
HAL Id: hal-00447845
https://hal.science/hal-00447845v1

Preprint submitted on 16 Jan 2010 (v1), last revised 21 May 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Premia and Nsp for Constructing a Risk
Management Benchmark for Testing Parallel

Architecture
Jean-Philippe Chancelier, Jérôme Lelong, Bernard Lapeyre

To cite this version:
Jean-Philippe Chancelier, Jérôme Lelong, Bernard Lapeyre. Using Premia and Nsp for Constructing
a Risk Management Benchmark for Testing Parallel Architecture. 2009. �hal-00447845v1�

https://hal.science/hal-00447845v1
https://hal.archives-ouvertes.fr

Using Premia and Nsp for Constructing

a Risk Management Benchmark for Testing Parallel

Architecture

December 31, 2009

Jean-Philippe Chancelier∗,†, Bernard Lapeyre‡ and
Jérôme Lelong§

Université Paris-Est, CERMICS, École des Ponts, 6 & 8 av. B. Pascal, 77455
Marne-la-Vallée, France

Abstract

Financial institutions have massive computations to carry out overnight which are very
demanding in terms of the consumed CPU. The challenge is to price many different
products on a cluster-like architecture. We have used the Premia software to valuate the
financial derivatives. In this work, we explain how Premia can be embedded into Nsp, a
scientific software like Matlab, to provide a powerful tool to valuate a whole portfolio.
Finally, we have integrated an MPI toolbox into Nsp to enable to use Premia to solve a
bunch of pricing problems on a cluster. This unified framework can then be used to test
different parallel architectures.

1. Introduction: The context of risk evaluation

Banking legislation (Bale II[1][4]) imposes to financial institutions some daily evaluation of the
risk they are exposed to because of their market positions. The main investment banks own
very large portfolios of contingent claims (several thousands of claims, 5000 being a realistic
estimation).

∗Correspondence to: Jean-Philippe Chancelier, Université Paris-Est, CERMICS, École des Ponts, 6 & 8 av. B.
Pascal, 77455 Marne-la-Vallée, France
†E-mail: jpc@cermics.enpc.fr
‡E-mail: bl@cermics.enpc.fr
§Laboratoire Jean Kuntzmann, Université de Grenoble et CNRS, BP 53, 38041 Grenoble Cédex 9, FRANCE.
E-mail : jerome.lelong@imag.fr
Contract/grant sponsor: ; contract/grant number:

1

For a given contingent claim and model parameters, the evaluation of the price (or other
risk features as delta, gamma, vega, . . .) requires a computation time which can greatly vary,
from a few millisecond (as for a standard option in the Black and Scholes model) to dozens of
minutes (as for American options price on a large number of underlying assets).

A model is specified by several parameters: volatility, interest rate, . . . and, in the context of
risk evaluation, it is necessary to price the contingent claims for various values of these model
parameters to measure its sensibility to the parameters. As a consequence, a huge number
of atomic computations (around 106) is necessary to evaluate the risk of the whole portfolio.
These computations must be done on a daily basis to provide an evaluation of the position
of the bank to the risk control organism. They are so complex that the financial institutions
often need to use very large computer clusters with up to several thousands of nodes.

Being able to have a free access to both, a realistic portfolio descriptions and parameters
for the models would be especially useful for benchmarking (software/hardware) parallel
architectures. Unfortunately, in our knowledge, no such information exists mostly because of
obvious confidentiality considerations. Moreover, the evaluation of a complex portfolio needs
a lot of complex algorithms which are seldom available in a unified for free.

In this work, we propose a software architecture for constructing realistic models and
portfolios based on freely available softwares: Premia, Mpi and Nsp. The Premia[8] software
will be the library used to compute the prices of the financial products and MPI will be the
tools used to control parallelism. Finally, we use a software, with a Matlab like syntax, Nsp [2]
to provide a unified access to MPI and Premia primitives. Using this unified framework, we are
able to generate parametrised benchmarks, to save them and to control the parallel architecture
(grids, clusters,. . .).

We emphasise that Nsp and some implementations of MPI are available under the GPL
license and that Premia is freely available for test and experimentation purposes. Moreover,
these software have been compiled on the most widely used operating systems (Windows,
Linux, Mac OS X) and their deployment on a cluster is quite easy. Such an environment is a
step to define standardised benchmarks useful for the evaluation and, we hope, the conception
of parallel architectures.

2. Premia: a library for numerical computations in finance

Premia is devoted to the computation of prices and hedges for derivatives (see [7] for an
introduction), which is a major issue for financial institutions. It is a research project dedicated
to the development of algorithms and scientific documentation for option pricing, hedging and
model calibration. It is developed in the framework of the MATHFI research team uniting
scientists working in probability and finance from INRIA and École des Ponts.

This project keeps track of the most recent advances in the field of computational finance in
a well documented way. It focuses on the implementation of numerical analysis techniques for
both probabilistic and deterministic numerical methods. An important feature of the Premia
platform is its detailed documentation which provides extended references in option pricing.
Besides being a single entry point for accessible overviews and basic implementations of various

2

numerical methods, the aim of the Premia project is to be a powerful testing platform for
comparing different numerical methods to each other.
Premia is developed in interaction with a consortium of financial institutions or departments

presently composed of : Calyon, Natixis, Société Générale, Raiffeisen Zentralbank, Bank
Austria. The members of the consortium support the development of Premia and help to
determine the directions in which the project should evolve.
Premia is a fairly complete library with regards to what is currently used in advanced finance.

For an exhaustive presentation see[8]. In its current public release, it contains finite difference
algorithms, tree methods and Monte Carlo methods for pricing and hedging European and
American options on equities in several models going from the standard Black-Scholes model
to more complex models such as local and stochastic volatility models and even Lévy models.
Sophisticated algorithms based on quantisation techniques or Malliavin calculus for European
and American options are also implemented. More recently, various interest rate and credit
risk models and derivatives have been added.

3. Tools

3.1. Nsp

Nsp is a Matlab like Scientific Software Package developed under the GPL license. It is a
high-level programming language which can be used as a scripting language which gives
an easy access to efficient numerical routines. It can be used as an interactive computing
environment or as a programming language. It supports imperative programming and features
a dynamic typing system and automatic memory management. It contains internally a class
system with simple inheritance and interface implementation, this class system is visible at
the Nsp programming level but not extendable at the Nsp level. When used as an interactive
computing environment, it comes with online help facilities and an easy access to GUI facilities
and graphics.
A large set of libraries are available and it is moreover easy to implement new functionalities.

It requires to write some wrapper code also called interfaces to give glue code between the
external library and Nsp internal data. The interface mechanism can be either static or
dynamic. Using dynamic functionalities we are able to build toolboxes.
Nsp shares many paradigms with other Matlab like scientific softwares as for example:

Matlab, Octave, ScilabGtk[3][5] and also with scripting languages such as Python for instance.
Two typical toolboxes were used in this work. The first one is the Nsp Premia toolbox which

gives access at Nsp level to the Premia financial library. The second one is a MPI interface,
which gives at Nsp level access to mainly all MPI-2 functions.

3.2. MPI toolbox for Nsp

Having a direct access to MPI functions within a scripting language can be very useful for
many aspects. The main advantage is that it gives an easy way to get familiar to the large set of
MPI functions which can be tested interactively. It also hides the tedious work of packing and

3

unpacking complex data since a scripting language contains high level data and the packing
and unpacking of such data can be hidden to the user.

Similar toolboxes are available. As for example, Mpitb[6] is a toolbox developed initially by
Javier Fernández Baldomero and Mancia Anguita which provides such a full MPI interface
for the Matlab and Octave languages. The Nsp MPI toolbox follows the same philosophy and
was implemented using the Nsp interface language. Note however that the Matlab version of
the Mpitb toolbox is implemented through wrapper code which are called mexfiles and since
a mexlib interface library is available in Nsp it was possible to make the Matlab toolbox work
in Nsp with mainly no additional work. But, for maximum efficiency and flexibility the MPI
function interfaces have been directly written using the Nsp interface API.

Now, we give some examples to highlight facilities that are given inside Nsp to access MPI
primitives. It is possible to launch a master Nsp and then to spawn slaves Nsp, this is done by
using the MPI_Comm_spawn primitive as shown on Fig. 1:

MPI_Init();

COMM =mpicomm_create(’SELF’);

INFO_NULL=mpiinfo_create(’NULL’);

cmd = "exec(’’src/loader.sce’’);MPI_Init();";

cmd = cmd + "parent=MPI_Comm_get_parent();";

cmd = cmd + "[NEWORLD]=MPI_Intercomm_merge(parent,1);";

nsp_exe = getenv(’SCI’)+’/bin/nsp’;

args=["-name","nsp-child","-e", cmd];

[children,errs]= MPI_Comm_spawn(nsp_exe,args,1,INFO_NULL,0,COMM);

// child will execute cmd

[NEWORLD] = MPI_Intercomm_merge (children, 0);

Figure 1. Mpi primitives at Nsp level

The code given in Fig. 1 will start a new Nsp which will execute the transmitted cmd to start
interacting with the master through a merged communicator. Note that the interface between
Nsp and MPI does no just consists in a set of functions but also on new Nsp object devoted to
MPI. For example mpicomm_create creates a new Nsp communicator object which internally
contains a MPI communicator. Since starting a set of Nsp slaves is a classic task, the previous
given code can be writ en in a Nsp function NSP_spawn and it is then possible to start n slaves
by the simple Nsp command

NEWORLD=NSP_spawn(n);

It is possible to transmit and receive almost all the Nsp objects using the MPI_Send_Obj and
MPI_Recv_Obj Nsp functions. These two functions use the fact that almost all the Nsp objects
can be serialized in a Serial object. The two functions MPI_Send_Obj and MPI_Recv_Obj use
internal serialization and packing to transparently transmit Nsp Objects.

4

-nsp->A=list(’string’,%t,rand(4,4));

-nsp->MPI_Send_Obj(A,rank,TAG,MCW)

-nsp->B=MPI_Recv_Obj(rank,TAG,MCW)

B = l (3)

(

(1) = s (1x1)

string

(2) = b (1x1)

| T |

(3) = r (4x4)

| 0.89259 0.69284 0.10172 0.85434 |

| 0.08482 0.67768 0.63584 0.16133 |

| 0.25667 0.42840 0.73767 0.29179 |

| 0.65078 0.37258 0.67447 0.23511 |

)

It gives us a very easy way to transmit a Premia problem to a Nsp slave. Moreover it is easy
to transmit jobs to Nsp slaves as Nsp strings.

For standard objects such as non sparse matrices, cells, lists and hash tables it is possible
to use MPI_Send directly or combined with the MPI_Pack function.

A=[%t,%f];

B={’foo’,[1:4],’bar’,rand(100,100)};

H=hash_create(A=A,B=B);

P=MPI_Pack(H,MCW),

MPI_Send(P,randk,TAG,MCW)

Receiving the transmitted packed data is also easy. A mpibuf object can be created at Nsp
level with a proper size and be given to the MPI_Recv function for receiving the transmitted
packed data. A call to MPI_Unpack will then recreate a Nsp object.

[stat]=MPI_Probe(-1,-1,MCW)

// size in characters

[elems]=MPI_Get_elements(stat,’’)

B=mpibuf_create(elems); // create a receive buffer

...

stat=MPI_Recv(B,randk,TAG,MCW);

H1=MPI_Unpack(B,MCW);

Moreover, it is possible to serialize objects at Nsp level and transmit them. Note that in
that case MPI_Recv_Obj will unseals directly the Serial object received.

5

-nsp->A=sparse(rand(2,2));

-nsp->S=serialize(A);

-nsp->MPI_Send_Obj(S,rank,TAG,MCW)

...

-nsp->B=MPI_Recv_Obj(rank,TAG,MCW);

-nsp->B.equal[A]

ans = b (1x1)

| T |

The serialization of objects is very similar to the binary format used to save and load
objects in Nsp since serialization just redirects the binary savings of objects to a string buffer.
Therefore, it is possible to save a set of objects in a file and then directly load the file content
in a serialized object. It gives us an efficient way of transmitting Nsp data stored in a file to
Mpi slaves. We illustrate in the next script the sload function :

-nsp->H.A = rand(4,5);

-nsp->H.B = rand(4,1);

-nsp->save(’/tmp/saved.bin’,H);

-nsp->S=sload(’/tmp/saved.bin’) // we directly create a Serial object

S = <302-bytes> serial

-nsp->H1=S.unserialize[];

-nsp->H1.equal[H]

ans = b (1x1)

| T |

Figure 2. The sload function

We have recently introduced in Nsp the possibility to compress the serialized buffer used in
serialized objects. The unserialize method can then transparently manage unserialization
of compressed and non compressed Serial objects. Using this facility to test if it can improve
the Mpi transmission of Premia problems was not studied in this paper but it is left for future
developments and tests. In some Premia problems, a large set of data contained in a file has
to be embedded and transmitted with the problem, we imagine that compressed serialization
could be useful in those cases. Moreover, compression, which takes most of the CPU time, can
be done off line when preparing a set of problems.

-nsp->A=1:100;

-nsp->S=serialize(A)

S = <842-bytes> serial

-nsp->S1=S.compress[]

S1 = <248-bytes> serial

-nsp->A1=S1.unserialize[];

6

Figure 3. Premia/Nsp interface

-nsp->A1.equal[A]

ans = b (1x1)

| T |

A large file called TUTORIAL.sce can be used to interactively to learn MPI in general and
also its Nsp interface. This file is a simple Nsp adaptation of the excellent Mpitb tutorial for
Matlab [6].

3.3. Premia toolbox for Nsp

For long, the only way to use Premia was from the command line. With the growing of Premia
every year, the need of real graphical user interface has become more and more pressing.
The idea of embedding the Premia library in a Matlab like Scientific Software has come up
quite naturally. Unlike a standalone graphical user interface, embedding Premia into Matlab
like Scientific Software provides two ways of accessing the library either through the scripting
language or using the graphical capabilities of the software (see Figure 3). The possibility
of accessing the Premia functions directly at the interpreter level makes it possible to make
Premia interact with other toolboxes. Since the license of Premia gives right to freely distribute
the version of Premia two year older that the current release, it was important that the scientific
software used can be freely obtained and has extensive graphical feature. Nsp fulfilled all these
conditions.

The inheritance system of Nsp enables to easily add new objects in the interpreter. This is
how we introduced a new type named PremiaModel, through which the wide range of pricing
problems described in Premia and their corresponding pricing methods are made available

7

from Nsp. The results obtained in a given problem can be used in any post-treatment routines
as any other standard data.

For practitioners, the daily valuation of a complex portfolio is a burning issue to which
we tried to answer using MPI/Nsp/Premia. Given a bunch of pricing problems to be solved,
which are implemented in Premia, how can we make the most of Nsp and the two previously
described toolboxes? First, we needed a way to describe a pricing problem in a way that is
understandable by Nsp so that it can create the correct instance of the PremiaModel class.
We implemented the load and save methods for such an instance relying on the XDR library
(eXternal Data Representation). This way, any PremiaModel object can be saved to a file in a
format which is independent of the computer architecture; these files can be reloaded later by
any Nsp process. Then, a bunch of pricing problems can be represented by a list of files created
either from the scripting language or using the graphical interface. Let us give an example of
how to create such a file. To save the pricing of an American call option in the one dimensional
Heston model using a finite difference method, one can use the following instructions

P = premia_create()

P.set_asset[str="equity"]

P.set_model[str="Heston1dim"]

P.set_option[str="PutAmer"]

P.set_method[str="MC_AM_Alfonsi_LongstaffSchwartz"]

save(’fic’, P)

Creating an instance of the PremiaModel class and setting its parameters are very intuitive.
The object saved in the file fic can be reloaded using the command load(’fic’).

To solve this list of problems, we could use a single Nsp process but as the problems are
totally independent it is quite natural to try to solve them in parallel using the MPI toolbox
presented in Section 3.2. The master process reads all the files and creates the corresponding
instances of the PremiaModel class. Then, each instance is serialized and sent to a given remote
node using MPI’s communication functions.

4. Practical experiments

A typical usage example of our MPI/Nsp/Premia framework is the evaluation of a large
portfolio consisting of hundreds or even thousands of options to be priced. The pricing of
a single option is not carried out using parallel computations but instead each option is priced
on a single processor and because we have many processors at hand we can price several
options simultaneously. Although load-balancing for parallel computation is a very active field
of research, we have restricted to a simplified “Robbin Hood” strategy for our tests. The code
of Fig. 4 and Fig. 5, which enables to price a portfolio using a cluster in a way that the load of
the cluster is well balanced between the different nodes, describes the load-balancing strategies
we used in all our examples. First, the master sends one job to each slave and as soon as a slave
finishes its computation and sends its answer back, it is assigned a new job. This mechanism
goes on until the whole portfolio has been been treated.

8

We considered several examples of portfolio described in Sections 4.1, 4.2, 4.3. In Section 3.3,
we explained how a pricing problem can be saved in a file relying on the XDR library, henceforth
in our examples, a portfolio will be a collection of files, each file describing a precise pricing
problem.

In the following tables, the columns Time give the computation time in seconds whereas the
columns Speedup ratio give the ratio CPU time for 1 CPUs

n × CPU time for n CPUs
. When this ratio becomes close to

1, it indicates that a linear speedup has been achieved. The columns are labelled according
to the way the PremiaModel objects are passed from the master to a slave. There are three
different labels : full load, NFS, serialized load. The label full load means that the masters reads
the content of the file describing the PremiaModel object, then creates the object, serializes
it, packs it and sends it to a slave, which in turn performs the different operations the other
way round to recreate the PremiaModel object. This way of transmitting objects highlights
that the object created by the master would actually be useless if we could create a serialized
PremiaModel object directly from the file in which it is saved. Going directly from the file to
the serialized object without actually creating the object is precisely the purpose of the sload
function (see Fig. 2 for a description of the function). This more direct way of transmitting
an object is referred to by the serialized load label in the tables below. The cluster on which
all the tests were carried out used a NFS file system, which makes it possible for the master
to only send the name of the file to be read and let the slave read the file content instead of
creating the object and sending it to the slave. The use of the NFS file system is referred to
by the NFS label in the different tables.

All our numerical tests were carried out on a 256−PC cluster of SUPELEC. Each node
is a dual core processor : INTEL Xeon-3075 2.66 GHz with a front side bus at 1333Mhz.
The two cores of each node share 4GB of RAM and all the nodes are interconnected using
a Gigabit Ethernet network. In none of the experiments, did we make the most of the dual
core architecture since our code is one threaded. Hence, in our implementation a dual core
processor is actually seen as two single core processors.

4.1. Premia’s regression tests

The first example we studied has been brought to our knowledge by the Premia development
team which uses a bunch of non-regression tests to make sure that a change in the source
code does not alter the behaviour of any algorithms. These non-regression tests are made of a
single instance of any pricing problem which can be solved using Premia — a pricing problem
corresponds to the choice of a model for the underlying asset, a financial product and a pricing
method for computing the pricing and sometimes also the delta (first derivative of the option
price with respect to the spot price). Several sets of these tests exist with different parameters
and are run at least once a day. This motivated us to implement a parallel version of these non-
regression tests; the speedups we managed to achieved are reported in Tab. I, which shows that
for a number of nodes less than 16 we could achieve an almost linear speedup. The pricing
problems are sent using the sload method but changing the way of sending problems has
pretty much no effect on the computation time and speedup ratio because the communication
time is negligible compared to the computation time of a single pricing problem. However,
the decreasing of the speedup ratio when more than 16 nodes are used indicates that the

9

Table I. Speedup table for the non-regression tests of Premia.

number of Time Speedup ratio
CPUs

2 838.004 1
4 285.356 0.9789
6 172.146 0.973597
8 124.78 0.959407
10 97.1792 0.958142
16 67.9677 0.821963
32 45.6611 0.592023
64 34.2828 0.387998
96 31.4682 0.280317
128 30.5574 0.215937
160 16.1006 0.327347
192 30.7013 0.142908
224 30.5024 0.123199
256 31.3172 0.104935

computation time of a single problem is too short. One way of improving the speedup ratio
would be to create bunches of several pricing problems and send them all together which would
considerably reduce the latency induced by communications : it is always advisable to send a
single big message rather several smaller messages.

4.2. A toy portfolio for discriminating communication strategies

The purpose of this second example is to test the different ways of sending pricing problems. For
this we considered a portfolio of 10000 vanilla options which can be priced using closed-form
formula. A single price computation is then very fast and the time spent in communication
is easily highlighted. From the comparison of the second and sixth columns of Tab. II, it
clearly appears that it is always better to use the sload method which consists in creating
the serialized object directly from the file containing the object rather than first creating the
object and then serializing it. The computation times obtained when relying on the NFS file
system for sending the pricing problems are more difficult to analyze. Until the number of
nodes used is less than 12, the sload method performs better than the use of NFS but when
the number of nodes keeps on increasing the use of the NFS file system becomes faster. One
should keep in mind that the NFS file system uses a caching system which makes the following
access to the same files much faster than the first one. This remark explains the huge difference
in computation time between 2 and 4 nodes in the fourth column of Tab. II. The comparison
with the NFS file system may then be highly biased because of this and would probably not so
much out-perform the sload method on a clean run with a new portfolio. The only objective
comparison is between the full load and serialized load, the latter is always the faster.

10

Table II. Comparison of the different ways of carrying out the communications.

number of Time Speedup ratio Time Speedup ration Time Speedup ratio
CPUs full load full load NFS NFS serialized load serialized load

2 8.85665 1 16.3965 1 7.17891 1
4 3.55046 0.831503 4.91225 1.11263 1.73774 1.37706
8 3.86341 0.327492 2.52961 0.925974 1.81472 0.565132
10 4.06038 0.24236 2.08968 0.871824 1.87771 0.424802
12 3.9264 0.205061 1.77673 0.838952 1.88571 0.346091
14 3.9624 0.171937 1.57676 0.799912 1.81372 0.30447
16 4.05038 0.145775 1.40579 0.777572 1.9367 0.247118
18 3.9524 0.131813 1.27181 0.758371 1.9497 0.216591
20 4.13337 0.112775 1.17682 0.73331 1.87272 0.201759
24 3.77643 0.101967 1.02784 0.69358 1.84772 0.168925
28 3.9504 0.0830357 0.928859 0.653789 1.77273 0.149986
32 4.35934 0.0655371 0.848871 0.623086 1.83072 0.126495
36 4.05938 0.0623364 0.786881 0.595353 1.75773 0.116691
40 4.06538 0.0558604 0.832873 0.504787 1.81572 0.101378
45 4.12437 0.0488044 0.768884 0.484661 1.78273 0.0915209
50 4.19136 0.0431239 0.738887 0.452874 1.70474 0.0859417

4.3. A realistic portfolio valuation

This last example comes from the risk evaluation which every financial institution has to carry
out on a daily basis. Our aim was to create a large portfolio representative of the numbers
of pricing problems and of the computation cost. These portfolios are really challenging for
parallel computations because the time needed to compute a single price varies a lot between
the different financial derivatives composing the portfolio.

4.3.0.1. Portfolio description We tried to accurately reproduce the daily computation load
every bank has to face for the evaluation of its risk exposure. Even though, Premia is
able to price derivatives on many different kinds of underlying assets such as interest rates,
commodities, credits or even inflation, we have restricted to equity derivatives for our tests.
Therefore, we built a portfolio of 7931 contingent claims on stocks.
Among the equity derivatives, the easiest to price are the so-called plain vanilla options

which are European call or put options in the Black & Scholes model; closed-form formulas
are available for their evaluation. Our portfolio contains 1952 such call options with maturities
quarterly distributed between 4 months and 8 years and strikes uniformly varying between
70% and 130% of the spot price with a step of 1%.
Some options such as the barrier options are more complex to price and partial differential

equation techniques are often used. Even though closed-form formula for their prices do exist
in the Black & Scholes model, they cannot be extended to more complex models whereas
partial differential equation (PDE) techniques are more widely applicable. We consider in our
portfolio 1952 call down and out options with maturities and strikes varying as in the previous

11

example. Because of the barrier clause in the option, the PDE must be solved with a very thin
time step, namely one time step every 2 days.
So far, we have only considered one dimensional products but many of them involve as many

underlyings as 40 (as for the Cac 40 index). These high dimensional products are very hard
to price and one has to resort to Monte Carlo techniques to evaluate these derivatives. We
usually use 106 samples for the Monte Carlo simulations. We have included 525 put options
on a 40 dimensional basket with regularly distributed maturities between 0.2 and 5 years with
a step of 0.2 year and strikes uniformly varying between 90% and 110% of the spot price with
a step of 1%.
Practitioners sometimes feel the need of using little more sophisticated models : the local

volatility models which are very close to the Black & Scholes model but in which the volatility
is not constant anymore but rather depends on the current time and stock price. In these
models, there are no more closed-form formula and Monte-Carlo methods are used instead.
We add 1025 call options in a local volatility model to our portfolio. The strikes vary from
80% to 120% of the spot price and the maturities are regularly distributed between 0.2 and 5
years with a step of 0.2 year.
Finally some options can be exercised at any time between the emission time and a fixed time

horizon : these options are called American options and can only be priced using American
Monte Carlo or PDE techniques. Both approaches are very computationally demanding. We
added to our portfolio 1952 American put options priced using PDE with the same parameters
as for the plain vanilla options. The rest of the portfolio is composed of 7 dimensional American
put options with regularly distributed maturities between 0.2 and 5 years with a step of 0.2
year and strikes uniformly varying between 90% and 110% of the spot price with a step of 1%.
These options are priced using American Monte Carlo techniques.
To give an insight of the computation costs of each type of options, one should keep in

mind that the pricing of plain vanilla options is almost instantaneous; the Monte Carlo and
PDE approaches for European options roughly demands the same amount of computations
(between 10 and 30 seconds); the evaluation of American products is much longer than any
other (between 30 and 60 seconds).

4.3.0.2. Experimental performances The computation times needed to price the whole
portfolio are fairly the same no matter how the objects are sent by the master process, see
Tab. III. Even a naive load balancing as the one described in Fig. 4 enables to achieve very
good speedup ratios as with 256 nodes, the speedup ratio is still better than 0.8. Keeping
increasing the number of nodes does not reduce the computation time accordingly because the
cost of an atomic pricing is definitely too small.

5. Conclusion

In this work, we explained how we could use Nsp with the two toolboxes MPI and Premia to
address the difficult problem of paralleling the valuation of a large portfolio. The use of Nsp
makes the paralleling very easy as all the code can be written in an intuitive scripting language.
For our examples, we chose a simplified Robbin Hood approach as far as load balancing is

12

Table III. Comparison of the different ways of carrying out the communications.

number of Time Speedup ratio Time Speedup ratio Time Speedup ratio
CPUs full load full load NFS NFS serialized load serialized load

2 5770.16 1 5799.66 1 5776.33 1
4 1980.35 0.971238 1939.46 0.996783 1925.29 1.00008
6 1154.05 0.999983 1161.25 0.998865 1157.22 0.998313
8 823.056 1.00152 828.07 1.00055 840.403 0.981897
10 641.166 0.999943 645.544 0.998239 641.096 1.00112
16 389.295 0.988139 389.097 0.993696 386.745 0.995716
32 187.441 0.993031 193.937 0.964676 189.354 0.984045
64 93.2008 0.982715 100.384 0.917062 94.7316 0.967868
96 61.5176 0.987335 69.7884 0.874774 63.1974 0.962119
128 46.7399 0.972068 54.8667 0.83232 47.6968 0.953585
160 38.4812 0.943068 41.9726 0.869039 41.1997 0.88178
192 31.5312 0.958107 35.7536 0.849278 33.5979 0.900132
224 27.2929 0.948056 31.3362 0.829948 31.5822 0.820171
256 24.4743 0.924566 28.2047 0.806382 27.8228 0.814163
320 26.1740 0.6911 26.7879 0.6760
384 20.0550 0.7512 22.5696 0.6682
512 19.7960 0.5704 20.1779 0.5602

concerned and it already provides very good speedups. One way of improving the speedups
would be to improve the load balancing mechanism. The first idea is to gather several pricing
problems and send them all together to reduce the communication latency. The bottle neck in
the approach we used in the examples is that the computation assigned to the first slave process
id done before the master has already assigned the last slave a job. One way of encompassing
this difficulty is to divide the nodes into sub-groups, each group having its own master. Then,
each sub-master could apply a naive load balancing but since it has fewer slave processes to
monitor the speedups would be better.

13

if ~MPI_Initialized() then MPI_Init();end

MPI_COMM_WORLD=mpicomm_create(’WORLD’);

[mpi_rank] = MPI_Comm_rank (MPI_COMM_WORLD);

[mpi_size] = MPI_Comm_size (MPI_COMM_WORLD);

if mpi_rank <> 0 // Slave part

while %t then

name = MPI_Recv_Obj(0,TAG,MPI_COMM_WORLD); // receives the name

if name == ’’ then break; end

[stat]=MPI_Probe(-1,-1,MPI_COMM_WORLD)

[elems]=MPI_Get_count(stat);

pack_obj=mpibuf_create(elems); // creates a buffer to store the packed obejct

stat=MPI_Recv (pack_obj, 0, TAG, MPI_COMM_WORLD); // receives the packed object

ser_obj = MPI_Unpack (pack_obj, MPI_COMM_WORLD); // unpack

P = unserialize(ser_obj); // unserialize

P.compute[]; L = P.get_method_results[];

MPI_Send_Obj(L(1)(3),0,TAG,MPI_COMM_WORLD); // sends the results back

end

else // Master part

Nt= size(Lpb, ’*’);

nb_per_node = floor (Nt / (mpi_size-1));

slv = 1;

for pb=Lpb(1:mpi_size-1)’// send

send_premia_pb (pb, slv); slv = slv + 1;

end

res=list();

Lpb(1:mpi_size-1)=[];

for pb=Lpb’

[sl, result] = receive_res ();

res.add_last[list(sl, result)];

send_premia_pb (pb, sl);

end

for slv=1:mpi_size-1 // we still have mpi_size-1 receives to perform

[sl, result] = receive_res ();

res.add_last[list(sl, result)];

end

for slv=1:mpi_size-1 // tell all slaves to stop working

MPI_Send_Obj([’’],slv,TAG,MPI_COMM_WORLD);

end

save(’pb-res.bin’,res);

end

Figure 4. A sample script for creating a parallel portfolio pricer

14

// Loads a Premia object, serializes and packs it before sending it to the

// process wih number slv

function send_premia_pb(name, slv)

load(name);

ser_obj = serialize (P)

MPI_Send_Obj (name,slv,TAG,MPI_COMM_WORLD); // send name

pack_obj = MPI_Pack (ser_obj, MPI_COMM_WORLD); // pack

MPI_Send (pack_obj,slv,TAG,MPI_COMM_WORLD); // send the packed object

endfunction

function [sl, result] = receive_res ()

[stat] = MPI_Probe(-1,-1,MPI_COMM_WORLD);

sl = stat.src;

result = MPI_Recv_Obj(sl,TAG,MPI_COMM_WORLD);

endfunction

Figure 5. Sending a Premia object

15

REFERENCES

1. Basel II: Revised international capital framework. http://www.bis.org/bcbs.
2. Nsp. http://cermics.enpc.fr/~jpc/nsp-tiddly/mine.html.
3. ScilabGtk: a Gtk+ version of Scilab. http://www.scilabgtk.org.
4. Basel Committee on Banking Supervision. International convergence of capital measurement and capital

standards. Technical report, Bank for International Settlements, 2006.
5. S. Campbell, J.-P. Chancelier, and R. Nikoukhah. Modeling and Simulation in Scilab/Scicos. 2006. ISBN:

978-0-387-27802-5.
6. Javier Fernández Baldomero and Mancia Anguita. Mpi toolbox (mpitb). Technical report, Depto. de

Arquitectura y Tecnoloǵıa de Computadores, ETSI Informática, Universidad de Granada, 2000–2008.
http://atc.ugr.es/javier-bin/mpitb.

7. D. Lamberton and B. Lapeyre. Introduction to stochastic calculus applied to finance. Chapman &
Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton, FL, second edition, 2008.

8. MathFi Research Group. A platform for pricing financial derivatives. Technical report, Inria and Université

Paris Est, CERMICS, École de Ponts, 2008. http://www-rocq.inria.fr/mathfi/Premia.

16

http://www.bis.org/bcbs
http://cermics.enpc.fr/~jpc/nsp-tiddly/mine.html
http://www.scilabgtk.org
http://atc.ugr.es/javier-bin/mpitb
http://www-rocq.inria.fr/mathfi/Premia

