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The tail empirical process for long memory

stochastic volatility sequences

Rafa l Kulik∗ Philippe Soulier†

September 15, 2010

Abstract

This paper describes the limiting behaviour of tail empirical pro-
cesses associated with long memory stochastic volatility models. We
show that such a process has dichotomous behaviour, according to an
interplay between the Hurst parameter and the tail index. On the
other hand, the tail empirical process with random levels never suffers
from long memory. This is very desirable from a practical point of
view, since such a process may be used to construct the Hill estimator
of the tail index. To prove our results we need to establish new re-
sults for regularly varying distributions, which may be of independent
interest.

1 Introduction

The goal of this article is to study weak convergence results for the tail
empirical process associated with some long memory sequences. Besides of
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theoretical interests on its own, the results are applicable in different statis-
tical procedures based on several extremes. A similar problem was studied
in case of independent, identically distributed random variables in [12], or
for weakly dependent sequences in [11], [10], [9], [19].

Our set-up is as follows. Assume that {Xi , i ∈ Z}, is a stationary
Gaussian process with unit variance and covariance

ρi−j = cov(Xi, Xj) = |i− j|2H−2ℓ0(|i− j|) , (1)

where H ∈ (1/2, 1) is the Hurst exponent and ℓ0 is a slowly varying function
at infinity, i.e. limt→∞ ℓ0(tx)/ℓ0(x) = 1 for all x > 0. The sequence in this
case is referred to as an LRD Gaussian sequence. We also consider weakly
dependent Gaussian sequences, i.e. such that

∑∞
j=1 |cov(X1, Xj+1)| <∞.

We shall consider a stochastic volatility process defined as

Yi = σ(Xi)Zi, i ∈ Z,

where σ(·) is a nonnegative, deterministic function and that {Z,Zi, i ∈ Z},
is a sequence of i.i.d. random variables, independent of the process {Xi}.
We note, in particular, that if E[Z2] < ∞ and E[Z] = 0, then the Yis are
uncorrelated, no matter the assumptions on dependence structure of the
underlying Gaussian sequence.

Stochastic volatility models have become popular in financial time series
modeling. In particular, if H ∈ (1/2, 1), these models are believed to cap-
ture two standardized features of financial data: long memory of squares or
absolute values, and conditional heteroscedascity. If σ(x) = exp(x), then
the model is referred to in the econometrics literature as Long Memory in
Stochastic Volatility (LMSV) and was introduced in [4]. For an overview of
stochastic volatility models with long memory we refer to [7].

Let F = Fi, i ≥ 1, be the marginal distribution of Yi. We want to
consider the case where F belongs to the domain of attraction of an extreme
value distribution with positive index γ, i.e. there exist sequences un, n ≥ 1,
un → ∞, and σn, n ≥ 1, such that the associated conditional tail distribution
function

Tn(x) =
F̄ (un + σnx)

F̄ (un)
, x ≥ 0, n ≥ 1, (2)

satisfies
lim
n→∞

Tn(x) = T (x) = (1 + x)−1/γ , x ≥ 0 . (3)
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For the stochastic volatility model, this will be obtained through a further
specification. Let FZ be the marginal distribution of the noise sequence. We
will assume that for some α ∈ (0,∞),

F̄Z(z) = P(Z > x) = x−αℓ(x) , (4)

where ℓ is again a slowly varying function. Assuming (4) and E[σα+ǫ(X1)] <
∞ for some ǫ > 0, we conclude by Breiman’s Lemma [5] (see also [18, Propo-
sition 7.5]) that

F̄ (x) = P(Y1 > x) = P(σ(X1)Z1 > x) ∼ E[σα(X1)]P(Z1 > x) , as x→ ∞.

Consequently, F̄ (·) satisfies (3) with σn = un and γ = 1/α.

Similarly to [19], we define the tail empirical distribution function and
the tail empirical process, respectively, as

T̃n(s) =
1

nF̄ (un)

n
∑

j=1

1{Yj>un+uns} ,

and
en(s) = T̃n(s) − Tn(s) , s ∈ [0,∞) . (5)

From [19] we conclude that under appropriate mixing and other conditions on
a stationary sequence Yi, i ≥ 1, the tail empirical process converges weakly
and the limiting covariance is affected by dependence. In our case, the results
[19] do not seem applicable. In fact, it will be shown that we have two differ-

ent modes of convergence. If un is large, then
√

nF̄ (un) is the proper scaling
factor and the limiting process is Gaussian with the same covariance struc-
ture as in case of i.i.d. random variables Yi. Otherwise, if un is small, then
the limit is affected by long memory of the Gaussian sequence. The scaling
is different and the limit may be non-normal. These results are presented in
Section 2.1. Note that a similar dichotomous phenomenon was observed in
the context of sums of extreme values associated with long memory moving
averages, see [16] for more details. On the other hand, this dichotomous
behaviour is in contrast with the convergence of point processes based on
stochastic volatility models with regularly varying innovations, where (long
range) dependence does not affect the limit (See [6]).

The process en(·) is unobservable in practice, since the parameter un de-
pends on the unknown distribution F . Also, un being large or small depends
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on a delicate balance between the tail index α and the Hurst parameter H .
In order to overcome this, we consider as in [19] a process with random levels.
There, we set k = nF̄ (un) and replace the deterministic level un by Yn−k:n,
where Yn:n ≥ Yn−1:n ≥ · · · ≥ Y1:n are the increasing order statistics of the
sample Y1, . . . , Yn. The number k can be thought as the number of extremes
used in a construction of the tail empirical process. It turns out that if the
number of extremes is small (which corresponds to a large un above), then
the limiting process changes as compared to the one associated with en(·),
but the speed of convergence remains the same. This has been already no-
ticed in [19] in the weakly dependent case. On the other hand, if k is large,
then the scaling from en(·) is no longer correct (see Corollary 2.5). In fact,
the process with random levels has a faster rate of convergence and we claim
in Theorem 2.6 that the rate of convergence and the limiting process are not
affected at all by long memory, provided that a technical second order regular
variation condition is fulfilled. The reader is referred to Section 2.2. On the
other hand, it should be pointed out that our results are for the long memory
stochastic volatility models. It is not clear for us whether such phenomena
will be valid for example for subordinated long memory Gaussian sequences
with infinite variance.

The results for the tail empirical process en(·) allow us to obtain asymp-
totic normality and non-normality of intermediate quantiles, as described in
Corollary 2.4. On the other hand, the tail empirical process with random
levels allows the study of the Hill estimator of the tail index α (Section 2.3).
Consequently, as shown in Corollary 2.7, long memory does not have influ-
ence on its asymptotic behaviour. These theoretical observations are justified
by simulations in Section 3.

Last but not least, we have some contribution to the theory of regular
variation. To establish our results in the random level case, we need to work
under a second order regular variation condition. Consequently, one has to
establish in a Breiman’s-type lemma that such a condition is transferable
from F̄Z to F̄ . This is done in Section 2.4.
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2 Results

2.1 Tail empirical process

Let us define a function Gn on (−∞,∞) × [0,∞) by

Gn(x, s) =
P(σ(x)Z1 > (1 + s)un)

P(Z1 > un)
. (6)

By Breiman’s Lemma and the regular variation of F̄Z , we conclude that
for each s ∈ [0, 1], this function converges pointwise to T (s)G(x), where
G(x) = σα(x). A stronger convergence can actually be proved (see Section
4.6 for a proof).

Lemma 2.1. If (4) holds and E[σα+ǫ(X)] <∞ for some ǫ > 0, then

lim
n→∞

E

[

sup
s≥0

|Gn(X, s) − σα(X)T (s)|p
]

= 0 (7)

for all p such that pα < α+ ǫ.

In order to introduce our assumptions, we need to define the Hermite
rank of a function. Recall that the Hermite polynomials Hm, m ≥ 0, form an
orthonormal basis of the set of functions h such that E[h2(X)] < ∞, where
X denotes a generic standard Gaussian random variable (independent of all
other random variables considered here), and have the following properties:

E[Hm(X)] = 0 , m ≥ 1 , cov(Hj(X), Hk(X)) = δj,kk!

where δj,k is Kronecker’s delta, equal to 1 if j = k and zero otherwise. Then
h can be expanded as

h =

∞
∑

m=0

cm
m!
Hm ,

with cm = E[h(X)Hm(X)] and the series is convergent in the mean square.
The smallest index m ≥ 1 such that cm 6= 0 is called the Hermite rank of h.
Note that with this definition, the Hermite rank is always at least equal to
one and the Hermite rank of a function h is the same as that of h−E[h(X)].
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Let Jn(m, s) denote the Hermite coefficients of the function x→ Gn(x, s).
Since E[|Hm(X1)|r] < ∞ for all r ≥ 1, Lemma 2.1 implies that the Hermite
coefficients Jn(m, s) converge to J(m)T (s), where J(m) is the m-th Hermite
coefficient of G, uniformly with respect to s ≥ 0. This implies that for
large n, the Hermite rank of Gn(·, s) is not bigger than the Hermite rank of
G. In order to simplify the proof of our results, we will use the following
assumption, which is not very restrictive.

Assumption (H) Denote by Jn(m, s), m ≥ 1, the Hermite coefficients of
Gn(·, s) and let qn(s) be the Hermite rank of Gn(·, s). Define

qn = inf
s≥0

qn(s) ,

the Hermite rank of the class of functions {Gn(·, s), s ≥ 0}. In other words,
the number qn is the smallest m such that Jn(m, s) 6= 0 for at least one s.
Furthermore, let q be the Hermite rank of G. We assume that qn = q for n
large enough.

Remark. Since for large enough n it holds that qn(s) ≤ q for all s, the
assumption is fulfilled, for example, when G has Hermite rank 1 (as is the
case for the function x → ex), or if the function σ is even with the Hermite
rank 2.

The result for the general tail empirical process is as follows.

Theorem 2.2. Assume (H) with q(1 − H) 6= 1/2, (1), (4), nF̄ (un) → ∞
and that there exists ǫ > 0 such that

0 < E[σ2α+ǫ(X1)] <∞ . (8)

(i) If nF̄ (un)ρqn → 0 as n → ∞ or if {Xj} is weakly dependent, then
√

nF̄ (un) en converges weakly in D([0,∞)) to the Gaussian processW ◦
T , where W is the standard Brownian motion.

(ii) If nF̄ (un)ρqn → ∞ as n→ ∞ then ρ
−q/2
n en converges weakly in D([0,∞))

to the process (E[σα(X1)])
−1J(q)TLq, where the random variable Lq is

defined in (29).
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Remarks

- We rule out the borderline case q(1−H) = 1/2 for the sake of brevity and
simplicity of exposition. It can be easily shown that if q(1−H) = 1/2, then
√

nF̄ (un)en converges to W ◦ T provided 1/F̄ (un) tends to infinity faster
than a certain slowly varying function (e.g. if un = nγ for some γ > 0),
even though it may hold in this case that nρqn → ∞. The reason is that the
variance of the partial sums of G(Xk) is of order n times a slowly varying
function which dominates ℓq0(n).

- Here D([0,∞) is endowed with Skorohod’s J1 topology, and tightness is
checked by applying [2, Theorem 15.6]. Since the limiting processes have
almost surely continuous paths, this convergence implies uniform conver-
gence on compact sets of [0,∞). See also [21].

- The meaning of the above result is that for un large, long memory does
not play any role. However, if un is small, long memory comes into play
and the limit is degenerate. Furthermore, in the case of Theorem 2.2,
small and large depend on the relative behaviour of the tail of Y1 and
the memory parameter. Note that the condition nF̄ (un)ρqn → ∞ implies
that 1 − 2q(1 −H) > 0, in which case the partial sums of the subordinate
process {G(Xi)} weakly converge to the Hermite process of order q (see
Section 4.1). The cases (i) and (ii) will be referred to as the limits in the
i.i.d. zone and in the LRD zone, respectively.

- Condition E[σα+ǫ(X1)] < ∞ is standard when one deals with regularly
varying tails. However, we need the condition E[σ2α+ǫ(X1)] < ∞ in or-
der to obtain the limiting distributions in the i.i.d. and LRD zones. See
section 4.3.2.

- The result should be extendable to general, not necessary Gaussian, long
memory linear sequences. Instead of the limit theorems and covariance
bounds of Section 4.1, one can use limit theorems from [15], and the co-
variance bounds of [14, Lemma 3].

- Rootzen [19] obtained asymptotic the behaviour of the tail empirical pro-
cess of a general stationary sequence {Yj} under, in particular, the following
conditions (see [19, Section 4]):

• ln = o(rn), rn = o(n);
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(C1) E[|Nn(x, y)|p|Nn(x, y) 6= 0] ≤ ∞, where p > 2 and Nn is the point
process of exceedances;

(C2) βn(ln)n/rn → 0, where βn(·) is the β-mixing coefficient w.r.t. sigma
field generated by the random variables Yj1{Yj>un};

(C3)

1

rnF̄ (un)
cov

(

rn
∑

i=1

1{Yi>un(1+s)},

rn
∑

j=1

1{Yj>un(1+t)}

)

→ r(x, y),

for some function r(x, y).

Assume that rn → ∞, rn = o(n). For the sequence {Yj} under considera-
tion here, it can be computed (see Section 4.3.1)

1

rnF̄ (un)
cov

(

rn
∑

i=1

1{Yi>un(1+s)},
rn
∑

j=1

1{Yj>un(1+t)}

)

∼ T (s ∨ t) +
T (s)T (t)J2(q)rnF̄ (un)ρqrn

E2[σα(X1)]q!(1 − 2q(1 −H))
.

Now, using (1), rnF̄ (un)ρqrn ∼ F̄ (un)r
1−2q(1−H)
n . Since rn = o(n), then the

second part converges 0 under the condition nF̄ (un)ρqn → 0. Consequently,
Case (i) guarantees that the condition (C3) is fulfilled. As for the mixing
property (C2), it is usually established by proving the standard β-mixing,
i.e. the one defined in terms of random variables Yj , not Yj1{Yj>un}. Now, if
{Xj} is β-mixing (in the latter sense) with rate βn, then the same holds for
{Yj}. In our case, the sequence {Xj} has long memory, and thus it cannot
be β-mixing. Therefore, it is very doubtful that (C2) can be verified.

Note also that in the case
∑∞

j=1 |cov(X0, Xj)| < ∞, which we refer to as
the short memory case, the conclusion of part (i) of Theorem holds without
any additional (mixing) assumption on the Gaussian process {Xj}.

Moreover, results in the LRD zone cannot be obtain by applying Rootzen’s
or any other results for weakly dependent sequences.

2.2 Random levels

Similarly to [19], we consider the case of random levels. Let ⇒ denote weak
convergence in D([0,∞)). Define the increasing function U on [1,∞) by

8



U(t) = F←(1 − 1/t), where F← is the left-continuous inverse of F . Let k
denote a sequence of integers depending on n, where the dependence in n is
omitted from the notation as customary, and such that

lim
n→∞

k = lim
n→∞

n/k = ∞ . (9)

Such a sequence is usually called an intermediate sequence. Define un =
U(n/k). If F is continuous, then nF̄ (un) = k, otherwise, since F̄ is regularly
varying, it holds that limn→∞ k

−1nF̄ (un) = 1. Thus, we will assume without
loss of generality that k = nF̄ (un) holds. Then the statements of Theorem
2.2 may be written respectively as

√
k(T̃n − Tn) ⇒W ◦ T , (10)

ρ−q/2n (T̃n − Tn) ⇒ J(q)

E[σα(X1)]
T · Lq . (11)

Let us rewrite the statements of (10), (11) as

wn(T̃n − Tn) ⇒ w ,

where

wn =
√
k if lim

n→∞
kρqn = 0 , (12)

wn = ρ−q/2n if lim
n→∞

kρqn = ∞ , (13)

and w = W ◦ T if (12) holds (i.i.d. zone) and w = (E[σα(X1)])
−1J(q)TLq

if (13) holds (LRD zone).

We now want to center the tail empirical process at T instead of Tn. To
this aim, we introduce an unprimitive second order condition.

lim
n→∞

wn‖Tn − T‖∞ = 0 , (14)

where

‖Tn − T‖∞ = sup
t≥1

∣

∣

∣

∣

P(σ(X)Z > unt)

P(σ(X)Z > un)
− t−α

∣

∣

∣

∣

.

The following result is a straightforward corollary of Theorem 2.2.
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Corollary 2.3. Under the assumptions of Theorem 2.2, if moreover (14)
holds, then wn(T̃n − T ) converges weakly in D([0,∞)) to the process w.

Let Yn:1 ≤ · · · ≤ Yn:n be the increasing order statistics of Y1, . . . , Yn. The
former result and Verwaat’s Lemma [18, Proposition 3.3] yield the conver-
gence of the intermediate quantiles.

Corollary 2.4. Under the assumptions of Corollary 2.3, wn(Yn:n−k−un)/un
converges weakly to γw(1).

Define

T̂n(s) =
1

k

n
∑

j=1

1{Yj>Yn−k:n(1+s)} .

In this section we consider the practical process

ê∗n(s) = T̂n(s) − T (s), s ∈ [0,∞) .

For the process ê∗n(·), the previous results yield the following corollary.

Corollary 2.5. Assume (H), (1), (4), (8) and (14). Then wnê
∗
n converges

weakly in D([0,∞)) to w − T · w(0), i.e.

• If limn→∞ kρ
q
n = 0 or {Xj} is weakly dependent, then

√
kê∗n ⇒ B ◦ T (15)

where B is the Brownian bridge.

• If limn→∞ kρ
q
n → ∞, then

ρ−q/2n ê∗n ⇒ 0 .

The convergence of wn(T̂n−T ) to w−T ·w(0) is standard. The surprising
result is that in the LRD zone the limiting process is 0, because the limiting
process of wn(T̂n−Tn) has a degenerate form, i.e. the limit is the random Lq,
multiplied by the deterministic function T (·). In fact, as we will see below,
there is no dichotomy for the process with random levels, and the rate of
convergence of ê∗n is the same as in the i.i.d. case.

To proceed, we need to introduce a more precise second order conditions
on the distribution function FZ of Z. Several types of second order assump-
tions have been proposed in the literature. We follow here [8].
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Assumption (SO) There exists a bounded non increasing function η∗ on
[0,∞), regularly varying at infinity with index −αβ for some β ≥ 0, and
such that limt→∞ η

∗(t) = 0 and there exists a measurable function η such
that for z > 0,

P(Z > z) = cz−α exp

∫ z

1

η(s)

s
ds , (16)

∃C > 0 , ∀s ≥ 0 , |η(s)| ≤ Cη∗(s) . (17)

If (16) and (17) hold, we will say that F̄Z is second order regularly varying
with index −α and rate function η∗, in shorthand F̄Z ∈ 2RV (−α, η∗).
Theorem 2.6. Assume (H), (1), (4), (SO) with rate function η∗ regularly
varying at infinity with index −αβ and there exists ǫ > 0 such that

0 < E[σ2α(β+1)+ǫ(X1)] <∞ . (18)

If
lim
n→∞

√
kη∗(U(n/k)) = 0 , (19)

then
√
kê∗n converges weakly in D([0,∞)) to B ◦T , where B is the Brownian

bridge (regardless of the behaviour of kρqn).

Remark. The additional moment condition (18) ensures that the distribution
of Y satisfies a second order condition. See Section 2.4 for more details. It
is also used in a proof of tightness argument (see (55) below).

The behaviour described in Theorem 2.6 is quite unexpected, since the
process with estimated levels Yn−k:n has a faster rate of convergence than the
one with the deterministic levels un. A similar phenomenon was observed
in the context of LRD based empirical processes with estimated parameters.
We refer to [17] for more details.

2.3 Tail index estimation

A natural application of the asymptotic result for the tail empirical process
ê∗n is the asymptotic normality of the Hill estimator of the extreme value
index γ defined by

γ̂n =
1

k

k
∑

i=1

log

(

Yn−i+1:n

Yn−k:n

)

=

∫ ∞

0

T̂n(s)

1 + s
ds .

11



Since γ =
∫∞

0
(1 + s)−1T (s) ds, we have

γ̂n − γ =

∫ ∞

0

ê∗n(s)

1 + s
ds .

Thus we can apply Theorem 2.6 to obtain the asymptotic distribution of the
Hill estimator.

Corollary 2.7. Under the assumptions of Theorem 2.6,
√
k(γ̂n−γ) converges

weakly to the centered Gaussian distribution with variance γ2.

It is known that the above result gives the best possible rate of con-
vergence for the Hill estimator (see [8]). The surprising result is that it is
possible to achieve the i.i.d. rates regardless of H .

2.4 Second order conditions

Whereas the transfer of the tail index of Z to Y is well known, the transfer
of the second order property seems to have been less investigated. We state
this in the next proposition, as well as the rate of convergence of Tn to T and
Gn to G× T .

Proposition 2.8. If F̄Z ∈ 2RV (−α, η∗), where η∗ is regularly varying at
infinity with index −αβ, for some β ≥ 0, and if

E[σα(β+1)+ǫ(X)] <∞ , (20)

for some ǫ > 0, then F̄ ∈ 2RV (−α, η∗), and

‖Tn − T‖∞ = O(η∗(un)) . (21)

Moreover, for any p ≥ 1 such that pα(β + 1) < α(β + 1) + ǫ,

E
[

sups≥0 |Gn(X, s) − σα(X)T (s)|p
]

= O(η∗(un)p) . (22)

Examples The most commonly used second order assumption is that η∗(s) =
O(s−αβ) for some β > 0. Then

F̄Z(x) = cx−α(1 +O(x−αβ)) as x → ∞ , (23)
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for some constant c > 0. Then, ‖Tn − T‖∞ = O((k/n)β), and the second
order condition (14) becomes

lim
n→∞

k

(

k

n

)2β

= 0 , if lim
n→∞

kρqn = 0 (24)

and

lim
n→∞

ρ−qn

(

k

n

)2β

= 0 if lim
n→∞

kρqn = ∞ . (25)

Condition (24) holds if both k ≪ n(2β)/(2β+1) and k ≪ n2(1−H). The central
limit theorem with rate

√
k holds if k ≍ nγ with

γ < 2(1 −H) ∨ 2β

2β + 1
.

Condition (25) holds if n2(1−H) ≪ k ≪ n1−(1−H)/β . This may happen only if

β >
1 −H

2H − 1

or equivalently

1 > H >
1 + β

2β + 1
.

As β → 0, only for very long memory processes (i.e. H close to 1) will the
LRD zone be possible.

The extreme case is the case β = 0, i.e. η∗ slowly varying. For instance,
if η∗(x) = 1/ log(x) (for x large), then the tail F̄ (x) = x−α log(x) belongs to
2RV (−α, η∗) and U(t) ∼ {t log(t)/α}−1/α. The second order condition (14)
holds if

k1/2 log−1(n) → 0 .

If this condition holds, then kρqn → 0 for any H > 1/2 and the LRD zone
never arises, because the LRD term in the decomposition (33) is always
dominated by the bias.
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3 Numerical results

We conducted some simulation experiments to illustrate our results. We used
R functions HillMSE() and HillPlot available on the authors webpages.

Our first experiment deals with the Mean Squared Error.

1. Using R-fracdiff package we simulated fractional Gaussian noises
sequences {Xi(d)} with parameters d = 0, 0.2, 0.4, 0.45. Here, d =
H − 1/2, so that d = 0 corresponds to the case of an i.i.d. sequence.

2. We simulated n = 1000 i.i.d. Pareto random variables Zi with param-
eters α = 1 and 2.

3. We set Yi(d) = exp(Xi(d))Zi.

4. Hill estimator was constructed for different number of extremes.

5. This procedure was repeated 10000 times.

6. The results are displayed on Figure 1, for α = 1 and α = 2, respectively.
On each plot, we visualise Mean Square Error (with the true centering)
w.r.t. the number of extremes. Solid lines represent different LRD
parameters: black for d = 0, blue for d = 0.2, red for d = 0.4 and green
for 0.45.

We note that for α = 1, when a small number of extreme order statistics k
is used to build the Hill estimator, there is not much influence of the LRD
parameter, and in particular the MSE is minimal for more or less the same
values of k through all the range of values of d. This is in accordance with our
theoretical results. For α = 2, the influence of the memory parameter is more
significant. These two features can be interpreted. First, it seems natural
that the long memory effect appears when a greater number of extreme order
statistics is used, since our result is of an asymptotic nature. For a small
number of extremes the i.i.d. type of behaviour dominates (see Rn(·) in (33)),
so the asymptotic result is seen; for a larger number of extremes, the long
memory term Sn in (33) starts to dominate. For an extremely large number
of order statistics (i.e. k ≍ n), the bias dominates. The influence of α on the
quality of the estimation is twofold. On one hand, the asymptotic variance
of the Hill estimator is α2, so that the MSE increases with α. Also, for very
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Figure 1: MSE: α = 1 (left panel), α = 2 (right panel); color codes: black - d = 0,
blue - d = 0.2, red - d = 0.4, green - 0.45

small values of α, the peaks observed are extremely high and completely
overshadow the effect of long memory.

Next, we show Hill plots for several models, since in practice one usually
deals with just a single realization.

1. We consider the model Yi = exp(τXi)Zi, where {Xi} is as above a
fractional Gaussian noise and τ = 0.05 or 2.

2. We simulated n = 1000 i.i.d. Pareto random variables Zi with param-
eter α = 2.

3. We simulated fractional Gaussian noise sequences {Xi} with parame-
ters d = 0 (i.i.d. case), 0.2, 0.4, 0.45.

4. The estimators are plotted on Figures 2 and 3. The left panel corre-
sponds to the Hill estimator for iid Pareto random variables {Zi}, and
the right one for the long memory stochastic volatility process {Yi}. Re-
call that the Yi are dependent asympotically Pareto random variables,
so that there are two sources of bias for the Hill estimator.

We may observe that for a small volatility parameter τ there is not too
much difference between the two plots. However, if τ becomes bigger, the
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Figure 2: Hill estimator: α = 2 and Pareto iid (left panel), τ = 0.05 (right panel);
color codes: black - d = 0, blue - d = 0.2, red - d = 0.4, green - 0.45
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Figure 3: Hill estimator: α = 2 and Pareto iid (left panel), τ = 1 (right panel);
color codes: black - d = 0, blue - d = 0.2, red - d = 0.4, green - 0.45
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estimation with a large number of extremes is completely inappropriate if
d > 0, though without much influence of the strength of the dependence
(i.e. increase of d) on this degradation. The reason is that the second order
condition satisfied by the stochastic volatility model yields the same rate
of convergence as in the i.i.d. case, but an increase in the variance of the
Gaussian process {Xt} entails a bigger bias in finite sample.

4 Proofs

4.1 Gaussian long memory sequences

Recall that each functionG(·) in L2(dµ), with µ(dx) = (2π)−1/2 exp(−x2/2) dx
can be expanded as

G(X) = E[G(X)] +

∞
∑

m=1

J(m)

m!
Hm(X) ,

where J(m) = E[G(X)Hm(X)] and X is a standard Gaussian random vari-
able. Recall also that the smallest q ≥ 1 such that J(q) 6= 0 is called the
Hermite rank of G. We have

E[G(X0)G(Xk)] = E[G(X0)] +

∞
∑

m=q

J2(m)

m!
ρmk , (26)

where ρk = cov(X0, Xk). Thus, the asymptotic behaviour of E[G(X0)G(Xk)]
is determined by the leading term ρqn. In particular, if 1 − q(1 −H) > 1/2,
which implies that n2ρqn → ∞,

var

(

n
∑

j=1

G(Xj)

)

∼ J2(q)

q!

n2ρqn
1 − 2q(1 −H)

(27)

and

1

nρ
q/2
n

n
∑

j=1

G(Xj)
d→ J(q)Lq , (28)
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where

Lq = (q!(1 − 2q(1 −H))−1/2ZH,q(1) (29)

and ZH,q is the so-called Hermite or Rosenblatt process of order q, defined
as a q-fold stochastic integral

ZH,q(t) =

∫ ∞

−∞

. . .

∫ ∞

−∞

eit(x1+···+xq) − 1

x1 + · · · + xq

q
∏

i=1

x
−H+1/2
i W (dx1) . . .W (dxq) ,

where W is an independently scattered Gaussian random measure with Lebesgue
control measure. For more details, the reader is referred to [20]. On the other
hand, if 1 − q(1 −H) < 1/2 or {Xj} is weakly dependent, then

1√
n

n
∑

j=1

G(Xj)
d→ N (0,Σ2

0), (30)

where Σ2
0 = var(G(X0)) + 2

∑∞
j=1 cov(G(X0), G(Xj)) <∞.

We will also need the following variance inequalities of [1]:

• If 1 − q(1 −H) > 1/2, then for any function G with Hermite rank q ,

var

(

n−1
n
∑

j=1

G(Xj)

)

≤ Cρqn var(G(X1)) . (31)

• If 1 − q(1 −H) < 1/2, then for any function G with Hermite rank q ,

var

(

n−1
n
∑

j=1

G(Xj)

)

≤ Cn−1 var(G(X1)) . (32)

In all these cases, the constant C depends only on the Gaussian process {Xj}
and not on the function G. The bounds (31) and (32) are Equation 3.10
and 2.40 in [1], respectively.
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4.2 Decomposition of the tail empirical process

The main ingredient of the proof of our results will be the following decom-
position. Let X be the σ-field generated by the Gaussian process {Xn}.

en(s) =
1

nF̄ (un)

n
∑

j=1

{

1{Yj>(1+s)un} − P(Yj > (1 + s)un|X )
}

+
1

nF̄ (un)

n
∑

j=1

{

P(Yj > (1 + s)un|X ) − F̄ (un)
}

=: Rn(s) + Sn(s) . (33)

Conditionally on X , Rn is the sum of independent random variables, so it
will be referred to as the i.i.d. part; the term Sn is the partial sum process of
a subordinated Gaussian process, so it will be referred to as the LRD part.

4.3 Proof of Theorem 2.2

We first give a heuristic behind the dichotomous behaviour in Theorem 2.2.
Then, we prove convergence of the finite dimensional distributions of the i.i.d.
and LRD parts. Finally, we prove tightness and asymptotic independence.

4.3.1 Heuristic

To present some heuristic, let us compute covariance of the tail empirical
process. We have

cov(T̃n(s), T̃n(t)) =
1

nF̄ 2(un)
cov(1{Y1>un(1+s)}, 1{Y1>un(1+t)})

+
2

n2F̄ 2(un)

n−1
∑

j=1

(n− j)cov(1{Y1>un(1+s)}, 1{Yj+1>un(1+t)} .
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Recall (3). If E[σα+ǫ(X1)] < ∞ holds, we apply Breiman’s Lemma to both
nominator and denominator to get

lim
n→∞

cov(1{Y1>un(1+s)}, 1{Y1>un(1+t)})

F̄ (un)

= lim
n→∞

E[σα(X1)]P (Z1 > un(1 + s) ∨ un(1 + t))

E[σα(X1)]P (Z1 > un)
= T (s ∨ t) .

Furthermore, if E[σα+ǫ(X1)σ
α+ǫ(Xj+1)] < ∞ holds (which is guaranteed by

(8)), then a generalization of Breiman’s Lemma yields

lim
n→∞

cov(1{Y1>un(1+s)}, 1{Yj+1>un(1+t)})

F̄ 2(un)

= lim
n→∞

P (Y1 > un(1 + s), Yj+1 > un(1 + t))

F̄ 2(un)
− T (s)T (t)

= T (s)T (t)

(

E[σα(X1)σ
α(Xj+1)]

E[σα(X1)]E[σα(Xj+1)]
− 1

)

.

Therefore, for fixed s and t, using (27) in the case q(1−H) < 1/2, we obtain

cov(T̃n(s), T̃n(t))

= (1 + o(1))
T (s ∨ t)
nF̄ (un)

+ (1 + o(1))
T (s)T (t)

E2[σα(X1)]

1

n

n−1
∑

j=1

(

1 − j

n

)

cov(σα(X1), σ
α(Xj+1))

= (1 + o(1))

(

T (s ∨ t)
nF̄ (un)

+
T (s)T (t)J2(q)ρqn

q!(1 − 2q(1 −H))E2[σα(X1)]

)

.

In particular, setting s = t, then we conclude that the normalization factor
for en(·) should be

√

nF̄ (un) or ρ
−q/2
n depending whether nF̄ (un)ρqn → 0 or

nF̄ (un)ρqn → ∞ holds. The asymptotic variance also suggests the form of
limiting distributions in Theorem 2.2.

4.3.2 Finite dimensional limits

Let
d→ denote weak convergence of finite dimensional distributions. It will

be shown in Section 4.3.2 and 4.3.2, respectively, that for each m ≥ 1 and
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sl ∈ [0,∞), l = 1, . . . ,M , s1 < · · · < sM ,
√

nF̄ (un) (Rn(s1), Rn(sl) −Rn(sl−1), l = 2, . . . ,M)

d→ (N (0, T (s1)),N (0, T (sl) − T (sl−1)), l = 2, . . . ,M) , (34)

where the normal random variables are independent, and

ρ−q/2n (Sn(s1), . . . , Sn(sM))
d→ J(q)

E[σα(X1)]
(T (s1), . . . , T (sM))Lq , (35)

if 1 − q(1 −H) > 1/2. On the other hand, if 1 − q(1 −H) < 1/2, then the
second term Sn(·) is of smaller order than the first one, Rn(·).

The i.i.d. limit

Define

Ln,j(x, s) = 1{σ(x)Zj>(1+s)un} − P(σ(x)Z1 > (1 + s)un) .

Then

Rn(s) =

n
∑

j=1

Ln,j(Xj, s) .

Set Ln,j(x) = Ln,j(x, 0) and V
(m)
n (x) = E[Lm

n,j(x)]. Note that E[V
(1)
n (Xj)] = 0

and

V (2)
n (x) = P(σ(x)Z1 > un) − P

2(σ(x)Z1 > un) .

Let Rn := Rn(0). Therefore, for fixed t,

logE
[

eit
√

nF̄ (un)Rn |X
]

=
n
∑

j=1

logE

[

exp

(

it
√

nF̄ (un)
{1{Yj>un} − P(Yj > un | X )}

)

| X
]

=

n
∑

j=1

logE

[

1 − it
√

nF̄ (un)
Ln,j(Xj) −

t2

2nF̄ (un)
L2
n,j(Xj) + L3

n,j(Xj)O

(

1

(nF̄ (un))3/2

)

| X
]

=
−t2

2nF̄ (un)

n
∑

j=1

V (2)
n (Xj) + o

(

1

nF̄ (un)

) n
∑

j=1

V (2)
n (Xj) +O

(

1

(nF̄ (un))3/2

) n
∑

j=1

|V (3)
n (Xj)| .

(36)
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We will show that
1

nF̄ (un)

n
∑

j=1

V (2)
n (Xj)

p→ 1, (37)

given that E[σα+δ(X1)] < ∞. This also shows that the second term in (36)
is negligible. Furthermore, since for sufficiently large n and δ > 0 (cf. (59)),

|V (3)
n (x)| ≤ CP(σ(x)Z1 > un) ≤ C(σ(x) ∨ 1)α+δP (Z1 > un) ,

the expected value of the last term in (36) is

O

(

nP (Z1 > un)

(nF̄ (un))3/2

)

E[1 ∨ σα+δ(X1)] .

Consequently, the last term in (36) converges to 0 in L1 and in probability.
Therefore, on account of (37) and the negligibility, we obtain,

logE
[

eit
√

nF̄ (un)Rn |X
]

p→ −t2/2 (38)

and from bounded convergence theorem we conclude (34) (for M = 1 and
s = 0). It remains to prove (37). By Lemma 2.1, for each j ≥ 1, Gn(Xj, s)
converges in probability and in L1 to σα(Xj). Therefore,

lim
n→∞

E

[
∣

∣

∣

∣

∣

1

n

n
∑

j=1

P(σ(Xj)Z1 > un | X )

P(Z1 > un)
− σα(Xj)

∣

∣

∣

∣

∣

]

= 0 . (39)

Next, since σα(Xj), j ≥ 1, is ergodic, we have

1

n

n
∑

j=1

σα(X1)
p→ E[σα(X1)] . (40)

Thus, (39), (40) and Breiman’s Lemma yields

1

nF̄ (un)

n
∑

j=1

P(σ(Xj)Z1 > un | X )
p→ 1 . (41)

Write now

1

nF̄ (un)

n
∑

j=1

V (2)
n (Xj) = 1 + oP (1) +

1

nF̄ (un)

n
∑

j=1

P
2(σ(Xj)Z1 > un | X ) .
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By Lemma 2.1, we have, for some δ > 0 small enough,

1

nF̄ (un)

n
∑

j=1

P
2(σ(Xj)Z1 > un | X )

≤ CP(Z > un)
1

n

n
∑

j=1

(σ(Xj) ∨ 1)2α+δ p→ 0 . (42)

This proves (37) and (34) follows with M = 1 and s1 = 0. The case of a
general M ≥ 1 is obtained analogously.

Long memory limit

Recall the definition (6) of Gn(·, s) and that G(x) = σα(x). Define

Jn(m, s) = E[Hm(X1)Gn(X1, s)], J(m) = E[Hm(X1)G(X1)],

the Hermite coefficients of Gn(·, s) and G(·), respectively. Let q be the Her-
mite rank of G(·). We write (recall Assumption (H)),

n
∑

j=1

(Gn(Xj , s) − E[Gn(Xj , s)])

=
n
∑

j=1

∞
∑

m=q

T (s)J(m)

m!
Hm(Xj) +

n
∑

j=1

∞
∑

m=q

Jn(m, s) − T (s)J(m)

m!
Hm(Xj)

=: T (s)S∗n + S̃n(s) , (43)

with S∗n =
∑n

j=1G(Xj). On account of Rozanov’s equality (26), we have that
the variance of the second term is

var(S̃n(s)) =

n
∑

i,j=1

∞
∑

m=q

(Jn(m, s) − T (s)J(m))2

m!
covm(Xi, Xj)

≤
n
∑

i,j=1

|covq(Xi, Xj)|
∞
∑

m=q

(Jn(m, s) − T (s)J(m))2

m!

= ‖Gn(·, s) − T (s)G(·)‖2L2(dµ)

n
∑

i,j=1

|covq(Xi, Xj)|

≤ Cn2ρqn ‖Gn(·, s) − T (s)G(·)‖2L2(dµ) . (44)
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Since E[σ2α+δ(X)] < ∞, by Lemma 2.1, Gn(·, s) converges T (s)G(·) in
L2(dµ), uniformly with respect to s. We conclude that the second term

on the right handside of (43) is oP

(

nρ
q/2
n

)

, i.e. it is asymptotically smaller

than the first term. Furthermore,

Sn(s) =
P (Z1 > un)

nF̄ (un)

n
∑

j=1

(Gn(Xj , s) − E[Gn(Xj , s)]) , (45)

so that via (28) and (60)

ρ−q/2n Sn(s)
d→ J(q)T (s)

E[σα(X1)]
Lq , (46)

if 1− q(1−H) > 1/2. Consequently, (35) holds for M = 1. The multivariate
case follows immediately. On the other hand, if 1− q(1−H) < 1/2, then via
(30) and (60),

√
n sup

s∈[0,1]

Sn(s)
d→ 1

E[σα(X1)]
N (0,Σ2

0) ,

which proves negligibility with respect to the term Rn(·).

4.3.3 Asymptotic independence

In this section we prove asymptotic independence of Rn(·) and Sn(·). We
will carry out a proof for the joint characteristic function of (Rn, Sn) =
(Rn(0), Sn(0)). Extension to multivariate case is straightforward. On account
of (38), (46) and the bounded convergence theorem, we have

E

[

exp

{

is
√

nF̄ (un)Rn + itρ−q/2n Sn

}]

= E

[

E[exp{is
√

nF̄ (un)Rn} | X ] exp
(

itρ−q/2n Sn

)

]

→ exp(−s2/2)ψLq

(

J(q)

E[σα(X1)]
t

)

as n→ ∞ ,

where ψLq
(·) is the characteristic function of Lq. This proves asymptotic

independence.
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4.3.4 Tightness

In order to prove the tightness in D([0,∞)) endowed with Skorokhod’s J1
topology of the sequence of processes R′n :=

√

nF̄ (un)Rn, we apply the
tightness criterion of [2, Theorem 15.4]. We must prove that for each A > 0
and ǫ > 0,

lim
δ→0

lim sup
n→∞

P(w′′A(R′n, δ) > ǫ) = 0 , (47)

where for any function g ∈ D([0,∞)),

w′′A(g, δ) = sup
0≤t1≤s≤t2≤A

|g(s) − g(t1)| ∧ |g(t2) − g(s)| .

Since the Yis are independent conditionally on X , by elementary computa-
tions similar to those that lead to [2, Inequality 13.17], we obtain that

E
[

|R′n(s) − R′n(t1)|2|R′n(t2) − R′n(s)|2 | X
]

≤ 3{Qn(t1) −Qn(t2)}2 , (48)

where

Qn(s) =
1

nF̄ (un)

n
∑

j=1

F̄Z(un(1 + s)/σ(Xj)) .

Note that Qn(s) converges in probability to T (s) which is a continuous de-
creasing function on [0,∞). Let m ≥ 1 be an integer and set δ = A/2m.
Applying [2, Theorem 12.5] and using the same arguments as in the proof
of [2, Theorem 15.6] (p. 129, Eq. (15.26); note that the assumed continuity
of the function F that appears therein is not used to obtain (15.26)), we see
that the bound (48) yields, for some constant C (whose numerical value may
change upon each appearance),

P(w′′A(R′n, δ) > ǫ | X ) ≤ Cǫ−4
2m−1
∑

k=0

{Qn(kδ) −Qn((k + 2)δ)}2

≤ Cǫ−4Qn(0) max
0≤k≤2m−1

{Qn(kδ) −Qn((k + 2)δ)} .

Letting now n→ ∞ yields

lim sup
n→∞

P(w′′A(R′n, δ) > ǫ | X )

≤ Cǫ−4 max
0≤k≤2m−1

{T (kδ) − T ((k + 2)δ)} ≤ Cǫ−4δα∧1 .
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By bounded convergence, this yields

lim sup
n→∞

P(w′′A(R′n, δ) > ǫ) ≤ Cǫ−4δα∧1 ,

and (47) follows.

We prove now tightness of Sn. Assume first 1−q(1−H) > 1/2 and define

S ′n = ρ
−q/2
n Sn. Applying (31) there exists a constant C, which depends only

on the Gaussian process {Xj}, such that we have, for s ≤ t,

var(S ′n(s) − S ′n(t)) ≤ Cvar(Gn(X1, s) −Gn(X1, t))

≤CE
[

P
2(un(1 + s) ≤ σ(X1)Z1 ≤ un(1 + t) | X )

P(Z > un)

]

Let the expectation in last term be denoted by Q′n(s, t). By the same adap-
tation of the proof of [2, Theorem 15.6] as previously (see also [13] for a more
general extension), we obtain, for each A > 0, and for δ = A/2m for an
integer m ≥ 1,

P(w′′A(S ′n, δ) > ǫ) ≤ Cǫ−2
2m−1
∑

k=0

Q′n(2kδ, (2k + 2)δ) .

Thus, letting n tend to infinity while keeping m fixed, we get

lim sup
n→∞

P(w′′A(S ′n, δ) > ǫ) ≤ Cǫ−2
2m−1
∑

k=0

{(1 + 2kδ)−α − (1 + (2k + 2)δ)−α}2

≤ Cǫ−2δ2
2m−1
∑

k=0

(1 + 2kδ)−2α−2 ≤ Cǫ−2δ .

Thus limδ→0 lim supn→∞ P(w′′A(S ′n, δ) > ǫ) = 0 and this concludes the proof
of tightness.

4.4 Proof of Corollary 2.5 and Theorem 2.6

As in case of Theorem 2.2, we start some heuristic. Recall computation from
Section 4.3.1 and the form of the limiting distribution w − T · w(0). Then

var(T̂n(s)) = (1 + o(1))var(T̃n(s) − T (s)T̃n(0))

= (1 + o(1))
1

nF̄ (un)
T (s)(1 − T (s)) + o(1)T 2(s)ρqn.
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This suggests that in LRD zone ρ
−q/2
n T̂n(·) converges to 0.

To prove it formally, denote T̄n = Tn − T and ξn = Yn−k:n−un

un
= T̃←n (1).

Then T̃n(ξn) = 1, and we have

1 = en(ξn) + Tn(ξn) = en(ξn) + T̄n(ξn) + T (ξn) .

Thus,

T (ξn) − 1 = −en(ξn) − T̄n(ξn) . (49)

For any s ≥ 0, T̂n(s) = T̃n(s+ ξn(1 + s)) and T (s+ ξn(1 + s)) = T (s)T (ξn),
thus

ê∗n(s) = en(s+ ξn(1 + s)) + T̄n(s+ ξn(1 + s)) + T (s+ ξn(1 + s)) − T (s)

= en(s+ ξn(1 + s)) + T (s){T (ξn) − 1} + T̄n(s+ ξn(1 + s)) .

Plugging (49) into this decomposition of ê∗n, we get

ê∗n(s) = en(s+ ξn(1 + s)) − T (s)en(ξn) + T̄n(s+ ξn(1 + s)) − T (s)T̄n(ξn) .
(50)

In order to prove Corollary 2.5, we write

wnê
∗
n(s) = wn{en(s+ ξn(1 + s)) − T (s)en(ξn)} +O(wn‖Tn − T‖∞) . (51)

Since the convergence in Theorem 2.2 is uniform, and by Corollary 2.4 ξn =
oP (1), the first term in (51) converges in D([0,∞)) to w − T · w(0). Under
the second order condition (14), the second term is o(1). This concludes the
proof of Theorem 2.5.

We now prove Theorem 2.6. In order to study the second-order asymp-
totics of wnê

∗
n(s), we need precise expansion for en(s+ξn(1+s)) and en(ξ). For

this we will use the expansions of the tail empirical process in Section 4.3.2.
Since F̄ (un) = k/n, using (33), (43) and (45), we have

en(s) = Rn(s) +
F̄Z(un)

nF̄ (un)
T (s)S∗n +

F̄Z(un)

nF̄ (un)
S̃n(s) , (52)
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which, noting again that T (s+ ξn(1 + s)) = T (s)T (ξn), yields

en(s+ ξn(1 + s)) − T (s)en(ξn) = Rn(s+ ξn(1 + s)) − T (s)Rn(ξn)

+
F̄Z(un)

nF̄ (un)
{S̃n(s+ ξn(1 + s)) − T (s)S̃n(ξn)}

and

ê∗n(s) = Rn(s+ ξn(1 + s)) − T (s)Rn(ξn)

+
F̄Z(un)

nF̄ (un)
{S̃n(s+ξn(1+s))−T (s)S̃n(ξn)}+ T̄n(s+ξn(1+s))−T (s)T̄n(ξn) .

(53)

Similarly to (44), and utilising F̄Z(un)/F̄ (un) = O(1),

var

(

F̄Z(un)

nF̄ (un)
S̃n(s)

)

≤ C{ρqn ∨ ℓ1(n)n−1}‖Gn(·, s) − T (s)G(·)‖2L2(µ) .

Using the second order Assumption (SO) through (22), we obtain

var

(

F̄Z(un)

nF̄ (un)
S̃n(s)

)

= O
(

{ρqn ∨ ℓ1(n)n−1}η∗(un)2
)

= o
(

η∗(un)2
)

. (54)

Using (52) in the representation (50) and since Proposition 2.8 implies that
‖Tn − T‖∞ = O(η∗(un)), we obtain:

ê∗n(s) = Rn(s+ ξn(1 + s)) − T (s)Rn(ξn) +OP (η∗(un)) .

Since we have already proved that the convergence of
√
kRn is uniform, we

obtain that
√
ke∗n converges in the sense of finite dimensional distribution to

B ◦ T , where B is the Brownian bridge, if the second order condition (19)
holds. To prove tightness, we only have to prove that k1/2n−1Sn converges
uniformly to zero on compact sets. For s ≥ 0 and x ∈ R, denote Ḡn(x, s) =
Gn(x, s) − T (s)G(x) and recall that we have shown in Section 4.3.4 that

n−2var(S̃n(s) − S̃n(s′)) ≤ C‖Ḡn(·, s2) − Ḡn(·, s1)‖2L2(dµ) .

Applying (63), we get

n−2var(S̃n(s) − S̃n(s′)) ≤ C(η∗(un))2E
[

(σ(x) ∨ 1)2α(β+1)+ǫ
]

(s− s′)2 , (55)

which proves that k1/2n−1S̃n converges uniformly to zero on compact sets.
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4.5 Proof of Corollary 2.7

Using the decomposition (53), and the identity
∫∞

0
(1 + s)−1 T (s) ds = γ, we

have

γ̂n − γ =

∫ ∞

0

ê∗n(s)

1 + s
ds =

∫ ∞

0

Rn(s+ ξn(1 + s))

1 + s
ds− γRn(ξn)

+
F̄Z(un)

nF̄ (un)

∫ ∞

0

S̃n(s+ ξn(1 + s))

1 + s
ds− γ

F̄Z(un)

nF̄ (un)
S̃n(ξn) (56)

+

∫ ∞

0

T̄n(s+ ξn(1 + s))

1 + s
ds− γT̄n(ξn) . (57)

We must prove that the terms in (56) and (57) are OP (η∗(un)) and that

√
k

∫ ∞

0

(1 + s)−1Rn(s+ ξn(1 + s)) ds
d→
∫ ∞

0

W ◦ T (s)

1 + s
ds = γ

∫ 1

0

W (t)

t
dt .

(58)

To prove (58), we follow the lines of [18, Section 9.1.2]. We must prove that
we can apply continuous mapping. To do this, it suffices to establish that for
any δ > 0 we have

lim
M→∞

lim sup
n→∞

An,M = 0 ,

where

An,M = P

(

√
k

∫ ∞

M

∣

∣

∣

∣

∣

1

k

n
∑

j=1

(

1{Yj>uns} − P (Yj > uns|X )
)

∣

∣

∣

∣

∣

ds

s
> δ

)

.

By Markov’s inequality, conditional independence and Potter’s bound [3,
Theorem 1.5.6] , we have, for some ǫ > 0,

An,M ≤ C

√
n√
k

∫ ∞

M

P
1/2(Y > uns)

s
ds ≤ C

√

nF̄ (un)

k

∫ ∞

M

s−1−α/2+ǫ ds ≤ CM−α/2+ǫ → 0

as M → ∞, since k = nF̄ (un). This proves (58). To get a bound for (57),
we use (61) which yields, for all t ≥ 0,

|T̄n(t)| ≤ Cη∗(un)(1 + t)−α+ρ±ǫ .
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Thus T̄n(ξn) = OP (η∗(un)) and |T̄n(s+ξn(1+s))| ≤ Cη∗(un)(1+s)−α+ρ+ǫ(1+
ξn)−α, thus

∫ ∞

0

|Tn(s+ ξn(1 + s))|
1 + s

ds = OP (η∗(un)) .

We finally bound (56).

∫ ∞

0

n−1S̃n(s+ ξn(1 + s))

1 + s
ds =

∫ ∞

ξn

n−1S̃n(u)

1 + u
du .

Since ξn = oP (1), we can write

P

(

k1/2
∫ ∞

ξn

n−1S̃n(u)

1 + u
du > ǫ

)

≤ P(ξn > 1) + P

(

k1/2
∫ ∞

1

n−1|S̃n(u)|
1 + u

du > ǫ

)

≤ o(1) +
k1/2

nǫ

∫ ∞

1

E
1/2[S̃2

n(s)]

1 + s
ds

Applying (44) and (70) yields

∫ ∞

1

n−1E1/2[S̃2
n(s)]

1 + s
ds ≤ Cρq/2n η∗(un)

∫ ∞

0

s−α(β+1)/2+ǫ−1 ds = oP (k−1/2) .

Thus the first term in (56) is oP (k−1/2), and so is the second term since
k1/2n−1S̃n converges uniformly to zero on compact sets. This concludes the
proof of Corollary 2.7.

4.6 Second order regular variation

The main tool in the study of the tail of the product Y Z is the following
bound. For any ǫ > 0, there exists a constant C such that, for all y > 0,

P(yZ1 > x)

P(Z1 > x)
≤ C(1 ∨ yα+ǫ) . (59)

This bound is trivial if y < 1 and follows from Potter’s bounds if y > 1.

30



Proof of Lemma 2.1. By Breiman’s Lemma, we know that for any sequence
un such that un → ∞,

lim
n→∞

Gn(x, s) = lim
n→∞

P(σ(x)Z1 > (1 + s)un)

P(Z > un)
) = σα(x)(1 + s)−α = σα(x)T (s) .

(60)

If E[σα+ǫ(X)] < ∞, then the bound (59) implies that the convergence (60)
holds in Lp(µ) for any p such that pα < α + ǫ, uniformly with respect to s,
i.e.

lim
n→∞

E[sup
s≥0

|Gn(X, s) − σα(X)T (s)|p] = 0 .

Before proving Proposition 2.8, we need the following lemma which gives
a non uniform rate of convergence.

Lemma 4.1. If (4), (16) and (17) hold, if η∗ is regularly varying at infinity
with index ρ, for some ρ ≤ 0, then for any ǫ > 0, there exists a constant C
such that

∀t ≥ 1 , ∀z > 0 ,

∣

∣

∣

∣

P(Z > zt)

P(Z > t)
− z−α

∣

∣

∣

∣

≤ Cη∗(t)z−α+ρ(z ∨ z−1)ǫ . (61)

Proof. Since η∗ is decreasing, using the bound |eu − 1| ≤ ueu+ with u+ =
max(u, 0), we have, for all z > 0,

∣

∣

∣

∣

P(Z > zt)

P(Z > t)
− z−α

∣

∣

∣

∣

= z−α
∣

∣

∣

∣

exp

∫ z

1

η(ts)

s
ds− 1

∣

∣

∣

∣

≤ Cz−α
∫ z∨1

z∧1

η∗(st)

s
ds exp

∫ z∨1

z∧1

η∗(st)

s
ds

≤ Cz−α log(z) η∗(t(z ∧ 1)) exp

∫ z∨1

z∧1

η∗(st)

s
ds

≤ Cz−α(z ∧ 1)ρ−ǫ/2 η∗(t) exp

∫ z∨1

z∧1

η∗(st)

s
ds . (62)

We now distinguish three cases. Recall that η∗ is decreasing.
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• If z ≥ 1, then z → exp
∫ z

1
s−1η∗(s) ds is a slowly varying function

by Karamata’s representation Theorem, and is O(zǫ/2) for any ǫ > 0.
Plugging this bound into (62) yields (61).

• If z < 1 and tz ≥ 1, then

exp

∫ 1

z

η∗(st)

s
ds = exp

∫ 1/z

1

η∗(stz)

s
ds ≤ exp

∫ 1/z

1

η∗(s)

s
ds = O(z−ǫ/2)

for any ǫ > 0 by the same argument as above and this yields (61).

• If tz < 1, then tr ≤ z−r for any r > 0 and tρ−ǫ = O(η∗(t)) for any
ǫ > 0. Thus
∣

∣

∣

∣

P(Z > zt)

P(Z > t)
− z−α

∣

∣

∣

∣

≤ 1

P(Z > t)
+ z−α ≤ Ctα+ǫ/2 + z−α ≤ Cz−α−ǫ/2

≤ Cz−α+ρ−ǫtρ−ǫ/2 ≤ Cz−α+ρ−ǫη∗(t) .

This concludes the proof of (61).

The following bound is used in the proof of prove Theorem 2.6.

Lemma 4.2. If (4), (16) and (17) hold, if η∗ is regularly varying at infinity
with index ρ, for some ρ ≤ 0, then there exists a constant C such that for all
t ≥ 1 and b > a > 0,

∣

∣

∣

∣

P(at < Z ≤ bt)

P(Z > t)
− (a−α − b−α)

∣

∣

∣

∣

≤ Cη∗(t)(a ∧ 1)−α+ρ−ǫ(b− a) . (63)

Proof. The bound (63) follows from the following one and (59) applied to
the function η∗.
∣

∣

∣

∣

P(at < Z ≤ bt)

P(Z > t)
− (a−α − b−α)

∣

∣

∣

∣

≤ Cη∗((a ∧ 1)t)(a ∧ 1)−α−1−ǫ(b− a) (64)

Let ℓ be the function slowly varying at infinity that appears in (4), defined
on [0,∞) by ℓ(t) = tαP(Z > t). Assumption (SO) implies that

ℓ(t) = ℓ(1) exp

∫ t

1

η(s)
ds

s
(65)

32



where the function η is measurable and bounded. This implies that the
function ℓ is the solution of the equation

ℓ(t) = ℓ(1) +

∫ t

1

η(s)ℓ(s)
ds

s
. (66)

Conversely, if ℓ satisfies (66) then (65) holds. We first prove the following
useful bound. For any ǫ > 0, there exists a constant C such that for any
t ≥ 1 and all a > 0,

ℓ(at)

ℓ(t)
≤ Ca±ǫ , (67)

where we denote a±ǫ = max(aǫ, a−ǫ). Indeed, if at ≥ 1, then, η∗ being
decreasing, we have

ℓ(at)

ℓ(t)
≤ C exp

∫ a∨1

a∧1

η∗(ts)

s
ds ≤ C exp

∫ a∨(1/a)

1

η∗(ts)

s
ds ≤ Ca±ǫ ,

since the latter function is slowly varying by Karamata’s representation theo-
rem. If at < 1, then ℓ(at) ≤ 1 and ℓ−1(t) = o(tǫ) = o(a−ǫ). This proves (67).
Next, applying (66) and (67), for any ǫ > 0 and 0 < a < b, we have

∣

∣

∣

∣

ℓ(bt)

ℓ(at)
− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ b

a

η(st)
ℓ(st)

ℓ(at)

ds

s

∣

∣

∣

∣

≤ Ca±ε
∣

∣

∣

∣

∫ b

a

η(st)
ℓ(st)

ℓ(t)

ds

s

∣

∣

∣

∣

≤ Cη∗(at)

∫ b

a

s±2ǫ−1 ds ≤ Cη∗(at) a±ǫ−1(b− a) . (68)

Applying (67) and (68), we also obtain

∣

∣

∣

∣

ℓ(at)

ℓ(t)
− 1

∣

∣

∣

∣

≤ Cη∗((a ∧ 1)t) a±ǫ . (69)

For ǫ > 0 and 0 < a < b, we have

P(at < Z ≤ bt)

P(Z > t)
− (a−α − b−α) = a−α

{

ℓ(at)

ℓ(t)
− 1

}

− b−α
{

ℓ(bt)

ℓ(t)
− 1

}

= (a−α − b−α)

{

ℓ(at)

ℓ(t)
− 1

}

− b−α
ℓ(at)

ℓ(t)

{

ℓ(bt)

ℓ(at)
− 1

}

,
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which yields

∣

∣

∣

∣

P(at < Z ≤ bt)

P(Z > t)
− (a−α − b−α)

∣

∣

∣

∣

≤ Cη∗((a ∧ 1)t)aα−1±ǫ(b− a) .

Proof of Proposition 2.8. Define the function σ̄ by σ̄(x) = σ(x) ∨ 1. Apply-
ing (61) with (1 + s)/σ(x) instead of z and un for t, we get

|Gn(x, s) − σα(x)T (s)| =

∣

∣

∣

∣

P(σ(x)Z > un(1 + s))

P(Z > un)
− σα(x)T (s)

∣

∣

∣

∣

≤ Cη∗(un)σ̄(x)α(β+1)+ǫ(1 + s)−α(β+1)+ǫ . (70)

This implies, for all p such that E[σpα(β+1)+ǫ(X)] <∞, that

E

[

sup
s≥1

|Gn(X, s) − T (s)σα(X)|p
]

= O({η∗(un)}p) .

This proves (22) which in turn implies (21) since Tn(s) = F̄ (un)
F̄Z(un)

E[Gn(X, s)].

In order to prove that F̄Y ∈ 2RV (−α, η∗), denote ℓ̃(y) = yαP(Y > y). We
will prove that there exists a measurable function η̃ such that (66) holds with
ℓ̃ and η̃. Denote ξ = σ(X). Applying (66) and using the independence of ξ
and Z, we have

ℓ̃(y) = E[ξαℓ(y/σ)] = ℓ(1)E[ξα] + E

[

ξα
∫ y/ξ

1

η(s)ℓ(s)
ds

s

]

= ℓ(1)E[ξα] + E

[

ξα
∫ y

ξ

η(s/ξ)ℓ(s/ξ)
ds

s

]

= E

[

ξα
{

ℓ(1) −
∫ ξ

1

η(s/ξ)ℓ(s/ξ)
ds

s

}]

+ E

[

ξα
∫ y

1

η(s/ξ)ℓ(s/ξ)
ds

s

]

= E

[

ξα
{

ℓ(1) +

∫ 1

1/ξ

η(s)ℓ(s)
ds

s

}]

+

∫ y

1

E[ξαη(s/ξ)ℓ(s/ξ)]
ds

s

= E [ξαℓ(1/ξ)] +

∫ y

1

E[ξαη(s/ξ)ℓ(s/ξ)]
ds

s
= ℓ̃(1) +

∫ t

1

η̃(s)ℓ̃(s)
ds

s
,
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where we have defined

η̃(s) =
E[ξαη(s/ξ)ℓ(s/ξ)]

E[ξαℓ(s/ξ)]
=

E[ξαη(s/ξ)ℓ(s/ξ)/ℓ(s)]

E[ξαℓ(s/ξ)/ℓ(s)]
.

The denominator of the last expression is bounded away from zero. Indeed,
let ǫ > 0 be such that P(ξ ≥ ǫ) > 0. Then

E[ξαℓ(s/ξ)/ℓ(s)] =
P(ξZ > s)

P(Z > s)
≥ P(ξ ≥ ǫ)P(Z > s/ǫ)

P(Z > s)
.

Since Z has a regularly varying tail, it holds that infs≥0 P(Z > s/ǫ)/P(Z >
s) > 0. This proves our claim. Thus, applying (59) with the regularly varying
function η∗, we get, for ǫ > 0 such that exp[ξα−ρ+ǫ] <∞,

|η̃(s)| ≤ Cη∗(s)E[ξα{η∗(s/ξ)/η∗(s)}{ℓ(s/ξ)/ℓ(s)}] ≤ Cη∗(x)E[ξα(ξ ∨ 1)−ρ+ǫ] .

Thus ℓ̃ satisfies equation (66) with η̃ such that |η| ≤ Cη∗, thus Y ∈ 2RV (−α, η∗).
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