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Linear Robust Adaptive Output-feedback Control of
Chaotic PM Motors

Antonio Lorı́a

Abstract—We solve the problems of set-point and tracking
control of permanent-magnet synchronous motors with un-
known load via linear angular-velocity-feedback control. We
firstly assume that the motor parameters are known (except
for the torque load) and show global exponential stability of
the closed-loop system with a linear controller that uses only
angular velocity measurements. Input to state stability follows
as a corollary. We show how the latter may be enhanced
via an additional current feedback. The controllers are also
robust with respect to measurement noise and parametric
uncertainty.

I. INTRODUCTION

One of the key problems related to the permanent-magnet syn-
chronous motors (PMSM) is its natural chaotic behavior, for cer-
tain choices of parameters and initial conditions, see for instance
[1], [2], [3], [4]. Then, it is desirable to control the chaotic PMSM
to different regimes: set-point i.e., constant angular velocity, and
time-varying reference tracking control. Moreover, as is often
desirable in control theory and practice, the control goal is to
be achieved for all initial conditions that is, one seeks for global
results. Of particular interest (at least in electrical engineering
and physics) is to drive the PMSM to a constant operating point
from initial conditions leading to chaos in open-loop –cf. [5],
[6], [7]. The latter two exploit the Hamiltonian structure of the
system, the design in [6] leads to a closed-loop system with
multiple equilibria and the result is shown to hold for almost
all initial conditions. While no stability proof is provided in [5]
the control is interesting in that it also exploits the dissipative
forces inherent in the system and yields good performance, in
simulations. Adaptive set-point control algorithms are included
in [6] (known parameters, unknown load) and in [8] (zero load,
one unknown parameter, smooth-air gap machine). Other works
aiming at annihilating chaos include [1] where the goal is to drive
the machine to describe periodic orbits.

While a number of works concentrate on the task of eliminat-
ing (undesirable) chaotic behaviors, others focus on the opposite
task with certain interesting applications in mind: [9] presents
a controller to generate chaotic behavior in PMSMs used to
construct vibratory soil compactors. In [10] chaos is induced via
delayed feedback and some simulation results are presented.

In this paper we propose very simple output-feedback con-
trollers and show that uniform exponential stability may be
achieved even in the case that the torque load is unknown. By
“output-feedback” it is meant that only shaft angular velocity
measurements are used. As a direct corollary of the main results
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several natural robustness improvements may be obtained. In par-
ticular, Input-to-State Stability of the closed-loop system readily
follows and it may be enforced by additional (current feedback).
In simulations, we show that the controllers are also robust to
parametric (time-varying) uncertainty and measurement noise.

The rest of the paper is organized as follows. In the fore-
coming section we present the dynamic model; in Section III we
present our main results; the latter are illustrated in simulations
in Section V and we conclude with some remarks in Section VI.

II. THE MODEL

A. The physical model

We adopt the “unified theory” of [11] which includes certain
simplifications to obtain a tractable model; in particular, satu-
ration of the iron core and the effects of the iron yokes are
neglected. Therefore, it is assumed that inductances are current-
independent. Furthermore, following a standard transformation,
the dynamic model of the PMSM may be expressed in the d-q
axes coordinates i.e.,

did
dt′

=
1

Ld
[ vd −Rid + ωLqiq] (1a)

diq
dt′

=
1

Lq
[ vq −Riq − ωLdid − ωψr] (1b)

dω

dt′
=

1

J
[npψriq + np(Ld − Lq)idiq − τL − βω] (1c)

where t′ denotes time. The variables carrying the index q are
referred to the quadrature-axis and those carrying an index d
are referred to the direct axis. As is customary the variables i
represent currents, v represent input voltages (control inputs up
to a gain); R corresponds to the stator resistance. After applying
the transformation to the d-q coordinates axes, the inductances
Lq , Ld become constant. The rest of the variables represent the
permanent-magnet flux (ψr), the number of pole pairs np, the
viscous friction coefficient (β), and the polar moment of inertia
(J). The angular velocity is represented by ω and, finally, τL
corresponds to the external-load torque. The latter two are of
obvious practical interest from a control viewpoint.

The advantage of the model (1) is that inductances are constant
(but not necessarily equal). More detailed models and descrip-
tions of the PM dynamics can be found for instance in [2], [4],
[12]. Simplified models are often used as well, for instance,
neglecting viscous friction –cf. [6], [7] or by considering the
stator inductances Lq , Ld to be equal, that is the case of the
smooth-air gap PM machines –cf. [1], [3], [13], [9], [10], [14].
Our main results cover but are not limited to these cases. Other d-
q models, such as that in [15] incorporate rotor-position back-emf



terms in the context of torque ripple minimization; see also [16]
where the same model is used in the context of observer design
for sensor-less control.

Alternatively, for models considering explicitly the nonlinear
dependence of the inductances on the currents see for instance
the series of fairly recent papers [17], [18], [19], [20] which deal
with the surface-mounted PMSM and in a context well beyond
the scope of this paper. See also [21] where the authors propose
a model incorporating effects such as saturation of the iron core,
cross-coupling, cross-saturation and slotting which yield current
and position-dependent flux linkage equations. Flux variations
are showed in experimentation.

To some extent, modelling errors entailed by neglecting sat-
uration may be by considered as (time-varying) parameter un-
certainty –cf. [11] and additive disturbances. Therefore, we
show analytically that the controlled system under our approach
is robust (ISS) with respect to external perturbations and, in
simulations, we show that the controller is also robust with
respect to time-varying parameter uncertainties and measurement
noise. Other articles where parameter uncertainty, albeit con-
stant, is considered include [5], [22], [23], [8]. The last three deal
with adaptive control problems in particular, in [8] parameter
convergence is showed under the assumption of smooth air-
gap (constant equal inductances). In the article [5] a robustness
approach is taken to show, in simulations, that the controlled
machine remains practically asymptotically stable. In all of the
latter the model (1) is used; except for [23] where it is further
assumed that inductances are equal and constant (i.e., ε = 0).

B. The control model

For control purposes, we recall a standard transformation of
system (1) to put the dynamical model in an equivalent form more
“comfortable” for control design purposes; this is used in most of
the cited references. Let

T :=

bk 0 0

0 k 0

0 0 R/Lq

 , b :=
Lq

Ld
, k :=

βR

Lqnpτψr

γ := − ψr

kLq
, σ :=

βLq

RJ
, ε :=

npbL
2
qk

2(Lq − Ld)

JR2
,

ûd :=
vd
Rk

, ûq :=
vq
Rk

, τ̃L :=
L2

qτL

JR2
.

Then, the system (1) may be written in the dimension-less
compact form

d̃ıd
dt

= −ı̃d + ω̃ı̃q + ûd (2a)

d̃ıq
dt

= −ı̃q − ω̃ı̃d + γω̃ + ûq (2b)

dω̃

dt
= σ(̃ıq − ω̃) + ε̃ıd ı̃q − τ̃L (2c)

where time has been redefined to t := Rt′/Lq and the state
variables as (̃·) := T−1(·).

Finally, let the state be defined by x := [̃ıd ı̃q ω̃]
⊤. Then,

defining
˙︷ ︷
(·) = d(·)

dt
the system can be written as:

ẋ1 = −x1 + x3x2 + ûd (3a)

ẋ2 = −x2 − x3x1 + γx3 + ûq (3b)

ẋ3 = −σ(x3 − x2)− τ̃L + εx1x2 (3c)

The control problem consists now in stabilizing system (3)
around an operating regime (x1d, x2d, x3d) moreover, assuming
that τL is unknown. Furthermore, we shall also consider para-
metric uncertainty in the other variables.

III. THE CONTROLLER

The control approach consists in exploiting the physical prop-
erties of the system. Firstly, we observe that the subsystem given
by the first two equations in (3) has a stable equilibrium at the
origin whenever x3(t) is regarded as an external “input”, the
controls and γ are set to zero; as a matter of fact, the system
is input to state stable with respect to the “input” x3 when
ûd = ûq ≡ 0. Hence, the control is designed with aim at:

• keeping the cascaded structure2;
• choosing an operating point for the current variables x1

and x2 such that any desired velocity x3 can be achieved
(different from zero).

To that end, and as the motivation will become clear later, the
operating “point” is set to:

x1d(t) ̸= −σ/ε x2d := x3d + ϑ+
ẋ3d

εx1d + σ
(4a)

ϑ :=
τ̃L − εx1dx3d
εx1d + σ

(4b)

By assumption τ̃L is unknown hence so is the operating point
x2d. Introducing an estimate of τ̃L which we denote τ̂L, we define

(set-point) x̂2d := x3d +
τ̂L − εx1dx3d
εx1d + σ

(5a)

(tracking) x̂2d := x3d(t) +
ẋ3d(t) + τ̂L − εx1d(t)x3d(t)

εx1d(t) + σ

(5b)

and we shall design an adaptation law for x̂2d. The control design
strategy is, as in [6], to steer x̂2 to x2d and x2 to x̂2.
Proposition 1 (Set-point control) Let xid, i = 1, 2, 3 be con-
stant. Consider the system (3) in closed-loop with the controller

ûd := x1d − x̂2dx3(t)

ûq := −γx3(t) + x1dx3(t) + x̂2d
˙̂τL := −α′e3(εx1d + σ) , α′ > 0

with x1d ̸= −σ/ε, x̂2d as in (5a). Define the error variables
ei := xi − xid and x̄2d := x̂2d − x2d. Then, the origin of the
closed-loop system i.e. the point (e1, e2, e3, x̄2d) = (0, 0, 0, 0) is
globally asymptotically stable.

We shall prove the previous proposition as a corollary of the
more general case of trajectory tracking control.
Proposition 2 (Tracking control) Let t 7→ xid be continuously
differentiable functions, bounded and with bounded derivatives
satisfying (4). Consider the system (3) in closed-loop with the
controller

ûd := x1d − x̂2dx3(t) + ẋ1d (7a)

ûq := −γx3(t) + x1dx3(t) + x̂2d + ˙̂x2d (7b)
˙̂τL := −α′e3(εx1d(t) + σ) , α′ > 0 (7c)

2We remark at this point that cascades-based design has also been used
in [6] for set-point control with known and unknown load torque.



with either ẋ1d ≡ 0 or ε = 0, x̂2d as in (5b). Define x̄2d :=

x̂2d−x2d. Then, the origin of the closed-loop system i.e. the point
(e1, e2, e3, x̄2d) = (0, 0, 0, 0) is uniformly globally exponentially
stable.

Proof. The closed-loop equations. Define ê2 := x2 − x̂2d hence,
we observe the following useful identities: ê2 − e2 = −x̄2d :=

x2d − x̂2d; e2 = ê2 + x̄2d and x2 = ê2 + x̄2d + x2d.
Consider first the dynamic equation of the estimation error

x̄2d. To that end, we differentiate x2d from (4a) to obtain

ẋ2d := ẋ3d + ϑ̇+
˙︷ ︷
x3d

εx1d + σ
(8)

ϑ̇ = − (εx1d + σ)(εẋ1dx3d + εx1dẋ3d) + (τ̃L − εx1dx3d)εẋ1d
(εx1d + σ)2

.

Correspondingly, differentiating (5a) we obtain

˙̂x2d := ẋ3d +
˙̂
ϑ+

˙︷ ︷
x3d

εx1d + σ
(9)

˙̂
ϑ =

( ˙̂τL − εẋ1dx3d − εx1dẋ3d)

(εx1d + σ)
− (τ̂L − εx1dx3d)εẋ1d

(εx1d + σ)2
.

Define α(t) := α′(εx1d(t) + σ). Subtracting (8) from (9) and
using (7c) we obtain

˙̄x2d = −α(t)e3 +
(τ̂L − τ̃L)εẋ1d
(εx1d + σ)2

. (10)

By assumption, either ẋ1d ≡ 0 or ε = 0. In either case

˙̄x2d = −α(t)e3 . (11)

Next, we derive the error dynamics for e1 and ê2. For this, we use
in (3) ûd as defined in (7a) and, in (3b), we use ûq = ûq±γx3(t)
and (7b) to obtain

ė1 = −e1 + x3(t)ê2 (12a)
˙̂e2 = −ê2 − x3(t)e1 (12b)

Finally, the e3 equation of the error dynamics is obtained by
direct computations. Firstly, we add

±εx1dx2 ± εx1dx2d ± σ(x2d − x3d) = 0

to the right-hand-side of Equation (3c) to obtain, using (4),

ė3 = −σe3 + (σ + εx1d)e2 + εx2e1 (13)

Then, using the identities introduced at the beginning of the
proof, in Equation (13) we obtain

ė3 = −σe3+(σ+εx1d)x̄2d + (σ+εx1d)ê2+εx2(t)e1 . (14)

Defining ξ1 := [e3 x̄2d]
⊤, ξ2 := [e1 ê2]

⊤ the previous equations
can be put together in the compact (“cascaded”) form

ξ̇1 = f1(t, ξ1) +G(t, ξ1, ξ2)ξ2 (15a)

ξ̇2 = f2(t, ξ2) (15b)

where G(t, ξ1, ξ2) := [g(t, ξ1, ξ2)
⊤ [0 0]⊤ ]⊤ and

f1(t, ξ1) :=

[
−σ (σ + εx1d(t))

−α′(σ + εx1d(t)) 0

]
ξ1

g(t, ξ1, ξ2) := [ ε(ξ22 + ξ12 + x2d(t)) (σ + εx1d(t)) ]

f2(t, ξ2) :=

[
−1 ξ1(t) + x3d(t)

−ξ1(t)− x3d(t) −1

] [
ξ21
ξ22

]
.

Forward completeness. Let [t◦, tmax) denote the maximal inter-
val of definition of solutions and define

v2(ξ2(t)) :=
1

2
|ξ2(t)|2 .

The total time-derivative of v2 yields, using (15a),

v̇2(ξ2(t)) = − |ξ2(t)|2 .

That is,

|ξ2(t)| ≤ |ξ2(t◦)| e−(t−t◦) ∀ t ∈ [t◦, tmax) . (16)

The interconnection term g in (15a) satisfies, along solutions, and
on on the interval of definition of the latter,

|g(t, ξ1(t), ξ2(t))| ≤ c+ ε[ |ξ12(t)|+ |ξ22(t)| ]

where c is a positive number independent of the initial conditions
–it depends only on bounds on the reference trajectories x2d(t)
and x3d(t). Using this, and defining

v1(ξ1) :=
1

2
|ξ11|2 +

1

2α′ |ξ12|
2 . (17)

it is direct to obtain that the time-derivative of

v(t) := v1(ξ1(t)) + v2(ξ2(t)) , (18)

along the trajectories generated by (15a) and (12), satisfies

v̇(t) ≤ c |ξ1(t)| |ξ2(t)|+ ε[ |ξ1(t)|2 |ξ2(t)|+ |ξ2(t)|2 |ξ1(t)| ] .

Using the triangle inequality on the bound above and (16) we
obtain that there exists c′ : R≥0 → R≥0 such that

v̇(t) ≤ c′(|ξ2(t◦)|)v(t) ∀ t ∈ [t◦, tmax) .

Integrating on both sides, we obtain that the solutions may not
grow to infinity faster than exponentially and that tmax isfinite.
Stability. Since the system is forward complete, we can view it
as a cascaded nonlinear time-varying system –cf.[24]. Then, the
stability analysis is considerably simplified.

Firstly we observe that the system ξ̇2 = f2(t, ξ2) has a
globally exponentially stable equilibrium at the origin. A simple
inspection shows the same property for system ξ̇1 = f1(t, ξ1). By
assumption, either ε = 0 or x1d is constant hence, ξ̇1 = f1(t, ξ1)

is linear time-invariant; its characteristic polynomial is either

λ2 + λσ + (εx1d + σ)2α′ = 0

for ε ̸= 0 and constant x1d > −σ/ε or,

λ2 + λσ + σ2α′ = 0

for ε = 0 and possibly time-varying x1d. In either case, the origin
is exponentially stable for any α′ > 0.

Uniform global exponential stability of (ξ1, ξ2) = (0, 0)

follows observing that g in (15a) has linear growth with respect
to ξ1 and invoking a theorem along the lines of the main result in
[25], more precisely we can invoke [26, Theorem 4]. Finally, we
observe that [

x̄2d
e2

]
=

[
1 0

1 1

] [
x̄2d
ê2

]
.

The result follows. �



IV. ISS OF THE CLOSED-LOOP SYSTEM

Even though the model (1) covers a number of case-studies
used in the literature important physical aspects which entail
current-dependence variations of inductances are neglected. The
errors caused by neglecting these phenomena which affect the
machine performance under specific regimes may be, to some
extent, compensated for by introducing parametric uncertainty
and additive disturbances to the model (1). We show that the
controllers of Proposition 2 render the closed-loop system ISS
with respect to external perturbations. In addition, in the fol-
lowing section we illustrate in simulation the robustness of our
controllers with respect to measurement noise.

ûd(x3) := ûd(x3)
∗ + ν1 (19a)

ûq(x3) := ûq(x3)
∗ + ν2 (19b)

where ν1 and ν2 are considered to be external (additional) inputs;
these may contain perturbations to the system, measurement
noise, additional control terms, etc. The closed-loop equations
with (3a) and (3b) yield

ė1 = −e1 + x3(t)ê2 + ν1 (20a)
˙̂e2 = −ê2 − x3(t)e1 + ν2 . (20b)

Define V (ξ2) := 0.5ξ22 with ξ2 = col[e1 ê2] and ν = col[ν1 ν2].
The time derivative of V (ξ2) along the trajectories of (20) yields

V̇ (ξ2) ≤ − |ξ2|2 + ξ⊤2 ν (21)

From (21) one can see that the system is ISS from the input ν
with state ξ2. Indeed, let |ν|[t◦,t) denote the sup

τ∈[t◦,t)
|ν(τ)|; using

this and integrating along trajectories we obtain

|ξ2(t)| ≤ |ξ2(t◦)| e−
1
2
(t−t◦) +

1

2
|ν|[t◦,t) . (22)

Thus, roughly speaking, the tracking errors ξ2 converge to a
neighborhood of the origin, proportional to the size of the per-
turbation. A natural requirement is to reduce the size of this
neighborhood that is, to impose an error tolerance despite the
perturbations. This is a direct modification that can be carried
out to the controller (7) provided that we add current feedback.
Indeed, let ν1 and ν2 in (19) be defined by

ν1 := −k1e1 + d1(t) (23a)

ν2 := −k2e2 + d2(t) (23b)

where ki ≥ 0 are design parameters and di now play the role
of disturbances. Restarting the above computations from (21) we
obtain, defining km := min{k1, k2} and d = (d1 d2)

⊤,

V̇ (ξ2) ≤ −(km + 1) |ξ2|2 + ξ⊤2 d .

Hence,

|ξ2(t)| ≤ |ξ2(t◦)| e−
km+1

2
(t−t◦) +

1

2(km + 1)
|d|[t◦,t) (24)

It is clear that for ki = km = 0 that is, if no current feedback
is applied, we recover the inherent robustness expressed by (22)
however, for positive values of km we see that the currents errors
converge to the interior of a ball that depends on the norm of d
but may be diminished at will, by enlarging km.

More “sophisticated” controls may be used: the gains k1,
k2 may be functions of the state as opposed to constants. For
instance, we may decide to make ki depend on the currents values
i.e., ki := ki(ei). Let us reconsider (21) with ν as in (23) and ki
as defined above. We see that

V̇ (ξ2) ≤ −
2∑

i=1

[e2i [1 + ki(ei)]− eidi] .

Then, the requirement is that the functions ki be such that:

(i) ki(ei) ≥ 0 ∀ ei ∈ R;
(ii) for ISS to hold, there must exist class K function µ such

that

whenever
[ki(ei) + 1]e2i

|ei|
≥ |di| with i ∈ {1, 2}

we have V̇ (ξ2) ≤ −µ(|ξ2|) .

Other “sector” nonlinearities may be of interest. For instance, one
may use saturation terms such as −kisat(ei) with sat(·) being
a smooth saturation function, such as tanh(·) or smooth “dead-
zone” curves such as a tanh(b sinh(cx))|x|. For suitably chosen
parameters a, b and c this curve may be designed to be “approxi-
mately” linear with unitary slope outside of a neighborhood of
x = 0 and have a very small slope inside the neighborhood.
One use of such function may be to avoid large overshoots. The
functions ki may also be chosen to depend on the velocity errors
e3. For instance, it seems reasonable that, since the variable of
main interest is e3 we make the control gains large only for
“large” velocity errors hence, we define ki := ki(|e3|) with ki
of class K. The proofs for all these cases remain unchanged.
Moreover, it should be clear that the calculations and discussion
above hold for all cases previously studied: set-point and tracking
with known and with unknown load.

V. SIMULATIONS

We have used SIMULINKTM of MATLABTM to test our con-
trollers in numeric simulations. The benchmark model is taken
from the literature –cf. [5] and is as follows: we set the system
parameters to values leading to chaotic behavior in open loop
i.e., σ = 5.46, γ = 30, ε = 0 τ̃L = 10 and initial state values
of 0.01. Several sets of simulations are presented covering the
cases with and without disturbances and with and without load
estimation. These simulation results illustrate the performance
and robustness of all controllers previously introduced.

We use the adaptive controller of Proposition 2 under different
conditions: with and without current feedback and with and with-
out (time-varying) parametric uncertainty, additive disturbances
and measurement noise. When we use the current feedback terms
–cf. Eq. (23) both gains are set to k1 = k2 = k = 20.
The adaptation gain in (7c) is set to α = 3 and α = 30.
Measurement noise, disturbances and time-varying parametric
uncertainty are generated by random normal Gaussian signals;
parametric uncertainty varies from 0 to 20%. In the simulation
experiment controls are switched on at t = 15s, the normalized
reference signal x3d(t) changes from different regimes going
from sinusoidal (period = 2π and amplitude equal to 100) to
steps (150 and zero) and finally to a chaotic regime. Reference
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Fig. 1. Graph of the normalized velocity and reference in the worst-case
scenario: without k = 0 in (23), uncertainty and noise.

changes occur at t = 30s, t = 60s and t = 90s. The simulation
results are showed in Figures 1-5.

In Figure 1 we show the system’s normalized-velocity re-
sponse in the worst-case scenario: no current feedback — k = 0

in (23), presence of additive disturbances, parametric uncertainty
and measurement noise. The figure shows both the system’s
actual trajectory x3(t) and its reference x3d(t). For the sake of
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with noise 

and disturbances
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with noise 

and disturbances
k=20

without noise 
nor disturbances

Fig. 2. Zoom on the normalized velocity transient for the second step
and reference in four scenarios.

comparison in Figure 2 we show a zoom on the system’s response
(normalized velocity x3(t)) in the four different scenarios. The
window shows the transient response from the first step (to
150) to a steady-state zero-velocity reference, over the first 10
seconds. One can appreciate that, in the absence of noise and
disturbances, the transient duration is significantly reduced using
the state feedback terms in (23). Correspondingly in the case
of parametric uncertainties and noise, the effect of the latter is
significantly reduced via the controls from Section IV. In Figure
3 we show the normalized velocity errors e3(t) for three different
cases with and without noise and disturbances and with (k = 20)
and without (k = 0) current feedback. From the zoomed plots
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k =0, w/uncertainty and noise

k =0, without 
uncertainty nor noise

                                          k =0, w/uncertainty and noise
k =0, w/uncertainty and noise

k =0, w/uncertainty and noise

Fig. 3. Graph of the normalized velocity errors and zooms. Three cases
showed: (1) without extra gain (“k = 0”) and without uncertainty nor
noise; (2) with k = 0, uncertainty and noise and with extra gain k = 20
(current feedback), uncertainty and noise.

one can clearly appreciate both the transient and steady-state
improvement when additional feedback is used, as discussed
in Section IV. Also, observe in the lower zoomed window in
the zero-error in the ideal case when there is no parametric
uncertainty nor noise even when no extra current feedback is
used; that is using the output-feedback adaptive algorithm from
Proposition 2. Finally, we remark from Figure 3 the steady-
state oscillatory behavior of the velocity error when tracking the
Lorenz reference (for t ≥ 90s); as we show in Figure 4, this
error may be attenuated by increasing the adaptive gain α in (7c).
Similar performance is observed for the estimation error ê2(t) in
Figure 5.

90 100 110 120 130 140 150
time [s]

 

15 30 45 60 75 90 105 120 135 150

α=30
α = 3

Fig. 4. Zoom on the normalized velocity errors during transient under
state-feedback control. Two cases showed: α = 30 and α = 3; additive
disturbances, measurement noise and time-varying parametric uncertainty
present in both cases.

Remark 1 Regarding the Gaussian parametric variation consid-
ered in the simulation it goes without saying that an electronic
component is not meant to vary randomly however, variations
may be due to different phenomena, caused by many external
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with α=3

with α=30

Fig. 5. Estimation errors ê2(t) during transient, under state-feedback
control, additive disturbances, measurement noise and time-varying para-
metric uncertainty. Two cases showed: α = 30 and α = 3.

unpredictable ‘agents’ affecting the system such as temperature
which affects resistance not mentioning the simplistic model
used which disregards nonlinear dependence of inductance with
respect to angular position and current. Now, if we consider the
case of inductances depending only on rotor position and we
consider that the rotor position is to undergo a chaotic regime
as much as constant or a sinusoidal the graph of the inductance
variation as function of time may have an infinite number of
“shapes”. In this regard, it does not seem unnatural that a wide
variety of possibilities regarding the variations of parametric
uncertainty, around an average constant value may be covered by
randomly-generated signals. Thus, in the simulation we consider
σ(tk) = σo + v(tk) where σo is a nominal value and v(tk) is a
number randomly generated at each integration step tk.

VI. CONCLUSION

We have showed that adaptive tracking output regulation of
PMSMs is achievable via a simple linear output feedback con-
troller, provided that one chooses adequately the operating point
for the quadrature axis current. Uniform global exponentially
stable hence, ISS is proved. Robustness to measurement noise
and parametric uncertainty is illustrated by simulations.
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appear, 2008.

[17] Y. Yan, J. Zhu, H. Lu, Y. Guo, and S. Wang, “A PMSM model
incorporating structural and saturation saliencies,” in 8th Internation
Conference on Electrical Machines and Systems, vol. 1, pp. 194–
199, 27-29 sept. 2005.

[18] Y. Yan, J. Zhu, Y. Guo, and H. Lu, “Modeling and simulation of
direct torque controlled PMSM drive system incorporat structural
and saturation saliencies,” in 41st Industry Applications Conference,
vol. 1, pp. 76–83, 27-29 oct. 2006.

[19] Y. Yan, J. Zhu, H. Lu, Y. Guo, and S. Wang, “A direct torque
controlled surface mounted PMSM drive with initial rotor position
estimation based on structural and saturation saliencies,” in 42nd
Industry Applications Conference, vol. 1, pp. 683–689, 23-27 sept.
2007.

[20] Y. Ying, Z. Jianguo, G. Youguang, and J. Jianxun, “Numerical sim-
ulation of a PMSM model considering saturation saliency for initial
rotor position,” in 27th Chinese Control Conference, (Kunming,
China), pp. 114–118, July 16–18 2008.
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