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Optimal control theory :
a method for the design of wind instruments

G. Le Vey

Abstract

It has been asserted previously by the author that optinmata@caheory can be a valuable framework for theoreticatlitsi
about the shape that a wind instrument should have in ordeatisfy some optimization criterion, inside a fairly gealeslass.
The purpose of the present work is to develop this new appredth a look at a specific criterion to be optimized. In this
setting, the Webster horn equation is regarded as a cardrdinamical equation in the space variable. Pressure istéte,
the control being made of two parts : one variable part, ttséderdiameter of the duct and one constant part, the weights
of the elementary time-harmonic components of the velggitiential. Then one looks for a control that optimizes aecidn
related to the definition of an oscillation regime as the evaflon of several natural modes of vibration with the e,
the playing frequency being the one that maximizes the tgeakration of energy, as exposed by A.H. Benade, following H
Bouasse. At the same time the relevance of this criterioruéstipnned with the simulation results.

|I. INTRODUCTION

Designing high quality musical instruments has been thenroancern of makers for centuries, accumulating know-how
from their predecessors by some kind of trial-and-errocess, involving musicians. On another hand, since Berinani
Lagrange in the XVIII* century and the important writings of Helmholtz in the XfXcentury a great deal of research
has also been conducted in order to understand the prisaiplgerlying sound production in traditional or modern roaki
instruments : see e.g. [2], [3], [6], [7], [13] for presemats of this vast subject. Wind instruments such as brasséds a
woodwinds, making use of an air column, must be designed ¢h suway as to properly arrange the natural frequencies
of this air column, in order thatgimes of oscillatiorcan take place in conjunction with the nonlinear flow-cohtlevice
(reed or player’s lips) [2]. As a consequence, harmoniaityuirements for wind instruments between natural fregesnc
are desirable properties, due to the fact that intonatiesponsiveness and tonal colour can be attributed to welbkstted
physical properties of the instrument [1]. It is generalbcepted that these harmonicity requirements can lead berrat
different shapes, which can be (piecewise) cones, cylindemore complex, as can can be seen from the actual duct of
real wind instruments. Nevertheless, see [9] for intengstesults about piecewise conic ducts, following an apgrdeased
on characteristic impedances and transfer matrices. Tiaue ts room for developping new methods that could helptfer t
design. The present work is dedicated to such a task, witim maéent on the methodological aspects.

In [18], transmission line modelling of horns is used togetith finite dimensional optimization techniques and acpcal

tool [19] was developed for instrument makers, in order tip iraproving existing instruments as well as to design newson
according to a given specification. Desired properties;ifipd in musical terms like intonation, response and pitazhability
were compared with calculated values based on an instrisreattial geometry. Similarly, in [22], a method is preseritar
optimizing the shape of a brass instrument with respecstintbnation and impedance peak magnitudes. The instruiment
modelled using a one-dimensional transmission line ayaldgth truncated cones. Through the use of an appropriateeeho
of design variables, the finite dimensional optimizatiordéirsmooth horn profiles, that can also help in correctingtiegjs
instruments, the shape having been designed from an a phoite of a succession of cones. In [14], a frequency-domain
method, using inverse quantum scattering for the one-déinaal Klein-Gordon equation, allows to recover the areefion

of a given acoustical duct in a noninvasive way, without meiag directly neither the input impedance nor the reflectan
this last one is mathematically derived from the wave radidbh response to a high-impedance source. In [16], paramete
optimization techniques have been used to design shapdsdss-trapping Helmholtz resonators that resonate atigrdes
set of acoustic eigenvalues, taking into account physicdlgeometrical constraints. In [15], a finite-element eayeaiysis
model of bars is used to compute optimal shapes for malletugsion instruments such as vibraphone or marimba-type
bars. The objective function for the optimization procedisr a targeted set of modal frequencies.

As one can see, optimization is at the heart of research oddsign question for musical instruments and the eigertsiric
often plays a central role in the optimization criteria. Bi@ape optimization of wind instruments, an inverse probkgpears

to be a complex one, when compared to the analysis of whaiqailysoccurs inside a given instrument, a direct, somewhat
easier albeit not at all obvious, problem, as can be seen fhenmgreat amount of research that it is the subject of. The
purpose of the present work is a continuation of preliminangs by the author [20], [21], where the design question
for axisymmetric wind instruments was posed as an optimatrobproblem for the so-calletiVebster equatiothrough a
suitable reformulation as a dynamical equation in the apdimension, thereby using infinite dimensional optimmatof
optimal control theory for continuous systems. This is imrghcontrast with the above mentionned references which use
finite-dimensional optimization schemes, i.e. with a fimitenber of parameters as unknowns in the theoretical fotinoala
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For more details about the horn equation, see [12] or the mement [25] for a more mathematical and updated exposition.
Here, besides the exposition of how optimal control thedsytfie wind instruments design question, a special attengio
given to the choice of one specific criterion, on the basistofsical considerations, whereas in [20], only a fairly gahe
class of criteria -affine in the control- were considered thd to a general result about the structure of the shapentor t
duct of a wind instrument.

The chosen criterion is in no way unique : many other choioeddcbe made, depending on which characteristics (physical
perceptive and so on) are focused on. It appeared to be stitegao investigate from a musical acoustics point of view
as it comes from one definition of avscillation regimeinside wind instruments, understood as the cooperatioreéral
natural modes of vibration, the 'playing frequency’ beihg ne that maximizes the total generation of energy [3],A2]

this stage, it has some arbitrariness in it : the physicalverice of this criterion is not taken here for granted, asthero
published material has been found (than that of A.H. Benagd@jg this notion of oscillation regime. The reason for the
choice of this criterion is twofold : first, to illustrate thgeneral methodology that uses optimal control theory ; sgcto
guestion the relevance of this criterion, that appearedet@fpealing at first sight. The purpose then is to question how
interesting it is for designing wind instruments more tharassert such a relevance a priori : numerical results iriase@
show some qualitative features linked to the chosen aoiteri

Nevertheless, on the basis of this criterion, in the contxbptimal control theory, necessary conditions comingrfro
the strong Pontryagin Maximum Principle [23], [8] are dedvand some numerical simulations are conducted, in order
to illustrate the theoretical predictions. In the presdrapproach, the Webster horn equation is regarded as a bedtro
dynamical system in one spatial variable (the axis of anyaxsetric instrument). The pressure (or the velocity patént

is regarded as the state and the control is made of two pame :iothe variable diameter (actually its derivative with
respect to the axial space dimension) of the duct. The sepandof the control is made of the constant weights of a
time-harmonic decomposition of the velocity potential,iethare unknown, according to the chosen criterion, the gner
inside the duct. Then one looks for a control that maximibeslatter. This is another difference with the approach Bj,[1
[22], where the measure is taken to be the deviation from asured input impedance peaks location, making use of a
model-fitting oriented approach. Whereas these works cateberibed as inverse problems, the present one falls ieto th
category of design problems. But this distinction is a nratfeconvenience as both problems only differ from each other
by the chosen criterion, the unknown being the duct shapedh €ase. It is worth noting in that respect that a similar
criterion as in [22] could be chosen here as well, while defjirthe corresponding output of the model, leading to the same
problem of fitting a model to given data. This will be the sujef future research, with interesting comparisons to be
made, the main point here being methodological. The appré@lowed hereafter shows that, with the chosen optimirati
criterion and the modelling approach, the obtained shapetewise continuous. Moreover, when taking into accoumrtem
and more time-harmonic components, is appears from thelaions that the the obtained duct shape is a cone : such a
result tends to confirm that this criterion is likely not to befficient to design high-quality instruments but the r=tadi
mode shapes that are obtained are encouraging. It shouldtbd that, to the best knowledge of the author, this way of
looking at the classical Webster horn equation, as a cdettalynamical equation, appears to be new. One important poi
is that extensions of the optimal control methodology toeotimore realistic, nonlinear models of wind instruments and
design criteria can be considered, although Fourier aisalyil generally be no more valid in such contexts : the choié

an adequate criterion will remain crucial. Numerical siatidns show that the proposed approach is appealing fogrlesi
purposes. Nevertheless, the presented work has to be eossids a preliminary study that opens new perspectives for
the design of wind instruments : it is not to be understoodrasehievement in itself and has surely to be investigated
more deeply for real applications. In particular, sevesglexts are not touched here such as taking account of toag imol
woodwinds (flutes, oboes, etc..), incorporating the naamexcitation mechanism (reed, lips for brasses) or chgasther
criteria, in order to include perceptive parameters (suelgigen by a musician), etc...Much remains to be done.

The paper is organized as follows : sectioh Il, in order to fie notations, recalls the standard horn equation and the
definition of an oscillation regime as used here. Basic tedubm Optimal Control theory are briefly given and lead to
the formulation of the horn equation as a controlled dynamsystem. Then a detailed exposition of how the oscillation
regime is formulated is given in secti¢n] Ill. Sectipr] IV givihe mathematical formulation of the optimization probliem
solve, through the necessary conditions coming from optaoatrol theory. Numerical results are given in sect@n VWieyt
have to be considered as preliminary results as no thorougitmustive investigation have been conducted at thiestag
Eventually, some conclusions and perspectives are dravmdtionm. An appendix provides a variational derivatidn o
the horn wave equation and reminds basic results from Shiowville theory.

Il. PRELIMINARIES : HORN WAVE EQUATION, OSCILLATION REGIME, OPTIMAL CONTROL THEORY

A. Wave horn equation, oscillation regime

Consider an axisymmetric horn with lengfh and section diameteb(x), a function of the independent variable, the
space dimension, according to Fig. 1. Lep, be the medium mass densipyx, t) the acoustic pressure in the medium, i.e.
the deviation from the atmospheric pressure, afd ¢t) the particular velocity inside the horn at abcissd_et k = w/c be




Fig. 1. Geometry of an axisymmetric horn

the wave number; being the sound velocity and the angular frequency in case of a harmonic regime that isskedt on
here. For derivatives of any quantity the index notatiorl b used in this section : for example the time (resp. sparst) fi
derivative of¢ will be denoted ¢, (resp.¢..). Let us first recall some usual modelling hypothesis : i)dr@meterD(z) is a
slowly varying function ofx ; ii) acoustical quantities are functions efand¢ only ; iii) a velocity potentiaky exists, which
means that = V¢ = ¢, ; iv) one focuses on standing wave, time-harmonic solutibias write : ¢(x,t) = R(p(x)e™?)
but one will omit thelR part in the sequel as it is related to the time dependencemtatot be involved in the optimization
process below ; v) in this work there is no dissipation. It ¢tenshown that, in this situation, the pressurecatrites :
p = —pooe. Itis worth noticing that the first hypothesis is necessantiie 1D plane wave, Webster equation to be valid [16]
or [7], chap. 6. Another limitation to this equation is to lemfrequency modes. In [7], the following approximate caiodi
on the radius derivativ&®’ is given for the horn equation to be valid for plane waves :

1 [F e

5/0 kR (x)dx <1 1)
This condition will be used to fix bounds on the control in timwations presented in sectiph V. With these conventions,
the Webster horn equation is easily obtained as the Eulextequof a variational problem :

1 D,
C—2¢tt — Gzz — 23%; =0 (2)

which reduces to : )
¢ +22¢ + k=0 ®3)

in case of a harmonic regime of interest here (see appendor deftails). Boundary conditions are then given for this
equation, depending on the physical situation under studking it a Sturm-Liouville problem (see appendix b for aebri
reminder of two useful results).
On another side, the notion ofcillation regimecan be defined, following H. Bouasse [3] and A.H. Benade [2k Ithat
state of the collective motion of an air column in which a moedr excitation mechanism collaborates with a set of air
column modes to maintain a steady oscillation containingees harmonically related frequency components, each st
own definite amplitude. Then, the 'playing frequency’ is ¢ine that maximizes the total generation of ener{gj:
Chosing such a definition as the basis of an optimizatiorerioih relies upon physical/acoustical considerations batw
happens inside the instrument. Nevertheless, it has sobigaainess when considering perceptual quality of sowasd,
discussed in the introduction. But further investigatitmsked desirable. Other criteria will be considered in fatwork
so the present choice is only a first step towards physicgakpéual accounting in wind instruments design.
Notice also that the complex question of the nonlinear a¥oih mechanism, as the reed of an oboe or the lips of a brass
player e.g., is discarded (equatidﬂ (3) is homogeneousiowdh nonlinear effects can be important due to the natfire o
fluid dynamics, e.g. inside a reed or at the excitation laagitbn in a flute. The hypothesis is made here that the nanline
effects are, in a first approximation, encoded in the Fouefficients of the potential (see sectfof I1l), corresgngdo an
arbitrary and unknown excitation. This is surely not satisbry from a physical point of view and will have to be modifie
carefully in the future.

In the present context, where losses are assumed to vanighhar included into the boundary conditions, the energy
inside the duct, noted’, is a conserved quantity :

L
E=T(,t) + Ulw,t) = "2 " D26, + %Py @
0

with %—’f =0andT(z,t),U(z,t) are computed in the appendix. Following the above definitiban oscillation regime, the
energy can be taken as a design criterion for the duct shapi¢.i®\a function of the diameter, this one can be considesed a



an unknown function, provided convenient data are giveritferdesign. In that respect, as musical instruments argruksbi

to operate in harmonic regimes, the potential, being in taae periodic, is amenable to a Fourier series analysis @amd c
thus be written as a linear combination of time-harmoniengletary components, the coefficients of which will be other
unknowns of the design problems, while the frequenciesvéliconsidered as the data. This will be made more precise in
sectiorﬂl. Thanks to the computations in the appendixitileis established between an oscillation regime in theseesf
A.H. Benade and the way the Webster horn is derived, as bbthupmn the same definite integral, namely the lagrangian
action, through a Legendre transformation. As optimal irtheory is variational too, one has a coherent set of témis

the design methodology to be exposed.

B. The wave horn equation as a control system
Suppose a dynamical system is given as :

X' = f(X,U) (5)

where X (x) € R™ is the statel/(z) € [Uy, Us] C R the control and a prime still denotes the derivative withpees to the
independent variable. The controlU is purposedly restricted to be a scalar as this suffices ®mt#eds of the present
work (see [23], [8] for a more general exposition). The pweof Optimal Control theory is to find a contrbl such that
some functional (a scalar function of the state and the ortr

x1

J(X,U) = / 9(X, U)da (6)

0

is maximized or minimized, making it an optimization prabl@inder dynamical constraints, named for this reason iefinit
dimensional. This variational-type problem is solved tlodlofving way : using a vector Lagrange multiplier, with

components:;,i = 1,...,n, define theHamiltonian functionof the problem, a scalar function, as :
H(X,U,p) = g(X,U) + p" f(X,U) @)
One then obtaimecessaryconditions for an optimum as the differential-algebraisteyn of equations (DAE) :
' _ 9H
Xo= o
—u = g_g (8)
_  9H
0 = %o
together with suitable initial/boundary conditions. NMetifirst that, as{ is a scalar, all of the three above equations are
vectorones : g§ e.g. is the vector with componen% i =1,...,n. One has then a set @h + 1 equations, the firstn

ones being differential equations, the last one belng oéloz@ro Notlce also that these cond|t|oﬂs (8) are omgessary
so that more investigations are needed to get sufficientitons, i.e. a complete and unique solution. Also, the dteda
Pontryagin maximum principle [23], [8] allows to have monegise results for the above when the control has e.g. bound
constraints, as will be the case for the acoustic designipmolere.

Now, in order to fit the acoustic design problem at hand to taistrol theoretic setting, it is useful to reformulate the
second order equatloﬁ| (3) as a two dlmensmnal first ordeesyssuitable for control purposes in view. To this end, defin
the following variables X; = DY = ¢, Z = ¢ (= v) and W the vector with componentX;,Y, Z. Also, as the section
diameterD of the horn is an unknown to be determined as a functiom,df can be considered as a control variable to be
designed. Actually, one can control eith@ritself or the way it varies along the axis, that is one can control its derivative
D" with respect taz : as the modelling hypothesis i) above is that the sectionsiwaly varying function ofz, one natural
choice for the control is the derivatii®@ and bounds will have to be imposed to it in order to satisfytpothesis given
by inequality ﬂl). As a consequence, defining the controlate U as D', constraints on it will be bound constraints :
D, < D' < D,. Together with those on the control, constraints can alsarp®sed to the state through design/building
constraints on the diameté? itself : an obvious mandatory state constraint is &g.= D > 0. After having developped
the second order derivatives, and with these notationsatimu@) rewrites as the first order differential system :

’

X, = U
Y = Z 9)
7 = —2L 7 - kY

which is a dynamical control system, affine in the conitbl: W' = f(W,U) = hy(W) + ho(W)U, with immediate
definitions forh; andhq. One has even a linear drifti; (W) = AW, where matrixA is clearly defined. The singularity in
X, =0 is not a real problem as it corresponds to a vanishing diameteighly uninteresting situation (except possibly at
one boundary, the apex of a complete cone e.g.). Now, retetd theorem I, item 2 of the appendix, for each eigenvalue



An = k2 the eigenfunctionp,, satisfies the wave horn equation with the same boundary tonsli One can then rewrite
for each eigenvalue,,, the corresponding first order differential system of eipunest :

Xé = Xopy1
;o 10
{X%H = 2L X - X, (10)

with : Xo, = ¢p, Xont1 = galn. This set of equations, = 1, ..., together with the equatioﬂ(i = U constitutes the
controlled dynamical model that will enter the optimizatiprocess as constraints. Remark that on a practical sidgaon
finite number of eigenvalues will be retained, as is detaidetbw in sectior T]l. One should notice also that, whereas in
most control theoretic situations one looks for a feedbamitrol, the searched after control for the above horn eqnati
is intrinsically open-loop, as the duct is designed onceafbfat least in the present state of technology...) so tipétral
control theory and the Pontryagin Maximum Principle [23] &re well suited in the present context, although givintyon
necessary conditions, as already mentionned.

IIl. OSCILLATION REGIME AS AN OPTIMIZATION CRITERION

Besides the above simple, albeit new, problem rewriting, ¢hux in the followed approach of wind instrument design
is in formulating the oscillation regime, as defined in sm@ It must be done in a way suitable for conducting the
optimization while having the controlled dynamical modélsection@ above at hand. Considering the above defimitio
for an oscillation regime, the potential can be assumed to be a time-periodic function. For harntgnieguirements of
the signals inside the duct, the wave numbigss’ are fixed data given as multiples of a fundamental frequerig, = nko,
ko = QT“fO. To each of thek, s’ corresponds a solutiop,, (z) of the Webster equation with,, as wave number. The set
{on(x)}nez is a basis of the Hilbert space of square-integrable funstan|0, L], thanks to Theorem 1, item 3, appendix.
Thus, thanks to Theorem 1, item 4, appendix, the overallrpiaie) can be written as :

$(a,t) =Y cnpne™! (11)

ne”Z

which is seen to be the Fourier series decompositior(af t) with respect to the time variable. Thus Parseval theorem

allows to write : / )
6 =D clenl 1617 =D lp,|? (12)
nez nez

The energyF can now be computed as a function®f, ¢,,, gp'n, simply substituting foks from ) into Bl), which gives,
thanks to the relationd ([12) :

L 2 L
p=" [ (D? > cillenl + “—;W)) dr = 75" (D? > Xl + ki|X2n|2>) dr(13)
8 Jo c 8 Jo
ne”Z nez

the last equality stemming from the definition a&f,,, X2,,1 at the end of sectiorﬂll. Now assume that the energy is
conserved inside the horn. At least, one can consider intsafifgroximation that the small part of energy which is raztiat
outside the duct or dissipated at the inside boundary istgxesmpensated with the energy brought in by the excitation
mechanism such as the reed of the instrument. Such digsipatid other phenomena should surely be considered in future
work, possibly through the boundary conditions. The deéinibf an oscillation regime leads then to maximizeas defined
in equation @3). Thus, witlthe w,, s’ known and fixed as given datthe optimization problem above has fiad D(z)
and thec,s’. Observe nevertheless that obtaining optimat’ does not give any indication on some perceptive quality
factor which is indeed important for a high quality desighus it is likely at this stage that optimizing the above-dedin
oscillation regime is unsufficient to that end. Sect@n VlIwitesent simulations for the above defined problem, after th
design problem itself has been mathematically posed indhewfing section.

IV. OPTIMAL DESIGN OF A HORN SHAPE

Thanks to the results of sectidr) Il afd| I1l, the design of wximetric wind instruments can be now formulated as an
optimal control problem in the following way. Consider arcilation regime as defined and developped in sec ,
each component being governed by the Webster horn equaibritsvown wave numbek,, and keeping the approximation
of the solution to a finite numbery, of its first terms. The data are made of the set of fixed mekipf a fundamental
frequencyfy, leading to the sek, = j.ko,j. = 1,..., N, with j, allowing to take into account that a complete series
of harmonics off, or only the odd part of this series can be present.¢As unknown, thec,s’ of its time-harmonic
decomposition are unknown parameters and considered ataotrontrols. In the following, the,s’ will be gathered in
a parameter vector noted = (c1,co,...,cn). Then the searched after shape of the duct and:tskare obtained as the
solution of the following problem :



(P) Maximize E as given by equatioq (.3), with respectfand C

subject to:
1) The2N + 1-dimensional dynamical modéh =1,...,N) :
X, = U
Xp, = Xonn (14)
Xonp1 = —2+Xong1 — ki Xon

eachn!” pair of the las2 N equations being a Webster equation with wave nuniher
2) Bound constraints on the variable contrdDj < U = D' < D».
3) State constraint X; > a > 0, a a fixed real number.
It is apparent that, whenevér > 0, X;(0) > 0, the state constraint is satisfied. Within this context, gtreng Pontryagin
Maximum Principle (PMP) [23], [8] is applicable. Necessannditions for an optimal control (i.e. an optimal duct s&ap
are obtained in the following way. Along the general setgigen by (§), [b), [(7). [(8), adjoin the dynamical constrai(it4)
to the criterionE, (L3), through Lagrange multipliess = (u,,),=1,....n , define the Hamiltonian of problenPj as :

H(X,U,Cyp) = T2 X230 A(X3,00 + k2X3,) + iU + 0 (1an Xont1 — fian+1(2+E Xon 1 + k2 Xan))

(15)
Then, following ﬂB),u is the solution of the adjoint differential system =1,...,N) :
! N
M1 = 786)?1 =X Zn V(XG0 HERIXS,) — 2)%2 Y et H2n1Xont1
Han = _aggn = kp (t2nt1 — "ocp X7 Xon) (16)
M/2n+1 = _,9)(82111 = 2X—1M2n+1 Hon — MCQXQX%_H

Thus the optimization problem will be complete when inHimlundary conditions are specified. Notice that time-ahiti
conditions are not relevant here as the time variable has blminated through the hypothesis of time-harmonic regim
and of energy conservation : the outputs of the optimizgpimtess are space-dependent, giving e.g. the mode shajis in
the duct. As a starting point and in order to simply illustréte method, without going into deep physical considenatiaf
a specific instrument, that are postponed to a forthcomipgmpahe end ai = 0 is assumed to be closed (typically where
the excitation would be placed) so that the velocity and thusanish there ¥n = 1,..., N, ¢, (0) = Xa,11(0) = 0.
Also the other end is assumed to be open (e.g. the other endhrafsa instrument) so that, at the first order approximation,
the pressure and thys vanish :Vn = 1,..., N, p2,(L) = X»,(L) = 0. These conditions lead to a Two-Point Boundary
Value Problem (TPBVP) for the differential syste@(l@b(l@)ne part of the state is fixed at one end and another part is
fixed at the other end. When some state compongnis left unspecified at one end, the corresponding costatgonent
w; must vanish there [23]. Thus in the present situation,;(0) = p2n+1(L) = 0. Other conditions can be imposed with
more realistic considerations. For computing the optin@itml, the Pontryagin maximum principle implies that, f&r
(resp./i) a solution of the state (resp. adjoint state) equation,pimal controll/ and optimal parameter vect6t are such
that :

H=HX,U,C, i) = {DlgUgngf]K,C:Cst} H(X,U,C, 1) a7
But one can observe thdl is affine with respect t@/ so that :

N

OH 2
X ; Hont1Xony1 =0 (18)

o~

which is also named thswitching functiorfor this problem as its zeroes and its derivative can helprdghe the shape of
the duct. As equatiorfdl8) does not allow to compute the obiirexplicitely, one is faced with a problem wisiingular
extremal arcg5], chap. 8. The standard method is to compute successixatiees of 0 H/OU with respect tax until one

is able to get an expression féf. In the present case, two such derivatives allow this, aéidious but straightforward
computations. In cas¥ is bounded, as it is the case here, the minimum of the haraloH with respect toU, where
OH/OU = 0, can occur at the boundary of the domain (see [5], [23]). Thés can be observed in the simulations : the
control can be on its bound along several intervals of thegirattion interval (figurE 4) or can go from one bound to thepth
(figure @), revealing &#ang-bangype control [5]. The conclusion is that one generally aldajuasi-cones. Cones could not
be obtained for exactly harmonic frequencies [7], chap.iMs Ts compatible with the results obtained in [9]. Now, tk&n
to the developments of this section, one has sufficient riadterillustrate the design method through a few simulatioom
which some qualitative observations can be made and coriinmaf the theoretical results is given. Remember nevéetise



that in the following, only candidates for optimal shapes abtained at this stage (necessary conditions) becausepdu
theorem 2, onlyy = 2D /D can be uniquely determined from the given boundary spedata. Further data and theoretical
investigations are necessary towards a really optimaleshap

V. NUMERICAL RESULTS

The numerical results presented here must be consideredaditative illustrations of the above theoretical resuli®
interpretation in terms of musical quality will be attemgbtt this stage. Such results will be pursued elsewhere nesplyl
in order to derive conclusions on realistic physical anccpptual basis. Nevertheless, some features are worthingptt
this stage, when faced with some characteristics of reaiuments.

A. Data

In the following, data are as follows : the air mass densityaisen to bep, = 1, the sound velocity is that in free
space at standard temperature= 340m/s and one focuses on a fundamental frequency for the noteludabélled Ay,
i.e. f = 440H z, leading to the wavelength = ¢/f = 0.772m. The chosen wave numbers are then indicated under each
figure : ky = 2w/ k; = n;k1,i = 1,...,n andn,; an even or odd integer. At the narrow end= 0, one hasD(0) fixed
with different values for each simulation (see below) azﬁd)) = 0. At z = L, the conditiony(0) = 0 is satisfied only
approximately, by adjunction to the criterion through a @ienpenalty method. The duct diameter derivative is allowed
vary in the bounded intervdD,,, D], D,,, D), being indicated on each figure. They are chosen to satistyuity ()
with R = D/2, for the maximum valuég: of the k,s’, i.e. are within the validity domain of the wave horn edqoat
according to 1). The interval of integration, i.e. the l#m@f the duct, is taken to bé& = X but could be taken as an
unknown as well, leading to an analogous of the so-cail@é-optimalcontrol. Last, all unspecified initial values for the
state variables and all initial controls are taken to be camdariables uniformly distributed ofo, 1].

B. Numerical method

The numerical method used to solve the optimization probémosed in sectioDV is the following (see e.g. [5],
chap. 7 for more details on several possible numerical nisthused for optimal control problems) : an initial guess is
given for the control vector and, using this control, thetestaquation is numerically integrated froi(0), considering
too the unspecified initial conditions as constant contrelsich are to be determined with the optimization processe T
integration was performed thanks to a predictor-correstbieme with an explicit Euler method for the prediction sieg
a Crank-Nicholson scheme for the correction. Then the t&quation is integrated backwards -notice that this éguat
is always linear in the costate- using the obtained termiahles for X (L). This allows to compute the gradient of the
objective function with respect to the control, thanksOtd/0U [8]. Then a standard optimization routine is used, passing
through the previous steps in a recursive way, in order toentlais gradient decrease, until the specified terminal ¢immdi
atz = L are -approximately here- achieved and the criterion egolv@o more, to a specified precisiot0(°). For the
time being, the criterion and the terminal constraints hiagen gathered in a single objective function through a mpl
penalty method but this could be improved. For the optintrata quasi-Newton method with projection has been used
together with a BFGS method for an estimation of the hes8anh an approach is known to have, as usually Newton-type
methods, the drawback that it can give local minima and to ésesitive to the initial guess for the solution [10]. Thus,
other methods such as direct solution of the TPBVP by shgaimmultiple shooting techniques should be interesting to
investigate but this is deferred to future work because draaxork has to be done in order to have an explicit expression
for the control, as a function of the state and costate (seditctussion in sectiV above). Nevertheless severtrdiit
initial conditions for the stat& were tested : the results, not exposed here, did not show tieabesensitive but this should
be confirmed theoretically.

C. Simulations

The few simulations presented here have been done whilgfiraspectively, two, five and ten components for the overall
potential inside the duct, i.eV = 2,5,10 in equation @4). In each case, the duct shape is shown fiiédbwied by the
corresponding modes shapes that have been normalizeditortemum value, at: = 0. In addition for the case of two
components only, the diameter derivative has been showlustrate the fact that it can be only piecewise continuaus$ a
that the phenomenon, mentionned in seclioh 1V, of singutreenal arcs joining regular arcs can appear (see fifjureh® : t
controlU = D’ is on its bound on some subintervals. For the five componestss; the shape is also quasi-conic but in a
less obvious manner. But for the ten component case, onerhasamnple of abrupt change in conicity abd in figure@
illustrates the possibility of bang-bang type control nimted in sectiorﬂ}\/. On each figure the imposed low®x ) and
upper (D2) bounds are indicated. Notice that the impedange, and the instantaneous power, (p, the pressurey the
volume velocity), for allz are easily obtained from the outputs(z), ¢ (x) and D(z) Vz € [0, L], of the optimization
process. The simulations are as follows :

1) Two components For this first simulation, the fundamental frequencyis and the second component is the second

harmonic (double frequency). The diameter at the closedi®d®(0) = 2¢m. The duct shape is shown in figuEb 2,



the two modal shapes in figuﬂa B! is shown in figureﬂ4 as it makes appear the phenomenon da:td:nil:nectiorm',
where the control is at the bound on two subintervals, with ¢tbnsequence that one obtains a quasi-cone for the
duct, made of conic pieces joined by more complex but smoattsp

2) Five components In this second simulation (see figurﬂsﬂ 5,6), the data aresginge as for two components, except

for D(0) = 1em. The five components have frequencjgs= (i + 1) x fo;i = 0,...,4. One has not showd' here
but the result is here again a quasi-cone, although thistisyparent again on figuﬂa 5, becauevaries much less
but still varies along the duct.

3) Ten componentsin this third simulation (see figur#ﬂ?ﬂb,g), the data isghme as for five components, except for
D(0) = 5em. The ten components have frequencies= (i + 1) * fo;4 =0,...,9. The results are noticeable as here
again, three conic pieces are found so that the derivdlivées shown in figure[|9, making it here again a quasi-cone,
with a bang-bang type behaviour f@". The duct is made of conic pieces with different conicitynjgd together.
Only the five first modal shapes have been displayed, for et ability.

D. Qualitative observations and commentaries

The above simulations show only qualitative albeit impott@sults at the present stage. The main one is that, aztores
by the theoretical investigations, and for the specific ehosriterion, the duct shapes are piecewise continuous ptking
particularly clear on the case of two and ten components emwbstoo in both cases the fact that the control is at the
bound on some subintervals, meaning that regular arcs agdlar arcs can coexist. One can see also that quasi-comes ar
obtained, in an obvious way for the first and second simuiatidrecall nevertheless that, as mentionned, the numerical
method can be sensitive to initial conditions in the optatian process, so that it is difficult to interpret these ltssin a
precise manner at the present stage. The qualitative aigsmis that the shapes are quasi-cones. At the same time, th
modal shapes (i.e. the eigenfunctions of the Sturm-Lidengloblem) show a behaviour that is qualitatively in agreaetn
with what is theoretically predicted for cones (see [7],mhd), i.e. one has modal shapes that decreaseiasreases to
L. On one hand, these results are coherent with what is knowsuith geometries [9]. On another hand, the fact that one
gets quasi-cones essentially would lend to conclude tratuied notion of oscillation regime does not allow to capture
all the important features that are sought after for mugieallity, as flaring horns in brasses e.g. cannot be achieiutbd w
it : significant and important nonlinear phenomena [7] aretaken into account with the here retained model and design
criterion. Thus, using more realistic models and refinetedd should be used instead.

The computed modes have an extremum at the closed end, nbleétie the chosen boundary condition’ (0) = 0). At

the other open end, the modes does not vanish exactly : oserréar this is linked to the way this end condition has been
taken into account in the numerical method : a simple pema#thod makes a compromise between satisfying the criterion
and the boundary conditions there. The above suggesteddefhirectly solving the TPBVP through shooting technigjue
should give better results from this point of view.

VI. CONCLUSION AND PERSPECTIVES

Thanks to a reformulation within a control theory framewoitke design of axisymmetric wind instruments has been
revisited. It has been shown that in order for an oscillatiegime in the sense of A.H. Benade to take place inside the air
column and with the considered linear model, the shape temd® conic, as the number of time-harmonic components
grows. This tends to show that such a criterion, as it has Imeathematically described, is unsufficient to grasp the
necessary conditions that lead to high-quality instrumiedo other conclusion from this point of view is given at thiage.
Nevertheless, and this was one main purpose of this workgppeoach makes it very flexible to deal with a great variety of
design constraints, either on the control or on the shapé.itt the present time, only qualitative results have bg&en
to illustrate the theoretical results and the field is wideropo numerical investigations as well as to experiments orem
physical and musical premisses. In that respect, some tantdssues can be straightforwardly put in perspectiveA fijst
possible development is to use the method in a model fitting using an experimentally measured input impedance from a
real instrument and taking a distance measure with the smoreling model output as criterion, in a similar way as in,[18
[22]. More realistic duct shapes are to be expected and lthgilinteresting to compare results from different appreach
2) Refine the question of physical/perceptual criteria ahthe horn model : this relies upon physical consideratiosis a
well as on experiments with real existing instruments plapg expert musicians. This is surely a central point to get a
practical tool useful for real design. One consequence dfifyiog the criterion is that the structure of the obtainddyse
will likely be different from that obtained in the presentid@y. 3) Develop the method for woodwinds, thereby including
toneholes in the design process. 4) Take into account somesiad-shaped parts such as pieces of cylinders or cones from
built-in components, such as for brasses. This impliesgugsath constraintsn the optimal control framework. 5) All the
previous points depend on the modelling question of how ¢tutte the nonlinear excitation mechanism (reed, lipsi.the
model as well as other nonlinear phenomena, which were rdiedan the present study. 6) Last, an interesting quession i
to try to retrieve, with the presented approach, the latiiceound tubes results found in [9]. This will imply to moditfye
mathematical framework of the controlled dynamical systeen the function spaces where the state and the contml liv



in order to be able to take into account discontinuous, artdonty piecewise continuous, duct shapes. The mathematical
theory of distributions could be an adequate frameworklHi. fThese items are but a small part of what should be adsliess
within the proposed framework to achieve a satisfying desiggthodology.
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APPENDIX

a) The horn wave equatiorinstead of the usual, Newton-type modelling approach, ntakise of forces and moments
balance equations, a lagrangian one is followed here, atsibétter the variational context for the design methods tha
form the core of the present work. For standard derivatienrdader is referred to [24], [4] for physical considerasi@amd
to [20] for control theory formulation.

For a general pressure field, the lagrangian action densigdaeh time instant inside the duct is the difference betwaeen
kinetic term and a potential term, that are computed in adstahway, as follows. Assumption ii) implies that the duah ca
be considered as a continuous stack of cross-secfigns parametrized by the abcissa For each sectio§(x) located at

2 along the horn axis, an action density is computed as thgraitef densities of the particles over the section. Thisl¢ea
to an expression proportional to the cross-section areatd.D?(x). Firstly, the kinetic term writes :

1 D? D
T(x,t) = / “povido = P02 - T ”°|¢>m|2 (19)
S(z) 2 4 2
Similarly, the potential energy term is given as :
2 2 2
P nD* p 7TD P
Ul t) = [ e = T TR B S (20)
(x) 4P0C poC
Thus the lagrangian action density writes :
Pt 19
Liz,t) = Te,t) = Ule,t) = =216 = 12) (21)

Eventually, the lagrangian action inside the duct writes :

hork TPo 2 2 Ot 1o
= = 22
L /to /0 L(z,t)dxdt = /t0 / D*(|¢z]° — | — | Ydxdt (22)



According to Hamilton’s stationary action principle, thgndmics inside the duct is obtained as the Euler equatiohef t

above actionC : 9L & oL o  OL

%—%(%)—5(%)20 (23)
But one can see th% =0, thus :
0
— 55 (2D%¢2) + 2(D?/*)gi = 0 (24)
and eventually, dividing bgD? :
1 D,
C—2¢tt — Pua — 23%; =0 (25)

which is recognized to be the wave horn equation or Webster éguation. The interest of the above variational detdvati
for this equation lies first in the fact that the optimal coh@pproach to the design is variational in nature too. Tllug,
to the harmonic nature of waves inside musical instrumehéshorn equation writes, for one fixed value:

2
2 =0 (26)
C
i.e. using primes from now on to denote the derivatives wéhbpect to the spatial dimensianalong the axis, the only
remaining independent variable :

D,
Goa + 27500 +

¢ +220 +k2p=0 27)
this equation being adjuncted a set of suitable boundargitions :
a1(0) +b16'(0) = 0, az(L) + b2¢ (L) = 0 (28)

which represents a resonator without active componentsf@nahich losses can be taken into account in the boundary
conditions that will be precised for the simulations in m@ Thus one is faced with a homogeneous Sturm-Liouville
problem.

b) Elements of Sturm-Liouville theoryfwo theorems from spectral theory of Sturm-Liouville preipls are recalled
here for self-containedness : one [11] for the so-calledettiproblems” and the second [17] for “inverse problemsét L
I=10,L] andg(z) =22 Then :

Theorem 1 [11] : For every functiony(z) continuous in/ :

1) The Sturm-Liouville problem has an infinite strictly ieasing sequence of eigenvalugse R such thalim,, o, A, =
+o00 and the serie§", 1/\2 converges.

2) For each eigenvalug,,, the homogeneous Sturm-Liouville problem has a real-hlselution ¢,,(z) such that
f: ©2 (z)dx = 1, which is unique up to a multiplicative real constant.

3) The sequencégp,,) is an orthonormal system in a convenient Hilbert space oftfans.

4) Let w be complex-valued continuous function definedZinthe primitive of a ruled functions” such that : (i)w’
is continuous in/, except possibly at a finite number of interior points. (i) has a derivativas” continuous in
every interval wherav' is continuous. (jii)w satisfies the boundary conditions iE|(28). Theng,jf=< w, p, >=
f; w(s)en(s)ds, one has w(x) = >, ¢, Where the series converges uniformly and absolutely. in

On another hand, the design question itself relies upondhenfing inverse boundary spectral theorem :

Theorem 2 [17] : Assume that{\;, Ao, ..., ©;(0), 0,(0),...} are the boundary spectral data of the Dirichlet-Schréeting
operator, 4y = —j—; + ¢, corresponding to the above Sturm-Liouville problem, onimerval [0, L]. Then, these data
determineL and ¢(z) uniquely.

It is moreover worth noting that only can be determined uniquely from these data. This means hateonly the ratio
D'/D is so. Thus to determin® itself needs supplementary data.
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