modern musical
instruments : see e.g. [2], [3], [6], [7], [13] for presentations of this vast subject. Wind instruments such as brasses and
woodwinds, making use of an air column, must be designed in such a way as to properly arrange the natural frequencies
of this air column, in order thatregimes of oscillationcan take place in conjunction with the nonlinear flow-control device
(reed or player’s lips) [2]. As a consequence, harmonicity requirements for wind instruments between natural frequencies
are desirable properties, due to the fact that intonation, responsiveness and tonal colour can be attributed to well established
physical properties of the instrument [1]. It is generally accepted that these harmonicity requirements can lead to rather
different shapes, which can be (piecewise) cones, cylinders or more complex, as can can be seen from the actual duct of
real wind instruments. Nevertheless, see [9] for interesting results about piecewise conic ducts, following an approach based
on characteristic impedances and transfer matrices. Thus there is room for developping new methods that could help for the
design. The present work is dedicated to such a task, with main accent on the methodological aspects.
In [18], transmission line modelling of horns is used together with finite dimensional optimization techniques and a practical
tool [19] was developed for instrument makers, in order to help improving existing instruments as well as to design new ones
according to a given specification. Desired properties, specified in musical terms like intonation, response and pitch variability
were compared with calculated values based on an instrument’s actual geometry. Similarly, in [22], a method is presented for
optimizing the shape of a brass instrument with respect to its intonation and impedance peak magnitudes. The instrumentis
modelled using a one-dimensional transmission line analogy with truncated cones. Through the use of an appropriate choice
of design variables, the finite dimensional optimization finds smooth horn profiles, that can also help in correcting existing
instruments, the shape having been designed from an a priorichoice of a succession of cones. In [14], a frequency-domain
method, using inverse quantum scattering for the one-dimensional Klein-Gordon equation, allows to recover the area function
of a given acoustical duct in a noninvasive way, without measuring directly neither the input impedance nor the reflectance :
this last one is mathematically derived from the wave radiated in response to a high-impedance source. In [16], parameter
optimization techniques have been used to design shapes forbrass-trapping Helmholtz resonators that resonate at a design
set of acoustic eigenvalues, taking into account physical and geometrical constraints. In [15], a finite-element eigenanalysis
model of bars is used to compute optimal shapes for mallet percussion instruments such as vibraphone or marimba-type
bars. The objective function for the optimization procedure is a targeted set of modal frequencies.
As one can see, optimization is at the heart of research on thedesign question for musical instruments and the eigenstructure
often plays a central role in the optimization criteria. Theshape optimization of wind instruments, an inverse problem, appears
to be a complex one, when compared to the analysis of what physically occurs inside a given instrument, a direct, somewhat
easier albeit not at all obvious, problem, as can be seen fromthe great amount of research that it is the subject of. The
purpose of the present work is a continuation of preliminaryones by the author [20], [21], where the design question
for axisymmetric wind instruments was posed as an optimal control problem for the so-calledWebster equationthrough a
suitable reformulation as a dynamical equation in the spatial dimension, thereby using infinite dimensional optimization of
optimal control theory for continuous systems. This is in sharp contrast with the above mentionned references which use
finite-dimensional optimization schemes, i.e. with a finitenumber of parameters as unknowns in the theoretical formulation.
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For more details about the horn equation, see [12] or the morerecent [25] for a more mathematical and updated exposition.
Here, besides the exposition of how optimal control theory fits the wind instruments design question, a special attention is
given to the choice of one specific criterion, on the basis of physical considerations, whereas in [20], only a fairly general
class of criteria -affine in the control- were considered that led to a general result about the structure of the shape for the
duct of a wind instrument.
The chosen criterion is in no way unique : many other choices could be made, depending on which characteristics (physical,
perceptive and so on) are focused on. It appeared to be interesting to investigate from a musical acoustics point of view
as it comes from one definition of anoscillation regimeinside wind instruments, understood as the cooperation of several
natural modes of vibration, the ’playing frequency’ being the one that maximizes the total generation of energy [3], [2]. At
this stage, it has some arbitrariness in it : the physical relevance of this criterion is not taken here for granted, as no other
published material has been found (than that of A.H. Benade)using this notion of oscillation regime. The reason for the
choice of this criterion is twofold : first, to illustrate thegeneral methodology that uses optimal control theory ; second, to
question the relevance of this criterion, that appeared to be appealing at first sight. The purpose then is to question how
interesting it is for designing wind instruments more than to assert such a relevance a priori : numerical results in section V
show some qualitative features linked to the chosen criterion.
Nevertheless, on the basis of this criterion, in the contextof optimal control theory, necessary conditions coming from
the strong Pontryagin Maximum Principle [23], [8] are derived and some numerical simulations are conducted, in order
to illustrate the theoretical predictions. In the presented approach, the Webster horn equation is regarded as a controlled
dynamical system in one spatial variable (the axis of an axisymmetric instrument). The pressure (or the velocity potential)
is regarded as the state and the control is made of two parts : one is the variable diameter (actually its derivative with
respect to the axial space dimension) of the duct. The secondpart of the control is made of the constant weights of a
time-harmonic decomposition of the velocity potential, which are unknown, according to the chosen criterion, the energy
inside the duct. Then one looks for a control that maximizes the latter. This is another difference with the approach in [18],
[22], where the measure is taken to be the deviation from a measured input impedance peaks location, making use of a
model-fitting oriented approach. Whereas these works can bedescribed as inverse problems, the present one falls into the
category of design problems. But this distinction is a matter of convenience as both problems only differ from each other
by the chosen criterion, the unknown being the duct shape in each case. It is worth noting in that respect that a similar
criterion as in [22] could be chosen here as well, while defining the corresponding output of the model, leading to the same
problem of fitting a model to given data. This will be the subject of future research, with interesting comparisons to be
made, the main point here being methodological. The approach followed hereafter shows that, with the chosen optimization
criterion and the modelling approach, the obtained shape ispiecewise continuous. Moreover, when taking into account more
and more time-harmonic components, is appears from the simulations that the the obtained duct shape is a cone : such a
result tends to confirm that this criterion is likely not to besufficient to design high-quality instruments but the realistic
mode shapes that are obtained are encouraging. It should be noted that, to the best knowledge of the author, this way of
looking at the classical Webster horn equation, as a controlled dynamical equation, appears to be new. One important point
is that extensions of the optimal control methodology to other more realistic, nonlinear models of wind instruments and
design criteria can be considered, although Fourier analysis will generally be no more valid in such contexts : the choice of
an adequate criterion will remain crucial. Numerical simulations show that the proposed approach is appealing for design
purposes. Nevertheless, the presented work has to be considered as a preliminary study that opens new perspectives for
the design of wind instruments : it is not to be understood as an achievement in itself and has surely to be investigated
more deeply for real applications. In particular, several aspects are not touched here such as taking account of tone holes in
woodwinds (flutes, oboes, etc..), incorporating the nonlinear excitation mechanism (reed, lips for brasses) or choosing other
criteria, in order to include perceptive parameters (such as given by a musician), etc...Much remains to be done.
The paper is organized as follows : section II, in order to fix the notations, recalls the standard horn equation and the
definition of an oscillation regime as used here. Basic results from Optimal Control theory are briefly given and lead to
the formulation of the horn equation as a controlled dynamical system. Then a detailed exposition of how the oscillation
regime is formulated is given in section III. Section IV gives the mathematical formulation of the optimization problemto
solve, through the necessary conditions coming from optimal control theory. Numerical results are given in section V : they
have to be considered as preliminary results as no thorough or exhaustive investigation have been conducted at this stage.
Eventually, some conclusions and perspectives are drawn insection VI. An appendix provides a variational derivation of
the horn wave equation and reminds basic results from Sturm-Liouville theory.

II. PRELIMINARIES : HORN WAVE EQUATION, OSCILLATION REGIME, OPTIMAL CONTROL THEORY

A. Wave horn equation, oscillation regime

Consider an axisymmetric horn with lengthL and section diameterD(x), a function of the independent variable, the
space dimensionx, according to Fig. 1. Letρ0 be the medium mass density,p(x, t) the acoustic pressure in the medium, i.e.
the deviation from the atmospheric pressure, andv(x, t) the particular velocity inside the horn at abcissax. Let k = ω/c be
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Fig. 1. Geometry of an axisymmetric horn

the wave number,c being the sound velocity andω the angular frequency in case of a harmonic regime that is focused on
here. For derivatives of any quantity the index notation will be used in this section : for example the time (resp. space) first
derivative ofφ will be denotedφt (resp.φx). Let us first recall some usual modelling hypothesis : i) thediameterD(x) is a
slowly varying function ofx ; ii) acoustical quantities are functions ofx andt only ; iii) a velocity potentialφ exists, which
means thatv = ∇φ = φx ; iv) one focuses on standing wave, time-harmonic solutionsthat write :φ(x, t) = ℜ(ϕ(x)eiωt)
but one will omit theℜ part in the sequel as it is related to the time dependence thatwill not be involved in the optimization
process below ; v) in this work there is no dissipation. It canbe shown that, in this situation, the pressure atx writes :
p = −ρ0φt. It is worth noticing that the first hypothesis is necessary for the 1D plane wave, Webster equation to be valid [16]
or [7], chap. 6. Another limitation to this equation is to lower frequency modes. In [7], the following approximate condition
on the radius derivativeR

′

is given for the horn equation to be valid for plane waves :

1

2

∫ L

0

kR
′2
(x)dx ≪ 1 (1)

This condition will be used to fix bounds on the control in the simulations presented in section V. With these conventions,
the Webster horn equation is easily obtained as the Euler equation of a variational problem :

1

c2
φtt − φxx − 2

Dx

D
φx = 0 (2)

which reduces to :
φ

′′

+ 2D
′

D
φ

′

+ k2φ = 0 (3)

in case of a harmonic regime of interest here (see appendix a for details). Boundary conditions are then given for this
equation, depending on the physical situation under study,making it a Sturm-Liouville problem (see appendix b for a brief
reminder of two useful results).
On another side, the notion ofoscillation regimecan be defined, following H. Bouasse [3] and A.H. Benade [2]. It is “that
state of the collective motion of an air column in which a nonlinear excitation mechanism collaborates with a set of air
column modes to maintain a steady oscillation containing several harmonically related frequency components, each with its
own definite amplitude. Then, the ’playing frequency’ is theone that maximizes the total generation of energy”[2].
Chosing such a definition as the basis of an optimization criterion relies upon physical/acoustical considerations of what
happens inside the instrument. Nevertheless, it has some arbitrariness when considering perceptual quality of sound,as
discussed in the introduction. But further investigationslooked desirable. Other criteria will be considered in future work
so the present choice is only a first step towards physical/perceptual accounting in wind instruments design.
Notice also that the complex question of the nonlinear excitation mechanism, as the reed of an oboe or the lips of a brass
player e.g., is discarded (equation (3) is homogeneous), although nonlinear effects can be important due to the nature of
fluid dynamics, e.g. inside a reed or at the excitation localization in a flute. The hypothesis is made here that the nonlinear
effects are, in a first approximation, encoded in the Fouriercoefficients of the potential (see section III), corresponding to an
arbitrary and unknown excitation. This is surely not satisfactory from a physical point of view and will have to be modified
carefully in the future.

In the present context, where losses are assumed to vanish orto be included into the boundary conditions, the energy
inside the duct, notedE, is a conserved quantity :

E = T (x, t) + U(x, t) =
πρ0
8

∫ L

0

D2(|φx|
2 + |

φt

c
|2)dx (4)

with ∂E
∂t

= 0 andT (x, t), U(x, t) are computed in the appendix. Following the above definitionof an oscillation regime, the
energy can be taken as a design criterion for the duct shape. As it is a function of the diameter, this one can be considered as



an unknown function, provided convenient data are given forthe design. In that respect, as musical instruments are designed
to operate in harmonic regimes, the potential, being in thatcase periodic, is amenable to a Fourier series analysis and can
thus be written as a linear combination of time-harmonic elementary components, the coefficients of which will be other
unknowns of the design problems, while the frequencies willbe considered as the data. This will be made more precise in
section III. Thanks to the computations in the appendix, thelink is established between an oscillation regime in the sense of
A.H. Benade and the way the Webster horn is derived, as both rely upon the same definite integral, namely the lagrangian
action, through a Legendre transformation. As optimal control theory is variational too, one has a coherent set of toolsfor
the design methodology to be exposed.

B. The wave horn equation as a control system

Suppose a dynamical system is given as :
X

′

= f(X,U) (5)

whereX(x) ∈ R
n is the state,U(x) ∈ [U1, U2] ⊂ R the control and a prime still denotes the derivative with respect to the

independent variablex. The controlU is purposedly restricted to be a scalar as this suffices for the needs of the present
work (see [23], [8] for a more general exposition). The purpose of Optimal Control theory is to find a controlU such that
some functional (a scalar function of the state and the control) :

J(X,U) =

∫ x1

x0

g(X,U)dx (6)

is maximized or minimized, making it an optimization problem under dynamical constraints, named for this reason infinite-
dimensional. This variational-type problem is solved the following way : using a vector Lagrange multiplierµ, with
componentsµi, i = 1, . . . , n, define theHamiltonian functionof the problem, a scalar function, as :

H(X,U, µ) = g(X,U) + µT f(X,U) (7)

One then obtainnecessaryconditions for an optimum as the differential-algebraic system of equations (DAE) :










X
′

= ∂H
∂µ

−µ
′

= ∂H
∂X

0 = ∂H
∂U

(8)

together with suitable initial/boundary conditions. Notice first that, asH is a scalar, all of the three above equations are
vectorones :∂H

∂X
e.g. is the vector with components∂H

∂Xi

, i = 1, . . . , n. One has then a set of2n+1 equations, the first2n
ones being differential equations, the last one being of order zero. Notice also that these conditions (8) are onlynecessary
so that more investigations are needed to get sufficient conditions, i.e. a complete and unique solution. Also, the so-called
Pontryagin maximum principle [23], [8] allows to have more precise results for the above when the control has e.g. bound
constraints, as will be the case for the acoustic design problem here.
Now, in order to fit the acoustic design problem at hand to thiscontrol theoretic setting, it is useful to reformulate the
second order equation (3) as a two dimensional first order system, suitable for control purposes in view. To this end, define
the following variables :X1 = D,Y = φ, Z = φ

′

(= v) andW the vector with componentsX1, Y, Z. Also, as the section
diameterD of the horn is an unknown to be determined as a function ofx, it can be considered as a control variable to be
designed. Actually, one can control eitherD itself or the way it varies along thex axis, that is one can control its derivative
D

′

with respect tox : as the modelling hypothesis i) above is that the section is aslowly varying function ofx, one natural
choice for the control is the derivativeD

′

and bounds will have to be imposed to it in order to satisfy thehypothesis given
by inequality (1). As a consequence, defining the control variable U asD

′

, constraints on it will be bound constraints :
D1 ≤ D

′

≤ D2. Together with those on the control, constraints can also beimposed to the state through design/building
constraints on the diameterD itself : an obvious mandatory state constraint is e.g.X1 = D > 0. After having developped
the second order derivatives, and with these notations, equation (3) rewrites as the first order differential system :







X
′

1 = U

Y
′

= Z

Z
′

= −2 U
X1

Z − k2Y

(9)

which is a dynamical control system, affine in the controlU : W
′

= f(W,U) = h1(W ) + h2(W )U , with immediate
definitions forh1 andh2. One has even a linear drift :h1(W ) = AW , where matrixA is clearly defined. The singularity in
X1 = 0 is not a real problem as it corresponds to a vanishing diameter, a highly uninteresting situation (except possibly at
one boundary, the apex of a complete cone e.g.). Now, referring to theorem I, item 2 of the appendix, for each eigenvalue



λn = k2n the eigenfunctionϕn satisfies the wave horn equation with the same boundary conditions. One can then rewrite
for each eigenvalueλn, the corresponding first order differential system of equations :

{

X
′

2n = X2n+1

X
′

2n+1 = −2 U
X1

X2n+1 − k2nX2n
(10)

with : X2n = ϕn, X2n+1 = ϕ
′

n. This set of equations,i = 1, . . . , together with the equationX
′

1 = U constitutes the
controlled dynamical model that will enter the optimization process as constraints. Remark that on a practical side, only a
finite number of eigenvalues will be retained, as is detailedbelow in section III. One should notice also that, whereas in
most control theoretic situations one looks for a feedback control, the searched after control for the above horn equation
is intrinsically open-loop, as the duct is designed once forall (at least in the present state of technology...) so that optimal
control theory and the Pontryagin Maximum Principle [23], [8] are well suited in the present context, although giving only
necessary conditions, as already mentionned.

III. O SCILLATION REGIME AS AN OPTIMIZATION CRITERION

Besides the above simple, albeit new, problem rewriting, the crux in the followed approach of wind instrument design
is in formulating the oscillation regime, as defined in section II-A. It must be done in a way suitable for conducting the
optimization while having the controlled dynamical model of section II-B above at hand. Considering the above definition
for an oscillation regime, the potentialφ can be assumed to be a time-periodic function. For harmonicity requirements of
the signals inside the duct, the wave numberskns’ are fixed data given as multiples of a fundamental frequency : kn = nk0,
k0 = 2π

c
f0. To each of thekns’ corresponds a solutionϕn(x) of the Webster equation withkn as wave number. The set

{ϕn(x)}n∈Z is a basis of the Hilbert space of square-integrable functions on[0, L], thanks to Theorem 1, item 3, appendix.
Thus, thanks to Theorem 1, item 4, appendix, the overall potential φ can be written as :

φ(x, t) =
∑

n∈Z

cnϕne
iωnt (11)

which is seen to be the Fourier series decomposition ofφ(x, t) with respect to the time variable. Thus Parseval theorem
allows to write :

|φ|2 =
∑

n∈Z

c2n|ϕn|
2, |φ

′

|2 =
∑

n∈Z

c2n|ϕ
′

n|
2 (12)

The energyE can now be computed as a function ofcn, ϕn, ϕ
′

n, simply substituting forφ from (11) into (4), which gives,
thanks to the relations (12) :

E =
πρ0
8

∫ L

0

(

D2
∑

n∈Z

c2n(|ϕ
′

n|
2 +

ω2
n

c2
|ϕn|

2)

)

dx =
πρ0
8

∫ L

0

(

D2
∑

n∈Z

c2n(|X2n+1|
2 + k2n|X2n|

2)

)

dx (13)

the last equality stemming from the definition ofX2n, X2n+1 at the end of section II. Now assume that the energy is
conserved inside the horn. At least, one can consider in a first approximation that the small part of energy which is radiated
outside the duct or dissipated at the inside boundary is exactly compensated with the energy brought in by the excitation
mechanism such as the reed of the instrument. Such dissipation and other phenomena should surely be considered in future
work, possibly through the boundary conditions. The definition of an oscillation regime leads then to maximizeE as defined
in equation (13). Thus, withthe ωns’ known and fixed as given data, the optimization problem above has tofind D(x)
and thecns’. Observe nevertheless that obtaining optimalcns’ does not give any indication on some perceptive quality
factor which is indeed important for a high quality design. Thus it is likely at this stage that optimizing the above-defined
oscillation regime is unsufficient to that end. Section V will present simulations for the above defined problem, after the
design problem itself has been mathematically posed in the following section.

IV. OPTIMAL DESIGN OF A HORN SHAPE

Thanks to the results of section II and III, the design of axisymmetric wind instruments can be now formulated as an
optimal control problem in the following way. Consider an oscillation regime as defined and developped in sections II-A,III,
each component being governed by the Webster horn equation with its own wave numberkn and keeping the approximation
of the solution to a finite number,N , of its first terms. The data are made of the set of fixed multiples of a fundamental
frequencyf0, leading to the setkn = jnk0, jn = 1, . . . , N , with jn allowing to take into account that a complete series
of harmonics off0 or only the odd part of this series can be present. Asφ is unknown, thecns’ of its time-harmonic
decomposition are unknown parameters and considered as constant controls. In the following, thecns’ will be gathered in
a parameter vector notedC = (c1, c2, . . . , cN). Then the searched after shape of the duct and thecns’ are obtained as the
solution of the following problem :



(P) Maximize E as given by equation (13), with respect toD andC

subject to :

1) The2N + 1-dimensional dynamical model(n = 1, . . . , N) :






X
′

1 = U

X
′

2n = X2n+1

X
′

2n+1 = −2 U
X1

X2n+1 − k2nX2n

(14)

eachnth pair of the last2N equations being a Webster equation with wave numberkn.
2) Bound constraints on the variable control :D1 ≤ U = D

′

≤ D2.
3) State constraint :X1 ≥ a > 0, a a fixed real number.

It is apparent that, wheneverU > 0, X1(0) > 0, the state constraint is satisfied. Within this context, thestrong Pontryagin
Maximum Principle (PMP) [23], [8] is applicable. Necessaryconditions for an optimal control (i.e. an optimal duct shape)
are obtained in the following way. Along the general settinggiven by (5), (6), (7), (8), adjoin the dynamical constraints (14)
to the criterionE, (13), through Lagrange multipliersµ = (µn)n=1,...,N , define the Hamiltonian of problem (P) as :

H(X,U,C, µ) = πρ0

8 X2
1

∑N
n=1 c

2
n(X

2
2n+1 + k2nX

2
2n) + µ1U +

∑N
n=1(µ2nX2n+1 − µ2n+1(2

U
X1

X2n+1 + k2nX2n)) (15)

Then, following (8),µ is the solution of the adjoint differential system(n = 1, . . . , N) :


















µ
′

1 = − ∂H
∂X1

= −πρ0

4 X1

∑N
n=1 c

2
n(X

2
2n+1 + k2nX

2
2n)− 2 U

X2
1

∑N
n=1 µ2n+1X2n+1

µ
′

2n = − ∂H
∂X2n

= k2n(µ2n+1 −
πρ0

4 c2nX
2
1X2n)

µ
′

2n+1 = − ∂H
∂X2n+1

= 2 U
X1

µ2n+1 − µ2n − πρ0

4 c2nX
2
1X2n+1

(16)

Thus the optimization problem will be complete when initial-boundary conditions are specified. Notice that time-initial
conditions are not relevant here as the time variable has been eliminated through the hypothesis of time-harmonic regime
and of energy conservation : the outputs of the optimizationprocess are space-dependent, giving e.g. the mode shapes inside
the duct. As a starting point and in order to simply illustrate the method, without going into deep physical considerations of
a specific instrument, that are postponed to a forthcoming paper, the end atx = 0 is assumed to be closed (typically where
the excitation would be placed) so that the velocity and thusϕ

′

vanish there :∀n = 1, . . . , N, ϕ
′

2n(0) = X2n+1(0) = 0.
Also the other end is assumed to be open (e.g. the other end of abrass instrument) so that, at the first order approximation,
the pressure and thusϕ vanish :∀n = 1, . . . , N, ϕ2n(L) = X2n(L) = 0. These conditions lead to a Two-Point Boundary
Value Problem (TPBVP) for the differential system (14),(16) : one part of the state is fixed at one end and another part is
fixed at the other end. When some state componentXj is left unspecified at one end, the corresponding costate component
µj must vanish there [23]. Thus in the present situation :µ2n(0) = µ2n+1(L) = 0. Other conditions can be imposed with
more realistic considerations. For computing the optimal control, the Pontryagin maximum principle implies that, forX̂
(resp.µ̂) a solution of the state (resp. adjoint state) equation, an optimal controlÛ and optimal parameter vector̂C are such
that :

Ĥ = H(X̂, Û , Ĉ, µ̂) = max
{D1≤U≤D2],C=Cst}

H(X̂, U, C, µ̂) (17)

But one can observe thatH is affine with respect toU so that :

∂H

∂U
= µ1 −

2

X1

N
∑

n=1

µ2n+1X2n+1 = 0 (18)

which is also named theswitching functionfor this problem as its zeroes and its derivative can help determine the shape of
the duct. As equation (18) does not allow to compute the control U explicitely, one is faced with a problem withsingular
extremal arcs[5], chap. 8. The standard method is to compute successive derivatives of∂H/∂U with respect tox until one
is able to get an expression forU . In the present case, two such derivatives allow this, aftertedious but straightforward
computations. In caseU is bounded, as it is the case here, the minimum of the hamiltonian H with respect toU , where
∂H/∂U = 0, can occur at the boundary of the domain (see [5], [23]). Thisfact can be observed in the simulations : the
control can be on its bound along several intervals of the integration interval (figure 4) or can go from one bound to the other
(figure 9), revealing abang-bangtype control [5]. The conclusion is that one generally obtains quasi-cones. Cones could not
be obtained for exactly harmonic frequencies [7], chap. 7. This is compatible with the results obtained in [9]. Now, thanks
to the developments of this section, one has sufficient material to illustrate the design method through a few simulations, on
which some qualitative observations can be made and confirmation of the theoretical results is given. Remember nevertheless



that in the following, only candidates for optimal shapes are obtained at this stage (necessary conditions) because, due to
theorem 2, onlyq = 2D

′

/D can be uniquely determined from the given boundary spectraldata. Further data and theoretical
investigations are necessary towards a really optimal shape.

V. NUMERICAL RESULTS

The numerical results presented here must be considered as qualitative illustrations of the above theoretical results. No
interpretation in terms of musical quality will be attempted at this stage. Such results will be pursued elsewhere more deeply
in order to derive conclusions on realistic physical and perceptual basis. Nevertheless, some features are worth noticing at
this stage, when faced with some characteristics of real instruments.

A. Data

In the following, data are as follows : the air mass density istaken to beρ0 = 1, the sound velocity is that in free
space at standard temperature :c = 340m/s and one focuses on a fundamental frequency for the note usually labelledA4,
i.e. f = 440Hz, leading to the wavelengthλ = c/f = 0.772m. The chosen wave numbers are then indicated under each
figure : k1 = 2π/λ, ki = nik1, i = 1, . . . , n andni an even or odd integer. At the narrow end,x = 0, one hasD(0) fixed
with different values for each simulation (see below) andφ

′

(0) = 0. At x = L, the conditionφ(0) = 0 is satisfied only
approximately, by adjunction to the criterion through a simple penalty method. The duct diameter derivative is allowedto
vary in the bounded interval[D

′

m, D
′

M ], D
′

m, D
′

M being indicated on each figure. They are chosen to satisfy inequality (1)
with R = D/2, for the maximum valuek of the kns’, i.e. are within the validity domain of the wave horn equation,
according to (1). The interval of integration, i.e. the length of the duct, is taken to beL = λ but could be taken as an
unknown as well, leading to an analogous of the so-calledtime-optimalcontrol. Last, all unspecified initial values for the
state variables and all initial controls are taken to be random variables uniformly distributed on[0, 1].

B. Numerical method

The numerical method used to solve the optimization problemexposed in section IV is the following (see e.g. [5],
chap. 7 for more details on several possible numerical methods used for optimal control problems) : an initial guess is
given for the control vector and, using this control, the state equation is numerically integrated fromX(0), considering
too the unspecified initial conditions as constant controls, which are to be determined with the optimization process. The
integration was performed thanks to a predictor-correctorscheme with an explicit Euler method for the prediction stepand
a Crank-Nicholson scheme for the correction. Then the costate equation is integrated backwards -notice that this equation
is always linear in the costate- using the obtained terminalvalues forX(L). This allows to compute the gradient of the
objective function with respect to the control, thanks to∂H/∂U [8]. Then a standard optimization routine is used, passing
through the previous steps in a recursive way, in order to make this gradient decrease, until the specified terminal conditions
at x = L are -approximately here- achieved and the criterion evolves x no more, to a specified precision (10−5). For the
time being, the criterion and the terminal constraints havebeen gathered in a single objective function through a simple
penalty method but this could be improved. For the optimization, a quasi-Newton method with projection has been used
together with a BFGS method for an estimation of the hessian.Such an approach is known to have, as usually Newton-type
methods, the drawback that it can give local minima and to be sensitive to the initial guess for the solution [10]. Thus,
other methods such as direct solution of the TPBVP by shooting or multiple shooting techniques should be interesting to
investigate but this is deferred to future work because an extra work has to be done in order to have an explicit expression
for the control, as a function of the state and costate (see the discussion in section IV above). Nevertheless several different
initial conditions for the stateX were tested : the results, not exposed here, did not show to bethat sensitive but this should
be confirmed theoretically.

C. Simulations

The few simulations presented here have been done while fixing, respectively, two, five and ten components for the overall
potential inside the duct, i.e.N = 2, 5, 10 in equation (14). In each case, the duct shape is shown first, followed by the
corresponding modes shapes that have been normalized to their maximum value, atx = 0. In addition for the case of two
components only, the diameter derivative has been shown to illustrate the fact that it can be only piecewise continuous and
that the phenomenon, mentionned in section IV, of singular extremal arcs joining regular arcs can appear (see figure 4) : the
controlU = D

′

is on its bound on some subintervals. For the five components cases, the shape is also quasi-conic but in a
less obvious manner. But for the ten component case, one has an example of abrupt change in conicity andD

′

in figure 9
illustrates the possibility of bang-bang type control mentionned in section IV. On each figure the imposed lower (D1) and
upper (D2) bounds are indicated. Notice that the impedance,p/u and the instantaneous power,pu (p, the pressure,u the
volume velocity), for allx are easily obtained from the outputs,ϕ(x), ϕ

′

(x) andD(x) ∀x ∈ [0, L], of the optimization
process. The simulations are as follows :

1) Two components: For this first simulation, the fundamental frequency isA4 and the second component is the second
harmonic (double frequency). The diameter at the closed endis D(0) = 2cm. The duct shape is shown in figure 2,



the two modal shapes in figure 3.D
′

is shown in figure 4 as it makes appear the phenomenon described in section IV,
where the control is at the bound on two subintervals, with the consequence that one obtains a quasi-cone for the
duct, made of conic pieces joined by more complex but smooth parts.

2) Five components: In this second simulation (see figures 5,6), the data are thesame as for two components, except
for D(0) = 1cm. The five components have frequenciesfi = (i + 1) ∗ f0; i = 0, . . . , 4. One has not shownD

′

here
but the result is here again a quasi-cone, although this is not apparent again on figure 5, becauseD

′

varies much less
but still varies along the duct.

3) Ten components: In this third simulation (see figures 7,8,9), the data is thesame as for five components, except for
D(0) = 5cm. The ten components have frequenciesfi = (i+ 1) ∗ f0; i = 0, . . . , 9. The results are noticeable as here
again, three conic pieces are found so that the derivativeD

′

is shown in figure 9, making it here again a quasi-cone,
with a bang-bang type behaviour forD

′

. The duct is made of conic pieces with different conicity joined together.
Only the five first modal shapes have been displayed, for better readability.

D. Qualitative observations and commentaries

The above simulations show only qualitative albeit important results at the present stage. The main one is that, as foreseen
by the theoretical investigations, and for the specific chosen criterion, the duct shapes are piecewise continuous, this being
particularly clear on the case of two and ten components ; observe too in both cases the fact that the control is at the
bound on some subintervals, meaning that regular arcs and singular arcs can coexist. One can see also that quasi-cones are
obtained, in an obvious way for the first and second simulations. Recall nevertheless that, as mentionned, the numerical
method can be sensitive to initial conditions in the optimization process, so that it is difficult to interpret these results in a
precise manner at the present stage. The qualitative observation is that the shapes are quasi-cones. At the same time, the
modal shapes (i.e. the eigenfunctions of the Sturm-Liouville problem) show a behaviour that is qualitatively in agreement
with what is theoretically predicted for cones (see [7], chap. 7), i.e. one has modal shapes that decrease asx increases to
L. On one hand, these results are coherent with what is known for such geometries [9]. On another hand, the fact that one
gets quasi-cones essentially would lend to conclude that the used notion of oscillation regime does not allow to capture
all the important features that are sought after for musicalquality, as flaring horns in brasses e.g. cannot be achieved with
it : significant and important nonlinear phenomena [7] are not taken into account with the here retained model and design
criterion. Thus, using more realistic models and refined criteria should be used instead.
The computed modes have an extremum at the closed end, coherent with the chosen boundary condition (φ

′

(0) = 0). At
the other open end, the modes does not vanish exactly : one reason for this is linked to the way this end condition has been
taken into account in the numerical method : a simple penaltymethod makes a compromise between satisfying the criterion
and the boundary conditions there. The above suggested method of directly solving the TPBVP through shooting techniques
should give better results from this point of view.

VI. CONCLUSION AND PERSPECTIVES

Thanks to a reformulation within a control theory framework, the design of axisymmetric wind instruments has been
revisited. It has been shown that in order for an oscillationregime in the sense of A.H. Benade to take place inside the air
column and with the considered linear model, the shape tendsto be conic, as the number of time-harmonic components
grows. This tends to show that such a criterion, as it has beenmathematically described, is unsufficient to grasp the
necessary conditions that lead to high-quality instruments. No other conclusion from this point of view is given at thisstage.
Nevertheless, and this was one main purpose of this work, theapproach makes it very flexible to deal with a great variety of
design constraints, either on the control or on the shape itself. At the present time, only qualitative results have beengiven
to illustrate the theoretical results and the field is wide open to numerical investigations as well as to experiments on more
physical and musical premisses. In that respect, some important issues can be straightforwardly put in perspective : 1)A first
possible development is to use the method in a model fitting way, using an experimentally measured input impedance from a
real instrument and taking a distance measure with the corresponding model output as criterion, in a similar way as in [18],
[22]. More realistic duct shapes are to be expected and it will be interesting to compare results from different approaches.
2) Refine the question of physical/perceptual criteria and of the horn model : this relies upon physical considerations as
well as on experiments with real existing instruments played by expert musicians. This is surely a central point to get a
practical tool useful for real design. One consequence of modifying the criterion is that the structure of the obtained shape
will likely be different from that obtained in the present study. 3) Develop the method for woodwinds, thereby including
toneholes in the design process. 4) Take into account some imposed-shaped parts such as pieces of cylinders or cones from
built-in components, such as for brasses. This implies using path constraintsin the optimal control framework. 5) All the
previous points depend on the modelling question of how to include the nonlinear excitation mechanism (reed, lips...) in the
model as well as other nonlinear phenomena, which were discarded in the present study. 6) Last, an interesting question is
to try to retrieve, with the presented approach, the latticeof sound tubes results found in [9]. This will imply to modifythe
mathematical framework of the controlled dynamical system, i.e. the function spaces where the state and the control live,



in order to be able to take into account discontinuous, and not only piecewise continuous, duct shapes. The mathematical
theory of distributions could be an adequate framework for this. These items are but a small part of what should be addressed
within the proposed framework to achieve a satisfying design methodology.

VII. A CKNOWLEDGEMENTS

The author is undebted to two anonymous reviewers an to the editor of the special issue, J. Kergormard, for their numerous
advices that helped greatly improve the paper.

REFERENCES

[1] Musical acoustics network. Summer meeting : wind instruments acoustics. http://www.music.ed.ac.uk/euchmi/man/mxhta.html, 2009. Edinburgh.
[2] A.H. Benade.Fundamentals of musical acoustics. Dover, 1990. 2d edition.
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APPENDIX

a) The horn wave equation: Instead of the usual, Newton-type modelling approach, making use of forces and moments
balance equations, a lagrangian one is followed here, as it fits better the variational context for the design methods that
form the core of the present work. For standard derivation the reader is referred to [24], [4] for physical considerations and
to [20] for control theory formulation.
For a general pressure field, the lagrangian action density at each time instant inside the duct is the difference betweena
kinetic term and a potential term, that are computed in a standard way, as follows. Assumption ii) implies that the duct can
be considered as a continuous stack of cross-sectionsS(x), parametrized by the abcissax. For each sectionS(x) located at
x along the horn axis, an action density is computed as the integral of densities of the particles over the section. This leads
to an expression proportional to the cross-section area, i.e. toD2(x). Firstly, the kinetic term writes :

T (x, t) =

∫

S(x)

1

2
ρ0v

2dσ =
πD2

4

ρ0
2
v2 =

πD2

4

ρ0
2
|φx|

2 (19)

Similarly, the potential energy term is given as :

U(x, t) =

∫

S(x)

p2

2ρ0c2
dσ =

πD2

4

p2

2ρ0c2
=

πD2

4

ρ0
2
|
φt

c
|2 (20)

Thus the lagrangian action density writes :

L(x, t) = T (x, t)− U(x, t) =
πD2

4

ρ0
2
(|φx|

2 − |
φt

c
|2) (21)

Eventually, the lagrangian action inside the duct writes :

L =

∫ t1

t0

∫ L

0

L(x, t)dxdt =
πρ0
8

∫ t1

t0

∫ L

0

D2(|φx|
2 − |

φt

c
|2)dxdt (22)



According to Hamilton’s stationary action principle, the dynamics inside the duct is obtained as the Euler equation of the
above actionL :

∂L

∂φ
−

∂

∂x
(
∂L

∂φx

)−
∂

∂t
(
∂L

∂φt

) = 0 (23)

But one can see that∂L
∂φ

= 0, thus :

−
∂

∂x
(2D2φx) + 2(D2/c2)φtt = 0 (24)

and eventually, dividing by2D2 :

1

c2
φtt − φxx − 2

Dx

D
φx = 0 (25)

which is recognized to be the wave horn equation or Webster horn equation. The interest of the above variational derivation
for this equation lies first in the fact that the optimal control approach to the design is variational in nature too. Thus,due
to the harmonic nature of waves inside musical instruments,the horn equation writes, for one fixed valueω :

φxx + 2
Dx

D
φx +

ω2

c2
φ = 0 (26)

i.e. using primes from now on to denote the derivatives with respect to the spatial dimensionx along the axis, the only
remaining independent variable :

φ
′′

+ 2D
′

D
φ

′

+ k2φ = 0 (27)

this equation being adjuncted a set of suitable boundary conditions :

a1φ(0) + b1φ
′

(0) = 0 , a2φ(L) + b2φ
′

(L) = 0 (28)

which represents a resonator without active components andfor which losses can be taken into account in the boundary
conditions that will be precised for the simulations in section V. Thus one is faced with a homogeneous Sturm-Liouville
problem.

b) Elements of Sturm-Liouville theory: Two theorems from spectral theory of Sturm-Liouville problems are recalled
here for self-containedness : one [11] for the so-called “direct problems” and the second [17] for “inverse problems”. Let

I = [O,L] andq(x) = 2D
′

D
. Then :

Theorem 1 [11] : For every functionq(x) continuous inI :

1) The Sturm-Liouville problem has an infinite strictly increasing sequence of eigenvaluesλn ∈ R such thatlimn→∞ λn =
+∞ and the series

∑

n 1/λ
2
n converges.

2) For each eigenvalueλn, the homogeneous Sturm-Liouville problem has a real-valued solution ϕn(x) such that
∫ b

a
ϕ2
n(x)dx = 1, which is unique up to a multiplicative real constant.

3) The sequence(ϕn) is an orthonormal system in a convenient Hilbert space of functions.
4) Let w be complex-valued continuous function defined inI, the primitive of a ruled functionw

′

such that : (i)w
′

is continuous inI, except possibly at a finite number of interior points. (ii)w
′

has a derivativew
′′

continuous in
every interval wherew

′

is continuous. (iii)w satisfies the boundary conditions in (28). Then, ifcn =< w,ϕn >=
∫ b

a
w(s)ϕn(s)ds, one has :w(x) =

∑

n cnϕn where the series converges uniformly and absolutely inI.

On another hand, the design question itself relies upon the following inverse boundary spectral theorem :
Theorem 2 [17] : Assume that{λ1, λ2, . . . , ϕ

′

1(0), ϕ
′

2(0), . . .} are the boundary spectral data of the Dirichlet-Schrödinger
operator,A0 = − d2

dx2 + q, corresponding to the above Sturm-Liouville problem, on aninterval [0, L]. Then, these data
determineL andq(x) uniquely.
It is moreover worth noting that onlyq can be determined uniquely from these data. This means here that only the ratio
D

′

/D is so. Thus to determineD itself needs supplementary data.
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