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Abstract-We solve the problems of set-point and tracking control of permanent-magnet synchronous motors with unknown load via linear angular-velocity-feedback control. We firstly assume that the motor parameters are known (except for the torque load) and show global exponential stability of the closed-loop system with a linear controller that uses only angular velocity measurements. Input to state stability follows as a corollary. We show how the latter may be enhanced via an additional current feedback. The controllers are also robust with respect to measurement noise and parametric uncertainty.

I. INTRODUCTION

One of the key problems related to the permanent-magnet synchronous motors (PMSM) is its natural chaotic behavior, for certain choices of parameters and initial conditions, see for instance [START_REF] Li | Analysis of the chaotic phenomena in permanent-magnet synchronous motors based on Poincaré map[END_REF], [START_REF] Hemati | Bifurcation of equilibria and chaos in permanent-magnet machines[END_REF], [START_REF] Ge | Chaos control of permanent-magnet syn-chronous motor[END_REF], [START_REF] Hemati | Strange attractors in brushless DC motors[END_REF]. Then, it is desirable to control the chaotic PMSM to different regimes: set-point i.e., constant angular velocity, and time-varying reference tracking control. Moreover, as is often desirable in control theory and practice, the control goal is to be achieved for all initial conditions that is, one seeks for global results. Of particular interest (at least in electrical engineering and physics) is to drive the PMSM to a constant operating point from initial conditions leading to chaos in open-loop -cf. [START_REF] Ren | Nonlinear feedback control of chaos in permanent-magnet synchronous motor[END_REF], [START_REF] Petrović | Interconnection and damping assignement approach of PM synchronous motors[END_REF], [START_REF] Yu | Energy-shaping of PM synchronous motor based on Hamiltonian systems theory[END_REF]. The latter two exploit the Hamiltonian structure of the system, the design in [START_REF] Petrović | Interconnection and damping assignement approach of PM synchronous motors[END_REF] leads to a closed-loop system with multiple equilibria and the result is shown to hold for almost all initial conditions. While no stability proof is provided in [START_REF] Ren | Nonlinear feedback control of chaos in permanent-magnet synchronous motor[END_REF] the control is interesting in that it also exploits the dissipative forces inherent in the system and yields good performance, in simulations. Adaptive set-point control algorithms are included in [START_REF] Petrović | Interconnection and damping assignement approach of PM synchronous motors[END_REF] (known parameters, unknown load) and in [START_REF] Wei | Robust adaptive dynamic surface control of chaos in permanent magnet synchronous motor[END_REF] (zero load, one unknown parameter, smooth-air gap machine). Other works aiming at annihilating chaos include [START_REF] Li | Analysis of the chaotic phenomena in permanent-magnet synchronous motors based on Poincaré map[END_REF] where the goal is to drive the machine to describe periodic orbits.

While a number of works concentrate on the task of eliminating (undesirable) chaotic behaviors, others focus on the opposite task with certain interesting applications in mind: [START_REF] Wang | Anti-control of a permanent-magnet DC motor system for vibratory compactors[END_REF] presents a controller to generate chaotic behavior in PMSMs used to construct vibratory soil compactors. In [START_REF] Ren | Chaotifying control of permanent-magnet synchronous motor[END_REF] chaos is induced via delayed feedback and some simulation results are presented.

In this paper we propose very simple output-feedback controllers and show that uniform exponential stability may be achieved even in the case that the torque load is unknown. By "output-feedback" it is meant that only shaft angular velocity measurements are used. As a direct corollary of the main results several natural robustness improvements may be obtained. In particular, Input-to-State Stability of the closed-loop system readily follows and it may be enforced by additional (current feedback). In simulations, we show that the controllers are also robust to parametric (time-varying) uncertainty and measurement noise.

The rest of the paper is organized as follows. In the forecoming section we present the dynamic model; in Section III we present our main results; the latter are illustrated in simulations in Section V and we conclude with some remarks in Section VI.

II. THE MODEL

A. The physical model

We adopt the "unified theory" of [START_REF] Retter | Matrix and space-phasor theory of electrical machines[END_REF] which includes certain simplifications to obtain a tractable model; in particular, saturation of the iron core and the effects of the iron yokes are neglected. Therefore, it is assumed that inductances are currentindependent. Furthermore, following a standard transformation, the dynamic model of the PMSM may be expressed in the d-q axes coordinates i.e.,

di d dt ′ = 1 L d [ v d -Ri d + ωLqiq] ( 1a 
) diq dt ′ = 1 Lq [ vq -Riq -ωL d i d -ωψr] ( 1b 
)
dω dt ′ = 1 J [ npψriq + np(L d -Lq)i d iq -τL -βω] (1c)
where t ′ denotes time. The variables carrying the index q are referred to the quadrature-axis and those carrying an index d are referred to the direct axis. As is customary the variables i represent currents, v represent input voltages (control inputs up to a gain); R corresponds to the stator resistance. After applying the transformation to the d-q coordinates axes, the inductances Lq, L d become constant. The rest of the variables represent the permanent-magnet flux (ψr), the number of pole pairs np, the viscous friction coefficient (β), and the polar moment of inertia (J). The angular velocity is represented by ω and, finally, τL corresponds to the external-load torque. The latter two are of obvious practical interest from a control viewpoint.

The advantage of the model ( 1) is that inductances are constant (but not necessarily equal). More detailed models and descriptions of the PM dynamics can be found for instance in [START_REF] Hemati | Bifurcation of equilibria and chaos in permanent-magnet machines[END_REF], [START_REF] Hemati | Strange attractors in brushless DC motors[END_REF], [START_REF] Li | Bifurcations and chaos in a permanent-magnet synchronous motor[END_REF]. Simplified models are often used as well, for instance, neglecting viscous friction -cf. [START_REF] Petrović | Interconnection and damping assignement approach of PM synchronous motors[END_REF], [START_REF] Yu | Energy-shaping of PM synchronous motor based on Hamiltonian systems theory[END_REF] or by considering the stator inductances Lq, L d to be equal, that is the case of the smooth-air gap PM machines -cf. [START_REF] Li | Analysis of the chaotic phenomena in permanent-magnet synchronous motors based on Poincaré map[END_REF], [START_REF] Ge | Chaos control of permanent-magnet syn-chronous motor[END_REF], [START_REF] Cai | Converting chaos into periodic motion by state-feedback control[END_REF], [START_REF] Wang | Anti-control of a permanent-magnet DC motor system for vibratory compactors[END_REF], [START_REF] Ren | Chaotifying control of permanent-magnet synchronous motor[END_REF], [START_REF] Liu | Chaos control in permanent-magnet synchronous motor[END_REF]. Our main results cover but are not limited to these cases. Other dq models, such as that in [START_REF] Petrović | Design and implementation of an adaptive controller for torque ripple minimization in PM synchronous motors[END_REF] incorporate rotor-position back-emf terms in the context of torque ripple minimization; see also [START_REF] Poulin | An observer for permanent magnet synchronous motors with application to sensorless control[END_REF] where the same model is used in the context of observer design for sensor-less control.

Alternatively, for models considering explicitly the nonlinear dependence of the inductances on the currents see for instance the series of fairly recent papers [START_REF] Yan | A PMSM model incorporating structural and saturation saliencies[END_REF], [START_REF] Yan | Modeling and simulation of direct torque controlled PMSM drive system incorporat structural and saturation saliencies[END_REF], [START_REF] Yan | A direct torque controlled surface mounted PMSM drive with initial rotor position estimation based on structural and saturation saliencies[END_REF], [START_REF] Ying | Numerical simulation of a PMSM model considering saturation saliency for initial rotor position[END_REF] which deal with the surface-mounted PMSM and in a context well beyond the scope of this paper. See also [START_REF] Hadžiselimović | Magnetically nonlinear dynamic model of synchronous motor with permanent magnets[END_REF] where the authors propose a model incorporating effects such as saturation of the iron core, cross-coupling, cross-saturation and slotting which yield current and position-dependent flux linkage equations. Flux variations are showed in experimentation.

To some extent, modelling errors entailed by neglecting saturation may be by considered as (time-varying) parameter uncertainty -cf. [START_REF] Retter | Matrix and space-phasor theory of electrical machines[END_REF] and additive disturbances. Therefore, we show analytically that the controlled system under our approach is robust (ISS) with respect to external perturbations and, in simulations, we show that the controller is also robust with respect to time-varying parameter uncertainties and measurement noise. Other articles where parameter uncertainty, albeit constant, is considered include [START_REF] Ren | Nonlinear feedback control of chaos in permanent-magnet synchronous motor[END_REF], [START_REF] Goléa | Robust MRAC adaptive control of PMSM drive under general parameters uncertainties[END_REF], [START_REF] Kabziński | Adaptive backstepping control of a completely unknown permanent magnet motor[END_REF], [START_REF] Wei | Robust adaptive dynamic surface control of chaos in permanent magnet synchronous motor[END_REF]. The last three deal with adaptive control problems in particular, in [START_REF] Wei | Robust adaptive dynamic surface control of chaos in permanent magnet synchronous motor[END_REF] parameter convergence is showed under the assumption of smooth airgap (constant equal inductances). In the article [START_REF] Ren | Nonlinear feedback control of chaos in permanent-magnet synchronous motor[END_REF] a robustness approach is taken to show, in simulations, that the controlled machine remains practically asymptotically stable. In all of the latter the model ( 1) is used; except for [START_REF] Kabziński | Adaptive backstepping control of a completely unknown permanent magnet motor[END_REF] where it is further assumed that inductances are equal and constant (i.e., ε = 0).

B. The control model

For control purposes, we recall a standard transformation of system [START_REF] Li | Analysis of the chaotic phenomena in permanent-magnet synchronous motors based on Poincaré map[END_REF] to put the dynamical model in an equivalent form more "comfortable" for control design purposes; this is used in most of the cited references. Let

T :=   bk 0 0 0 k 0 0 0 R/Lq   , b := Lq L d , k := βR Lqnpτ ψr γ := - ψr kLq , σ := βLq RJ , ε := npbL 2 q k 2 (Lq -L d ) JR 2 , ûd := v d Rk , ûq := vq Rk , τL := L 2 q τL JR 2 .
Then, the system (1) may be written in the dimension-less compact form

dĩ d dt = -ĩ d + ωĩq + ûd (2a) dĩq dt = -ĩq -ωĩ d + γ ω + ûq (2b) dω dt = σ(ĩq -ω) + εĩ d ĩq -τL (2c) 
where time has been redefined to t := Rt ′ /Lq and the state variables as

(•) := T -1 (•).
Finally, let the state be defined by

x := [ĩ d ĩq ω] ⊤ . Then, defining ˙ (•) = d(•) dt
the system can be written as:

ẋ1 = -x1 + x3x2 + ûd (3a) ẋ2 = -x2 -x3x1 + γx3 + ûq (3b) ẋ3 = -σ(x3 -x2) -τL + εx1x2 (3c)
The control problem consists now in stabilizing system (3) around an operating regime (x 1d , x 2d , x 3d ) moreover, assuming that τL is unknown. Furthermore, we shall also consider parametric uncertainty in the other variables.

III. THE CONTROLLER

The control approach consists in exploiting the physical properties of the system. Firstly, we observe that the subsystem given by the first two equations in (3) has a stable equilibrium at the origin whenever x3(t) is regarded as an external "input", the controls and γ are set to zero; as a matter of fact, the system is input to state stable with respect to the "input" x3 when ûd = ûq ≡ 0. Hence, the control is designed with aim at:

• keeping the cascaded structure2 ;

• choosing an operating point for the current variables x1 and x2 such that any desired velocity x3 can be achieved (different from zero).

To that end, and as the motivation will become clear later, the operating "point" is set to:

x 1d (t) ̸ = -σ/ε x 2d := x 3d + ϑ + ẋ3d εx 1d + σ (4a) ϑ := τL -εx 1d x 3d εx 1d + σ (4b)
By assumption τL is unknown hence so is the operating point x 2d . Introducing an estimate of τL which we denote τL, we define

(set-point) x2d := x 3d + τL -εx 1d x 3d εx 1d + σ (5a) (tracking) x2d := x 3d (t) + ẋ3d (t) + τL -εx 1d (t)x 3d (t) εx 1d (t) + σ (5b)
and we shall design an adaptation law for x2d . The control design strategy is, as in [START_REF] Petrović | Interconnection and damping assignement approach of PM synchronous motors[END_REF], to steer x2 to x 2d and x2 to x2. Proposition 1 (Set-point control) Let x id , i = 1, 2, 3 be constant. Consider the system (3) in closed-loop with the controller

ûd := x 1d -x2d x3(t) ûq := -γx3(t) + x 1d x3(t) + x2d τL := -α ′ e3(εx 1d + σ) , α ′ > 0 with x 1d ̸ = -σ/ε, x2d
as in (5a). Define the error variables ei := xi -x id and x2d := x2d -x 2d . Then, the origin of the closed-loop system i.e. the point (e1, e2, e3, x2d ) = (0, 0, 0, 0) is globally asymptotically stable.

We shall prove the previous proposition as a corollary of the more general case of trajectory tracking control. Proposition 2 (Tracking control) Let t → x id be continuously differentiable functions, bounded and with bounded derivatives satisfying (4). Consider the system (3) in closed-loop with the controller

ûd := x 1d -x2d x3(t) + ẋ1d (7a) ûq := -γx3(t) + x 1d x3(t) + x2d + ẋ2d (7b) τL := -α ′ e3(εx 1d (t) + σ) , α ′ > 0 (7c)
with either ẋ1d ≡ 0 or ε = 0, x2d as in (5b). Define x2d := x2d -x 2d . Then, the origin of the closed-loop system i.e. the point (e1, e2, e3, x2d ) = (0, 0, 0, 0) is uniformly globally exponentially stable.

Proof. The closed-loop equations. Define ê2 := x2 -x2d hence, we observe the following useful identities: ê2 -e2 = -x 2d := x 2d -x2d ; e2 = ê2 + x2d and x2 = ê2 + x2d + x 2d . Consider first the dynamic equation of the estimation error x2d . To that end, we differentiate x 2d from (4a) to obtain

ẋ2d := ẋ3d + θ + ˙ x 3d εx 1d + σ (8) θ = - (εx 1d + σ)(ε ẋ1d x 3d + εx 1d ẋ3d ) + (τL -εx 1d x 3d )ε ẋ1d (εx 1d + σ) 2 .
Correspondingly, differentiating (5a) we obtain

ẋ2d := ẋ3d + θ + ˙ x 3d εx 1d + σ (9) θ = ( τL -ε ẋ1d x 3d -εx 1d ẋ3d ) (εx 1d + σ) - (τL -εx 1d x 3d )ε ẋ1d (εx 1d + σ) 2 .
Define α(t) := α ′ (εx 1d (t) + σ). Subtracting ( 8) from ( 9) and using (7c) we obtain

ẋ2d = -α(t)e3 + (τL -τL)ε ẋ1d (εx 1d + σ) 2 . ( 10 
)
By assumption, either ẋ1d ≡ 0 or ε = 0. In either case

ẋ2d = -α(t)e3 . ( 11 
)
Next, we derive the error dynamics for e1 and ê2. For this, we use in (3) ûd as defined in (7a) and, in (3b), we use ûq = ûq ± γx3(t) and (7b) to obtain

ė1 = -e1 + x3(t)ê2 (12a) ė2 = -ê2 -x3(t)e1 (12b)
Finally, the e3 equation of the error dynamics is obtained by direct computations. Firstly, we add

±εx 1d x2 ± εx 1d x 2d ± σ(x 2d -x 3d ) = 0
to the right-hand-side of Equation (3c) to obtain, using (4),

ė3 = -σe3 + (σ + εx 1d )e2 + εx2e1 (13) 
Then, using the identities introduced at the beginning of the proof, in Equation ( 13) we obtain

ė3 = -σe3 + (σ + εx 1d )x 2d + (σ + εx 1d )ê2 + εx2(t)e1 . ( 14 
)
Defining ξ1 := [e3 x2d ] ⊤ , ξ2 := [e1 ê2]
⊤ the previous equations can be put together in the compact ("cascaded") form

ξ1 = f1(t, ξ1) + G(t, ξ1, ξ2)ξ2 (15a) ξ2 = f2(t, ξ2) (15b)
where

G(t, ξ1, ξ2) := [g(t, ξ1, ξ2) ⊤ [0 0] ⊤ ] ⊤ and f1(t, ξ1) := [ -σ (σ + εx 1d (t)) -α ′ (σ + εx 1d (t)) 0 ] ξ1 g(t, ξ1, ξ2) := [ ε(ξ22 + ξ12 + x 2d (t)) (σ + εx 1d (t)) ] f2(t, ξ2) := [ -1 ξ1(t) + x 3d (t) -ξ1(t) -x 3d (t) -1 ] [ ξ21 ξ22 
] .

Forward completeness. Let [t•, tmax) denote the maximal interval of definition of solutions and define

v2(ξ2(t)) := 1 2 |ξ2(t)| 2 .
The total time-derivative of v2 yields, using (15a),

v2(ξ2(t)) = -|ξ2(t)| 2 .
That is,

|ξ2(t)| ≤ |ξ2(t•)| e -(t-t•) ∀ t ∈ [t•, tmax) . ( 16 
)
The interconnection term g in (15a) satisfies, along solutions, and on on the interval of definition of the latter,

|g(t, ξ1(t), ξ2(t))| ≤ c + ε[ |ξ12(t)| + |ξ22(t)| ]
where c is a positive number independent of the initial conditions -it depends only on bounds on the reference trajectories x 2d (t) and x 3d (t). Using this, and defining

v1(ξ1) := 1 2 |ξ11| 2 + 1 2α ′ |ξ12| 2 . ( 17 
)
it is direct to obtain that the time-derivative of

v(t) := v1(ξ1(t)) + v2(ξ2(t)) , ( 18 
)
along the trajectories generated by (15a) and ( 12), satisfies

v(t) ≤ c |ξ1(t)| |ξ2(t)| + ε[ |ξ1(t)| 2 |ξ2(t)| + |ξ2(t)| 2 |ξ1(t)| ] .
Using the triangle inequality on the bound above and ( 16) we obtain that there exists c ′ : R ≥0 → R ≥0 such that

v(t) ≤ c ′ (|ξ2(t•)|)v(t) ∀ t ∈ [t•, tmax) .
Integrating on both sides, we obtain that the solutions may not grow to infinity faster than exponentially and that tmax isfinite.

Stability. Since the system is forward complete, we can view it as a cascaded nonlinear time-varying system -cf. [START_REF] Loría | From feedback to cascade-interconnected systems: Breaking the loop[END_REF]. Then, the stability analysis is considerably simplified. Firstly we observe that the system ξ2 = f2(t, ξ2) has a globally exponentially stable equilibrium at the origin. A simple inspection shows the same property for system ξ1 = f1(t, ξ1). By assumption, either ε = 0 or x 1d is constant hence, ξ1 = f1(t, ξ1) is linear time-invariant; its characteristic polynomial is either

λ 2 + λσ + (εx 1d + σ) 2 α ′ = 0
for ε ̸ = 0 and constant x 1d > -σ/ε or,

λ 2 + λσ + σ 2 α ′ = 0
for ε = 0 and possibly time-varying x 1d . In either case, the origin is exponentially stable for any α ′ > 0.

Uniform global exponential stability of (ξ1, ξ2) = (0, 0) follows observing that g in (15a) has linear growth with respect to ξ1 and invoking a theorem along the lines of the main result in [START_REF] Saberi | Global stabilization of partially linear systems[END_REF], more precisely we can invoke [START_REF] Panteley | Growth rate conditions for stability of cascaded time-varying systems[END_REF]Theorem 4]. Finally, we observe that

[ x2d e2 ] = [ 1 0 1 1 ] [ x2d ê2 
] .

The result follows.

IV. ISS OF THE CLOSED-LOOP SYSTEM

Even though the model (1) covers a number of case-studies used in the literature important physical aspects which entail current-dependence variations of inductances are neglected. The errors caused by neglecting these phenomena which affect the machine performance under specific regimes may be, to some extent, compensated for by introducing parametric uncertainty and additive disturbances to the model [START_REF] Li | Analysis of the chaotic phenomena in permanent-magnet synchronous motors based on Poincaré map[END_REF]. We show that the controllers of Proposition 2 render the closed-loop system ISS with respect to external perturbations. In addition, in the following section we illustrate in simulation the robustness of our controllers with respect to measurement noise.

ûd (x3) := ûd (x3) * + ν1 (19a) ûq(x3) := ûq(x3) * + ν2 (19b)
where ν1 and ν2 are considered to be external (additional) inputs; these may contain perturbations to the system, measurement noise, additional control terms, etc. The closed-loop equations with (3a) and (3b) yield

ė1 = -e1 + x3(t)ê2 + ν1 (20a) ˙e2 = -ê2 -x3(t)e1 + ν2 . ( 20b 
) Define V (ξ2) := 0.5ξ 2 2 with ξ2 = col[e1 ê2] and ν = col[ν1 ν2].
The time derivative of V (ξ2) along the trajectories of (20) yields

V (ξ2) ≤ -|ξ2| 2 + ξ ⊤ 2 ν (21)
From ( 21) one can see that the system is ISS from the input ν with state ξ2. Indeed, let

|ν| [t•,t) denote the sup τ ∈[t•,t)
|ν(τ )|; using this and integrating along trajectories we obtain

|ξ2(t)| ≤ |ξ2(t•)| e -1 2 (t-t•) + 1 2 |ν| [t•,t) . ( 22 
)
Thus, roughly speaking, the tracking errors ξ2 converge to a neighborhood of the origin, proportional to the size of the perturbation. A natural requirement is to reduce the size of this neighborhood that is, to impose an error tolerance despite the perturbations. This is a direct modification that can be carried out to the controller [START_REF] Yu | Energy-shaping of PM synchronous motor based on Hamiltonian systems theory[END_REF] provided that we add current feedback. Indeed, let ν1 and ν2 in [START_REF] Yan | A direct torque controlled surface mounted PMSM drive with initial rotor position estimation based on structural and saturation saliencies[END_REF] be defined by

ν1 := -k1e1 + d1(t) (23a) ν2 := -k2e2 + d2(t) (23b)
where ki ≥ 0 are design parameters and di now play the role of disturbances. Restarting the above computations from ( 21) we obtain, defining km := min{k1, k2} and d = (d1 d2) ⊤ ,

V (ξ2) ≤ -(km + 1) |ξ2| 2 + ξ ⊤ 2 d .
Hence,

|ξ2(t)| ≤ |ξ2(t•)| e -km +1 2 (t-t•) + 1 2(km + 1) |d| [t•,t) (24) 
It is clear that for ki = km = 0 that is, if no current feedback is applied, we recover the inherent robustness expressed by [START_REF] Goléa | Robust MRAC adaptive control of PMSM drive under general parameters uncertainties[END_REF] however, for positive values of km we see that the currents errors converge to the interior of a ball that depends on the norm of d but may be diminished at will, by enlarging km.

More "sophisticated" controls may be used: the gains k1, k2 may be functions of the state as opposed to constants. For instance, we may decide to make ki depend on the currents values i.e., ki := ki(ei). Let us reconsider [START_REF] Hadžiselimović | Magnetically nonlinear dynamic model of synchronous motor with permanent magnets[END_REF] with ν as in [START_REF] Kabziński | Adaptive backstepping control of a completely unknown permanent magnet motor[END_REF] and ki as defined above. We see that

V (ξ2) ≤ - 2 ∑ i=1 [e 2 i [1 + ki(ei)] -eidi] .
Then, the requirement is that the functions ki be such that:

(i) ki(ei) ≥ 0 ∀ ei ∈ R;
(ii) for ISS to hold, there must exist class K function µ such that whenever

[ki(ei) + 1]e 2 i |ei| ≥ |di| with i ∈ {1, 2}
we have V (ξ2) ≤ -µ(|ξ2|) .

Other "sector" nonlinearities may be of interest. For instance, one may use saturation terms such as -kisat(ei) with sat(•) being a smooth saturation function, such as tanh(•) or smooth "deadzone" curves such as a tanh(b sinh(cx))|x|. For suitably chosen parameters a, b and c this curve may be designed to be "approximately" linear with unitary slope outside of a neighborhood of x = 0 and have a very small slope inside the neighborhood.

One use of such function may be to avoid large overshoots. The functions ki may also be chosen to depend on the velocity errors e3. For instance, it seems reasonable that, since the variable of main interest is e3 we make the control gains large only for "large" velocity errors hence, we define ki := ki(|e3|) with ki of class K. The proofs for all these cases remain unchanged. Moreover, it should be clear that the calculations and discussion above hold for all cases previously studied: set-point and tracking with known and with unknown load.

V. SIMULATIONS

We have used SIMULINK TM of MATLAB TM to test our controllers in numeric simulations. The benchmark model is taken from the literature -cf. [START_REF] Ren | Nonlinear feedback control of chaos in permanent-magnet synchronous motor[END_REF] and is as follows: we set the system parameters to values leading to chaotic behavior in open loop i.e., σ = 5.46, γ = 30, ε = 0 τL = 10 and initial state values of 0.01. Several sets of simulations are presented covering the cases with and without disturbances and with and without load estimation. These simulation results illustrate the performance and robustness of all controllers previously introduced.

We use the adaptive controller of Proposition 2 under different conditions: with and without current feedback and with and without (time-varying) parametric uncertainty, additive disturbances and measurement noise. When we use the current feedback terms -cf. Eq. ( 23) both gains are set to k1 = k2 = k = 20. The adaptation gain in (7c) is set to α = 3 and α = 30. Measurement noise, disturbances and time-varying parametric uncertainty are generated by random normal Gaussian signals; parametric uncertainty varies from 0 to 20%. In the simulation experiment controls are switched on at t = 15s, the normalized reference signal x 3d (t) changes from different regimes going from sinusoidal (period = 2π and amplitude equal to 100) to steps (150 and zero) and finally to a chaotic regime. Reference changes occur at t = 30s, t = 60s and t = 90s. The simulation results are showed in Figures 12345.

In Figure 1 we show the system's normalized-velocity response in the worst-case scenario: no current feedback -k = 0 in [START_REF] Kabziński | Adaptive backstepping control of a completely unknown permanent magnet motor[END_REF], presence of additive disturbances, parametric uncertainty and measurement noise. The figure shows both the system's actual trajectory x3(t) and its reference x 3d (t). For the sake of comparison in Figure 2 we show a zoom on the system's response (normalized velocity x3(t)) in the four different scenarios. The window shows the transient response from the first step (to 150) to a steady-state zero-velocity reference, over the first 10 seconds. One can appreciate that, in the absence of noise and disturbances, the transient duration is significantly reduced using the state feedback terms in [START_REF] Kabziński | Adaptive backstepping control of a completely unknown permanent magnet motor[END_REF]. Correspondingly in the case of parametric uncertainties and noise, the effect of the latter is significantly reduced via the controls from Section IV. In Figure 3 we show the normalized velocity errors e3(t) for three different cases with and without noise and disturbances and with (k = 20) and without (k = 0) current feedback. From the zoomed plots one can clearly appreciate both the transient and steady-state improvement when additional feedback is used, as discussed in Section IV. Also, observe in the lower zoomed window in the zero-error in the ideal case when there is no parametric uncertainty nor noise even when no extra current feedback is used; that is using the output-feedback adaptive algorithm from Proposition 2. Finally, we remark from Figure 3 the steadystate oscillatory behavior of the velocity error when tracking the Lorenz reference (for t ≥ 90s); as we show in Figure 4, this error may be attenuated by increasing the adaptive gain α in (7c). Similar performance is observed for the estimation error ê2(t) in Figure 5. Remark 1 Regarding the Gaussian parametric variation considered in the simulation it goes without saying that an electronic component is not meant to vary randomly however, variations may be due to different phenomena, caused by many external unpredictable 'agents' affecting the system such as temperature which affects resistance not mentioning the simplistic model used which disregards nonlinear dependence of inductance with respect to angular position and current. Now, if we consider the case of inductances depending only on rotor position and we consider that the rotor position is to undergo a chaotic regime as much as constant or a sinusoidal the graph of the inductance variation as function of time may have an infinite number of "shapes". In this regard, it does not seem unnatural that a wide variety of possibilities regarding the variations of parametric uncertainty, around an average constant value may be covered by randomly-generated signals. Thus, in the simulation we consider σ(t k ) = σo + v(t k ) where σo is a nominal value and v(t k ) is a number randomly generated at each integration step t k .

VI. CONCLUSION

We have showed that adaptive tracking output regulation of PMSMs is achievable via a simple linear output feedback controller, provided that one chooses adequately the operating point for the quadrature axis current. Uniform global exponentially stable hence, ISS is proved. Robustness to measurement noise and parametric uncertainty is illustrated by simulations.
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 1 Fig. 1. Graph of the normalized velocity and reference in the worst-case scenario: without k = 0 in (23), uncertainty and noise.
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 2 Fig. 2. Zoom on the normalized velocity transient for the second step and reference in four scenarios.

Fig. 3 .

 3 Fig. 3. Graph of the normalized velocity errors and zooms. Three cases showed: (1) without extra gain ("k = 0") and without uncertainty nor noise; (2) with k = 0, uncertainty and noise and with extra gain k = 20 (current feedback), uncertainty and noise.

3 Fig. 4 .

 34 Fig. 4. Zoom on the normalized velocity errors during transient under state-feedback control. Two cases showed: α = 30 and α = 3; additive disturbances, measurement noise and time-varying parametric uncertainty present in both cases.

Fig. 5 .

 5 Fig. 5. Estimation errors ê2 (t) during transient, under state-feedback control, additive disturbances, measurement noise and time-varying parametric uncertainty. Two cases showed: α = 30 and α = 3.
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We remark at this point that cascades-based design has also been used in[START_REF] Petrović | Interconnection and damping assignement approach of PM synchronous motors[END_REF] for set-point control with known and unknown load torque.
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