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Abstract— A new approach for feature extraction from time

based on a piecewise regression model [14][17][18]. Piece-

series is proposed in this paper. This approach consists of a wise regression is a segmentation method providing a par-

specific regression model incorporating a discrete hidderobistic
process. The model parameters are estimated by the maximum
likelihood method performed by a dedicated Expectation Maxk
mization (EM) algorithm. The parameters of the hidden logigic
process, in the inner loop of the EM algorithm, are estimated
using a multi-class Iterative Reweighted Least-Squares RLS)
algorithm. A piecewise regression algorithm and its iteraive
variant have also been considered for comparisons. An ex-
perimental study using simulated and real data reveals good
performances of the proposed approach.

I. INTRODUCTION

tition of the data intoK segments, each segment being
characterized by its mean curve (constant, polynomial, ...
and its variance in the Gaussian case. Under this type of
modeling, the parameters estimation is generally based on
a global optimization using dynamic programming [2] like
Fisher’s algorithm [3]. This algorithm optimizes an adekti
criterion representing a cost function over all the segsent
of the signal [16][17]. However, the dynamic programming
procedure is known to be computationally expensive. An
iterative algorithm can be derived to improve the running

N the context of the predictive maintenance of the frenctime of Fisher’s algorithm as in [19]. This iterative appcha

railway switches (or points) which enable trains to bés a local optimization approach estimating simultanepusl
guided from one track to another at a railway junction, wehe regression model parameters and the transition points.
have been brought to extract features from switch opersitiomhese two approaches will be recalled in our work, where the
signals representing the electrical power consumed d@ingsecond one will be extended to supposing different varisnce
point operation (see Fig. 1). The final objective is to exploifor the various segments instead of using a constant varianc

these parameters for the identification of incipient faults
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Fig. 1. Example of the electrical power consumed during atpaperation.

for all the segments. Other alternative approaches aralbase
on Hidden Markov Models [9] in a context of regression
[10] where the model parameters are estimated by the Baum-
Welch algorithm [8].

The method we propose for feature extraction is based on
a specific regression model incorporating a discrete hidden
process allowing for abrupt or smooth transitions between
various regression models. This approach has a connection
with the switching regression model introduced by Quandt
and Ramsey [13] and is very linked to the Mixture of Experts
(ME) model introduced by Jordan and Jacobs [11] by the
using of a time-dependent logistic transition functioneTh
ME model, as discussed in [15], uses a conditional mixture
modeling where the model parameters are estimated by the
Expectation Maximization (EM) algorithm [1][5].

This paper is organized as follows. Section 2 recalls the
piecewise regression model and two techniques of parameter

The switch operations signals can be seen as time sergstimation using a dynamic programming procedure: the
presenting non-linearities and various changes in regimmethod of global optimization of Fisher and its iterative
Basic linear regression can not be adopted for this typegef sivariant. Section 3 introduces the proposed model and sectio
nals because a constant linear relationship is not adafaged. 4 describes the parameters estimation via the EM algorithm.
alternative to linear regression, some authors use appesacThe fifth section is devoted to the experimental study using



simulated and real data.

Letx = (z1,...,z,) ben real observations of a signal or
a time serie where; is observed at time;. The piecewise

PIECEWISE REGRESSION

regression model supposes that the signal presents unknown

transition points whose indexes can be denoted+by=
(71, -y YK+1) With 41 = 0 andyx+1 = n. This defines a
partition P, x of the time serie intdX’ segments of lengths
ni,...,ng such that:

Pn,KZ{wl,..

with ¢, = {$Z|Z S Ik} and I, —]’yk,’ykJrl]

(1)
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Maximizing this log-likelihood is equivalent to minimizinwith
respect toyy and~ the criterion
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B. Fisher's algorithm for estimating the parameters of a
piecewise regression model

The optimization algorithm of Fisher is an algorithm based o
dynamic programming, providing the optimal partition oétHata

Thus, the piecewise regression model generating the Slgfﬂ)@' minimizing an additive criterion [3][17][16]. This algithm

x is defined as follows:
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where 3,, is the (p + 1)-dimensional coefficients vector
of a p degree polynomial associated to th& segment,
ke{l,....,K}, r; = (1,t;,...,(t;)?)T is the time depen-

dent (p 4+ 1)-dimensional covariate vector associated to theith c(yi, vi41) =
parameter3, and thee; are independent random variables

distributed according to a Gaussian distribution with zero
mean and unit variance representing an additive noise on

each segment.

A. Parameter estimation

minimizes the criterionJ or equivalently minimizes, with respect
to ~, the criterion
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T being the regression matrix associated

@ = [Ty 415 Ty ]

Under this model, the parameters estimation is performé@ x. and

by maximum likelihood. We assume a conditional indepen-
dence of the data between the segments, and the data within
a segment are also supposed to be conditionally independent

1 Yk+1 T
o = — > (mi—Br)? ©
ne .
=7+l

Thus, according to the model (2), the log-likelihood of theu being the number of points of the segmént

aﬁK,0_17---,0'%<) a.nd the

,7k+1) Characterizing the

parameter vectorp = (B4,...
transition points~y (71,

It can be observed that the criteri@lix (v) is a sum of cost
c(vk,ve+1) over the K segments. Therefore, due to the additivity
of this criterion, its optimization can be performed usmgyamamlc

pleceW|se regressmn model is a sum of local Iog |Ike|l|’E)O(brogramm|ng procedure [16][2]. Dynamic programming cdess

over all the segments and can be written as follows:

K
> (B ois @),

L(,v;x ()
k=1
where
Ck(By, s mx) =log p(xk; By, o7)
:z log N (z4; B} i, 07)
=
:——Z [logak+ Bkr) ]+Ck, (4)
i€l

is the log-likelihood within the segmerit and g is a constant.
Thus, the log-likelihood is finally written as:

= ——z z [logak +

k=1icly
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where C is a constant.

that an optimal partition of the data inf6 segments is the union of
an optimal partition intak’ — 1 segments and a set of one segment.
By introducing the cost

k
> min

=

b

(zi — Biri)’

k

Cr(a,b) = [1og o2 + ] (10)

1=a+1

with0 <a <b<nandk=1,..., K, the dynamic programming
optimization algorithm runs as follows:

1) Step 1. (Initialization): This step consists of computing
the cost matrixC(a,b) corresponding to one segmelat, b] for
0 < a < b < n. This cost matrix is computed as follows:

b

Ci(a,b) = min [log02+w]
(0 Pl o
b L ~T N2
-3 [10g&2+7(m ) | E—EEY
. &
i=a+1

where,@ and 62 are computed respectively according to the

equations (8) and (9) by replacingx, vx+1] by ]a, b]-



2) Step 2. (Dynamic programming proceduréhis step and thee; are independent random variables distributed according

consists of computing the optimal coS (a,b) for k =2,..., K  to a Gaussian distribution with zero mean and unit variaftgs
and0 < a < b < n using the following formula: model can be reformulated in a matrix form by
. K
Ci(ab) = min [Cioala,h) +Calh+ 1)), (12) =S Z(TBT + o) 16)
k=1

3) Step 3. (Finding the optimal partition)irom the optimal ) ) _ _
costs Cy (a, b), the optimal partition can be deduced (for morewhere Z; is a diagonal matrix whose diagonal elements are

details see appendix A in [17]). (Z1ks - - - Znk) With z;, = 1if 2 is generat}ad by thkt" regression
While the Fisher algorithm provides the global optimum,sit i model ando otherwise, T = |:r17«~7rn:| is the [n x (p + 1)]

known to be computationally expensive. To accelerate timvere i of . ¢ T is th .

gence of this algorithm, one can derive an iterative var@sin ~Matrix of covariates, and = (ci,...,¢q)" is the noise vector

[19]. distributed according to a zero mean multidimensional Gians

density with identity covariance matrix.
C. lterative version of Fisher’s algorithm
In the iterative procedure, the criteriof(+, ) given by equa-
tion (6) is iteratively minimized by starting from an initimalue of
the transition pointsy©® = (4{”,... 4%} ) and alternating the
two following steps until convergence:

B. The hidden logistic process

This section defines the probability distribution of the qass
z = (z1,...,2n) that allows the switching from one regression
model to another.
. . L . The proposed hidden logistic process supposes that the vari
1) Regression step (at iteration): Compute the regression ables z, given the vectort — (t1,....t.), are gener-

m) _ (m) _2(m), 4 _ . . . . S
model parameters)"™ = {8,",0;";k = 1..., K} for the  qieq independently according to the multinomial distitmut
current values of the transition pointg™ by minimizing the M, mi(w), ..., mix(w)), where

criterion J(¢p,v(™)) given by equation (6) with respect te.

This minimization consists of performing separated polynomial exp (wj, vi)

regressions and provides the following estimates: min(w) = p(zi = by w) = S exp(wlv;) (17)
o = (@ MMy Tl ) g m) (13) is the logistic transformation of a linear function of the
(m) _ _ time-dependent covariatey; = (1,t;,..., ()97, wp =
where @, = [rv<m>+1,...,r7<m)]T is the regression (wyo,...,wk,)” is the (¢ 4+ 1)-dimensional coefficients vector
& k41l . ; :
matrix associated to the elements of the” segment associated to the covariate andw = (w,...,wi). Thus, given
(m) _(m) the vectort = (¢1,...,tn), the distribution ofz can be written as:

2™ = {x;]i €]y’ s Tesal} at the iterationn,

n K T, Zik
W p(zw) =]]1] <—6Xp(wkvz) )> E)

n 1 ~T(m . K T,
0']3( no= o) Z (mL — Bk( ))2. (14) i=1k=1 Zl:l exp (wl v
k=g (Mg where z;, = 1 if z; = k i.e whenz; is generated by th&'™
. . . regression model, an@l otherwise.
2) Segmentation step (at 1|terat|(m):  Compute the tran- The pertinence of the logistic transformation in terms ofifle
sition points v = ({4 Y) by minimizing  pility of transition can be illustrated through simple exgles with

the criterion J(¢p,~) for the current value ofp = (™, with K = 2 components. The first example is designed to show the
respect toy. This minimization can be performed using a dy-effect of the dimensiory of w; on the temporal variation of the
namic programming procedure since the criteribfy(™,~) is  probabilitiesm;;. We consider different values of the dimensign
additive. However, in contrast with the previous methodereithe (¢ = 0,1,2) of wy. In that case, only the probability;; (w) =
computation of the cost matrig' (a, b) requires the computation 1ezp<w1T;u-) should be described, sinces(w) = 1 — i (w).

of the regression mode_l pgram_etgﬁk,aﬁgk: = 1."“7K} for Ag spt%O\}vnl)in Fig. 2, the dimensiog controls the number of

0 < a < b < n, this iterative procedure simply uses the

) ; changes in the temporal variations of;. In fact, the larger the
cosTt(nQ}atr%mcéomputed with the current values of the pararsete jimension ofw), the more complex the temporal variationsof,.
{8y "0, "k =1..., K} which improves the running time of \jore particularly, if the goal is to segment the signals iotmvex

the algorithm. ) _ segments, the dimensianof w;, must be set td.
The next section presents the proposed regression modekwit

hidden logistic process. N N
I1l. REGRESSION MODEL WITH A HIDDEN LOGISTIC 08 08
PROCESS o o
A. The global regression model e e
We represent a signal by the random sequenee (z1, ..., z»)
of n real observations, whete is observed at time;. This sample o o
is assumed to be generated by the following regression nittel s : : - N o s : ; . - |
a discrete hidden logistic process= (z1,...,2n), Wherez; € Time Time
(1. K} (a) (b)
. T = ,BZT_r,L- + 02,6 Fig. 2. Variation ofr;; (w) over time for different values of the dimension
Vi=1,...,n, e ~ N (0,1) (15) 4 of wwy, with K = 2 and (@)g = 2 and w1 = (—10, —20, —4)T, (b)
’ g=1andw; = (10, -5)T. Forq = 0, m;1 (w) is constant over time.
In this model, 3. is the(p+1)-dimensional coefficients vector of a
p degree polynomiak:; = (1,t;,...,(t;)")7 is the time dependent  For a fixed dimensioq of the parametetw,, the variation of the

(p+1)-dimensional covariate vector associated to the pararfgter proportions;,(w) over time, in relation to the parametery, is



illustrated by an example of 2 classes wyth: 1. For this purpose, 1) E Step (Expectation): This step consists of computing
we use the parametrizatian;, = Az (&, 1)* of wy, where), =  the expectation of the complete log-likelihott p(x, z; 8), given
w1 andy, = z’w As it can be shown in Fig. 3 (a), the parameterthe observations and the current vali& of the paramete9 (m
Ar controls the quallty of transitions between classes, mhee t being the current iteration):

absolute value of\; is large, more the transition between the

is abrupt, while the parametey, controls the transition time point ~ Q(6, G(m)):E[IOgP(XJ; 0)|x; 9<m)]

by the means of the inflexion point of the curve (see Fig. 3. (b))

In that case of 2 classes agd= 1, the transition time point is the _Z ZT(m) log [m;g W)N(:C“ Bk i, Uk)} 21)

solution of wxo + writ = 0 which ist = —~y- ==

1 where

_A=-5
A =-10
LA =50

i = ple = e 8)
B Wzk(w( ))N( Z_’BT('rn)r”o_i('rn)) (22)
- K T(m 2(m)y "’
Zezlmé(w(m))-/\/( . z< ) Z,70[< ))
is the posterior probability that:; originates from thek'"
regression model.
As shown in the expression af, this step simply requires the
computation ofr;; (m)

3 2
Time Time

(@) (b) 2) M step (MaX|m|zat|on) In this step, the value of the
Fig. 3. Variation ofr;1 (w) over time for a dimensiog = 1 of w, and ~Paramete is updated by computing the parame&f ) max-
(a) different values of\;, = wy; and (b) different values of;, = :_f;fl) imizing the conditional expectatiord) with respect to8. The

maximization of@Q can be performed by separately maximizing

In this particular regression model, the variable controls

the switching from a regression model to another one among ZZM log ik (W) (23)
K regression models at each time Therefore, unlike basic i=1 k=1

polynomial regression models, which assume uniform reipes and, for allk = 1,..., K

parameters over time, the proposed model authorizes thyaqroial n

coefficients to vary over time by switching from a regressivedel 2y _ (m) AT, 2

to anothor, Qx(Br.on) = 7 log N(wi; B i, o) (24)

i=1

C. The generative model of signals Maximizing Q- with respect to thgd, consists of analytically solv-
The generatlve model of a signal from a fixed parameteihg a weighted least-squares problem. The estimates aaigstr

0 = {w, B, 00k =1,...,K} consists in 2 steps: forward and are as follows:
e generate the hldden process(z1,...,2zn)  With n
zi ~ M1, (W), ..., mir (W)), Z(mﬂ) = argmin Z Ti(,;n) (zi — Brri)?
« generate each observatian according to the Gaussian dis- Py i3

tribution N (-; BL. 74, 02)). = (T"w™T)'1Tw{x, (25)
IV. PARAMETER ESTIMATION with W™ is the [n x n] diagonal matrix of weights whose
From the model (15), it can be proved that the random varlabl@iagona| elements arerl(m>7 o 77<7£)) andx = (z1,...,2n)7
x; is distributed according to the normal mixture density is the [(n + 1) x 1] vector of observations.
Maximizing Q. with respect to thes? provides the following
p(zi;0 ka xz;gzmgg) , (19) estimates:
2(m+1) m) (i — BEr;)?
9 9 o :argmanTk [logak+72k}
wheref = (wi,...,wk,B,...,8k,01,-..,0%) is the param- or = O
eter vector to be estimated. The parameleis estimated by the 1 n
maximum likelihood method. As in the classic regression et®d - - ZT_(’”) (zi — BE™ VN2 (26)
. H n (m) ik ¢ k ¢
we assume that, givet = (t1,...,tn), the ¢; are independent. > T =1
This also involves the independence ©f (: = 1,...,n). The
log-likelihood of @ is then written as: The maximization ofY; with respect tow is a multinomial logistic
n regression problem weighted by thé;”). We use a multi-class
L(6;x) = long(mi; 9) Iterative Reweighted Least Squares (IRLS) algorithm [4RT] to

solve it. The IRLS algorithm is detailed in the following &iea.

. K 3) The lteratively Reweighted Least Squares (IRLS) al-
_ aT, 2\ gorithm: The IRLS algorithm is used to maximiz@:(w) with
ZIOme’“(W i By, T“g’“) (20) respect to the parametsy, in the M step, at each iteratiom
of the EM algorithm. To estimate the parameters veokor=

Since the direct maximization of this likelihood is not égf#tfor-  (w1,...,wx), since > r_, mn(w) = 1, wx is set to the null
ward, we use the Expectation Maximization (EM) algorithili§l  vector to avoid the identification problems. The IRLS algori
to perform the maximization. is equivalent to the Newton-Raphson algorithm, which cstssof

starting from a vectow®, and updating the estimation o as

A. The dedicated EM algorithm

The proposed EM algorithm starts from an initial parameétét (c+1) © ©
and alternates the two following steps until convergence: w =w = [H(W )}

follows:
—1

g(w) 27)



where H(w'©)) and g(w'
gradient ofQ,(w) evaluated aw = w'®). In [4], authors use an
approximation of the Hessian matrix to accelerate the aqgeviee
of the algorithm, while, in our case we use the exact Hessiatnixn
to perform well the maximum likelihood estimation as notide
[7]. Since there ard( — 1 parameters vector®, ..., wx_1 to be
estimated, the Hessian matdk(w () consists of K —1) x (K —1)
block matricesHy,(w')(k,£ =1,...,K — 1) [7] where :

_ PQi(w)

awkawz
- Zﬂ-zk

wheredy, is the kronecker symbob(, = 1 if £ = ¢, O otherwise).
The gradient ofQ:(w) consists of K — 1 gradients corresponding
to the vectorawy, for k = 1,..., K—1 and is computed as follows:

' -
w=wl¢

©)|vv; ", (28)

[5M — i (W

@y _ 9Qi(w)
g(w ) N 8W ‘w:w(c)
= [gl(W(C))7 e 7gK*1(W(C))]T ) (29)
with
)y _ 0Q1(w)
gk(W ) a Owy, ‘w:w(c)
=3 = m (Wl k=1,..., K —1.(30)

i=1

Applying algorithm (27) provides the parametef™ 1),
Algorithm (1) summarizes the proposed algorithm.

Algorithm 1 Pseudo code for the proposed algorithm.
Initialize:
fix a thresholde >0 ;

m <— 0 glteranon)

choose an initiap™={w (™, 8™ 2™ k=1,... K}
Compute the initial value ofrl.;”) for i=1,...,n and
k=1,..., K using equation (17)
while increment in log-likelihood> ¢ do
{E step: Compute ther™ fori=1,...,n andk =
., K using equation (22)
{M steg:fork=1,..., K
Computeﬁ,(cm“) using equation (25)
Computea2(m“) using equation (26)
computew(™*1) using the IRLS algorithm:
{IRLS loop}:
Initialize:
set a threshold >0 ; ¢« 0O (iteration)
setw(®) = w(m)
while increment inQ(w) > ¢ do
Computewf‘:) using equation (17)
Computewﬁ:“) using equation (27)
c—c+1
end while
wmtl) (o)
a0 xfori=1,... nandk=1,...,K
m—m+1
end while
b= (W™, w™ g gm 2w 2

©)) are respectively the Hessian and theB. Denoising and segmenting a signal

In addition to providing a signal parametrization, the pegd
approach can be used to denoise and segment signals. The de-
noised signal can be approximated by the expectatigr; 6) =

(E(2150),...,E(za;0)) where
E(ml,é) = / mip(:ci;é)dm
R
= ZM W)Bpr: Vi=1,....n, (31)
andd = (w,3,,...,Bx,6%,...,6%) is the parameters vector ob-

tained at the convergence of the algorithm. The matrix fdatin
of the approximated sign& = FE(x;0) is given by:

(32)

whereIl, is a diagonal matrix whose diagonal elements are the
proportions(mix (W), . . ., Tk (W)) associated to thk!” regression
model. On the other hand a signal segmentation can also be
deduced by computing the estimated labglof x; according to

the following rule:

AZ- = i A 5 ) = 17..47 .
Z; = arg ér}CaSXKW k(W) Vi n (33)

C. Model selection

In a general use of the proposed model, the optimal values
of (K,p,q) can be computed by using the Bayesian Information
Criterion [6] which is a penalized likelihood criterion, fiteed by

v(K,p,q)log(n)

2 )
where v(K,p,p) = K(p + ¢+ 3) — (¢ + 1) is the number of
parameters of the model ardd0; x) is the log-likelihood obtained
at the convergence of the EM algorithm. If the goal is to segme
the data into convex segmentsmust be set td.

BIC(K,p,q) = L(6;%) — (34)

V. EXPERIMENTS

This section is devoted to the evaluation of the proposed al-
gorithm using simulated and real data sets. For this purpose
the proposed approach is compared with the piecewise sgnes
algorithm of Fisher and its iterative version. All the sithhave
been simulated from the piecewise regression model given by
equation (2). Three evaluation criteria are used in the Isitimns.

« the first one is the misclassification rate between the sitedla

partition P and the estimated partitioR,

« the second one is the mean square error between the expec-
tations computed with the true parameﬂeand the estimated
parameteﬂ L3 [E(zi;6) — E(2i;0)]* where E(xi; 0)
is computed according to equation (32) for the proposed
model, andE(z;; ) = BT r; for the piecewise regression
models. This error is used to asses the signal in terms oéilsign
denoising and we call it the error of denoising.

« the third criterion is the running time.

A. Simulated signals

1) Protocol of simulations:For all the simulations, we set
the number of segments (respectively the number of statdiseof
hidden variablez; for the proposed model) t& = 3 and the
order of polynomial top = 2. We choose the valug = 1 which
guarantees a segmentation into contiguous intervals. \Weider
that all signals are observed oveseconds (the time interval being
fixed to [0, 5] Seconds) with a constant period of samplidg =
t; — ti—1 depending on the sample size = 100, 200, ..., 1000.

For each sizem we generate 20 samples. The values of assessment



criteria are averaged over the 20 samples. Two situatiovs b@en in terms of classification is similar than the global optiatian
considered for simulations. approach. Fig. 5 (down) and Fig. 6 (down) show the error of de-
« situationl: the transition time points are set(f0.6,4,5) noising. The low denoising error obtained by the proposemiaazh
seconds, which correspond = 0, 2 = %, 3 = it and involves a good performance in terms of estimating the troeeh
74 = 2+ The set of parameters of simulatiofi§y, oz; k = of the signal, compared to the piecewise regression apjpesac
. K} corresponding to this situation is given by table 1,Finally, Fig. 7 shows the slight variation of the running énof
situation2: the transition time points are set(fy1,3.5,5) the proposed approach in relation to the sample size. Theopeal

seconds, which correspond4e = 0, 72 = 2, 73 = %2 and algorithm is very fast compared to the two other approaches.
Y4 = %~ The set of parameters of simulatiofi8x, oj; k =

1,..., K} corresponding to this situation is given by table II. 2—5 ‘ ‘ -
. . . .. ' —b— Proposed algorithm
Fig. 4 shows an example of simulated signals for the two Sdns. 18 - © - Fisher's algorithm -
\ o lterative algorithm
1.6¢ ' 1
B, = (735, —1320,1000)T o7 =4 S \
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Fig. 4. Simulated signal for the first situation (a) and theosel situation Fig. 5. Average misclassification rates (top) and average ef denoising
(b) for n = 1000. (down) in relation to the sample sizeobtained with the proposed approach

(triangle), Fisher's algorithm (circle) and the iterativersion of Fisher’s
2) Strategy of initialization: The proposed algorithm is ini- 2lgorithm (square) for the first situation.
tialized as follows:

o wp=(0,...,00T Vk=1,..., K, ,

. to initialize 3,, we segment the signal uniformly into K C. Real signals
segments and on each segméntve fit a regression model,  This section presents the results obtained by the propaged a
characterized by3,, proach for signals of switch points operations. Two situai of

e oi=1fork=1,..., K.

signals have been considered: one without defect and orte wit
For the iterative algorithm based on dynamic programmiegemal a critical defect. The number of regressive components isei
random initializations are used in addition to one initiation

in accordance with the number of electromechanical phates o
consisting of segmenting the signal inf6 uniform segments, and switch points operation = 5). The value ofg has been set to,

the best solution corresponding to the smallest value oftiterion  which guarantees a segmentation into homogeneous irgewad

J(vp, ) is then selected. In the random initializations, the caodit the degree of the polynomial regressipmas been set t8 which
that the transition points are ordered in the time is regukcthe

is adapted to the different regimes in the signals.
algorithm is stopped when the increment in the criteritin), ) Fig. 8 (top) shows the original signals and the denoisedatign
is below 1076, (the denoised signal is given by equation (32)). Fig. 8 (reifd
shows the variation of the probabilities;, over time. It can be

observed that these probabilities are very closet when thek!"
Fig. 5 (top) and Fig. 6 (top) show the misclassification rate i regressive model seems to be the most faithful to the oligigaal.

relation to the sample sizefor the two situations of simulated data. The five regressive components involved in each signal angrsin
It can be observed that the performance of the proposed agpro Fig. 8 (down). Fig. 9 shows the segmentation, the estimatgtals

B. Results



Fig. 6. Average misclassification rates (top) and average ef denoising
(down) in relation to the sample sizeobtained with the proposed approach
(triangle), Fisher's algorithm (circle) and the iterativersion of Fisher’s
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and and the Mean Square Errofd § E) between the original signal
and the estimated signal, obtained with the three methodthéo
two situations of signals.
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Fig. 8. Obtained results for a signal without defect (lefifdor a signal
with defect (right).

To illustrate the signal generation model, we generate tgmats
according to the proposed model using the parameters astirbg
the EM algorithm. It can be seen that the generated signalseay
similar to the original signals (see Fig. 10).

VI. CONCLUSION

In this paper a new approach for feature extraction from time
series signals, in the context of the railway switch mecsmani
monitoring, has been proposed. This approach is based aresre
sion model incorporating a discrete hidden logistic precékhe
logistic probability function, used for the hidden varied)| allows
for smooth or abrupt transitions between polynomial regjves
components over time. In addition to signals parametomatan
accurate denoising and segmentation of signals can besddriom
the proposed model. The experiments applied to real andatiedu
data have shown good performances of the proposed approach
compared to two algorithms devoted to the piecewise reipress
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