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In this paper, we modified the three dimensional Navier-Stokes equations by adding a l-Laplacian. We provide upper bounds on the twodimensional Hausdorff measure H 2 l of N 0 ω = {x ∈ Ω ⊂ R 3 / ω(x, t) = 0} the level sets of the vorticity ω of solutions. We express them in terms of the Kolmogorov length-scale and the Landau-Lifschitz estimates of the number of degrees of freedom in turbulent flow. We also, under certain hypothesis recover the two-dimensional Hausdorff measure estimates for the usual 3D Navier-Stokes equations with potential force. Moreover, we show that the estimates depend on l, this result suggests that the modified Navier Stokes system is successful model of turbulence and the size of the nodal set H 2 l (N 0 ω ) leads the way for developing the turbulence theory.

Introduction

In this paper, we provide upper bounds on the two-dimensional Hausdorff measure H 2 l of N 0 ω the level sets associated with the vorticity of modified three dimensional Navier-Stokes equations. We modified the 3D Navier-Stokes system by adding a higher-order viscosity term to the conventional system du dt + ε (-△) l u -ν△u + (u.∇) u + ∇p = f (x) , in Ω × (0, ∞) divu = 0, in Ω × (0, ∞) , p(x + Le i , t) = p(x, t), u(x + Le i , t) = u(x, t) i = 1, ..., d t ∈ (0, ∞) u (x, 0) = u 0 (x) , in Ω, (1.1) on Ω = (0, L) d with periodic boundary conditions and (e 1 , ..., e d ) is the natural basis of R d . Here ε > 0 is the artificial dissipation parameter and ν > 0 is the kinematic viscosity of the fluid, l > 1. The functions u is the velocity vector field, p is the pressure, and f is a given force field. For ε = 0, the model is reduced to the Navier-Stokes system. In the work [START_REF] Younsi | Effect of hyperviscosity on the Navier-Stokes turbulence[END_REF], the strong convergence of the solution of this problem to the solution of the conventional system as the regularization parameter goes to zero, was established for each dimension d ≤ 4.

Mathematical model for such fluid motion has been used extensively in turbulence simulations (see e.g. [START_REF] Foias | Navier-Stokes Equations and Turbulence[END_REF]) also see Borue and Orsag [START_REF] Borue | Numerical study of three-dimensional Kolmogorov flow at high Reynolds numbers[END_REF][START_REF] Borue | Local energy flux and subgrid-scale statistics in threedimensional turbulence[END_REF]. For further discussion of theoretical results concerning (1.1 ), see [START_REF] Avrin | The Asymptotic Finite-dimensional Character of a Spectrally-hyperviscous Model of 3D Turbulent Flow[END_REF][START_REF] Avrin | Singular initial data and uniform global bounds for the hyperviscous Navier-Stokes equations with periodic boundary conditions[END_REF][START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires[END_REF][START_REF] Younsi | Effect of hyperviscosity on the Navier-Stokes turbulence[END_REF].

For the 3D Navier-Stokes system weak solutions of problem are known to exist by a basic result by J. Leray from 1934 [START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF], only the uniqueness of weak solutions remains as an open problem. Then the known theory of global attractors of infinite dimensional dynamical systems is not applicable to the 3D Navier-Stokes system.

In particular, in case one accepts the point of view that the dimension of a global attractor for the Navier-Stokes equations is associated with the number of degrees of freedom in turbulent flows, then the two-dimensional Hausdorff measure H 2 l (N 0 ω ) is an important way to the understanding of turbulence theory [START_REF] Younsi | Effect of hyperviscosity on the Navier-Stokes turbulence[END_REF].

We are interested in the three dimensional case. Let P m be the projection onto the first m eigenspaces of the Stokes operator A = -△ and let N 0 ω = {x ∈ Ω ⊂ R 3 / ω(x, t) = 0} the nodal sets of the vorticity ω for solutions of the equation (1.1 ). We provide an upper bound on the size of the nodal sets H 2 l (N 0 ω ) and we show that, the bounds necessarily depend on m and l this dependence is a fractional power of l. Thus answering a question raised by J. Avrin [START_REF] Avrin | The Asymptotic Finite-dimensional Character of a Spectrally-hyperviscous Model of 3D Turbulent Flow[END_REF]. We also obtain here scaleinvariant estimates on the two-dimensional Hausdorff measure H 2 l (N 0 ω ) in terms of the Landau-Lifschitz theory of the number of degrees of freedom in turbulent flow. Since expressing the above estimates in terms of the (dimensionless) Grashoff number G. In order to obtain an upper bound on the Hausdorff measure of level sets associated, we use the method from [START_REF] Kukavica | Hausdorff length of level sets for solutions of the Ginzburg Landau equation[END_REF] (see also [START_REF] Donnelly | Nodal sets for eigenfunctions of the Laplacian on surfaces[END_REF], [START_REF] Donnelly | Nodal sets of eigenfunctions: Riemannian manifolds with boundary[END_REF]).

The main purpose of the present article is to study the dependence of the twodimensional Hausdorff measure H 2 l (N 0 ω ) on the parameter l. Using a family of Kolmogorov flows as base flows we can deduce also upper bounds on the Hausdorff measure H 2 l (N 0 ω ). We also find here that the upper bounds on the two-dimensional Hausdorff measure of N 0 ω converges to the corresponding upper bounds on H 2 1 (N 0 ω ) the two-dimensional Hausdorff measure of the nodal sets of the usual 3D Navier-Stokes as l = 1. Under certain hypothesis we recover the two-dimensional Hausdorff measure H 2 1 (N 0 ω ) estimates for the usual 3D Navier-Stokes equations with potential force. We extend the method from [START_REF] Kukavica | Level sets of the vorticity and the stream function for the 2D periodic Navier-Stokes equations with potential forces[END_REF] to a 3D Navier-Stokes with general forcing modified by l-Laplacian. These estimates are obtained without using the Dirichlet quotients [START_REF] Kukavica | Level sets of the vorticity and the stream function for the 2D periodic Navier-Stokes equations with potential forces[END_REF].

We note, however, that for the incompressible 3D Navier-Stokes equations with general force, it seems not so easy to get some better estimates on the Hausdorff measure of the level sets associated with the vorticity as in the case of potential force studied in [START_REF] Kukavica | Level sets of the vorticity and the stream function for the 2D periodic Navier-Stokes equations with potential forces[END_REF][START_REF] Kukavica | Length of vorticity nodal sets for solutions of the 2D Navier-Stokes equations[END_REF] for periodic solutions of the 2D. Related results for the 3D Navier-Stokes equations (with general forcing) can be found in [START_REF] Constantin | Navier Stokes equations and area of interfaces[END_REF]. The upper bounds on the Hausdorff measures of the level sets associated with solutions of some other partial differential equations were obtained in [START_REF] Donnelly | Nodal sets of eigenfunctions: Riemannian manifolds with boundary[END_REF], [START_REF] Han | On the geometric measure of nodal sets of solutions[END_REF], [START_REF] Hardt | Nodal sets of solutions of elliptic equation[END_REF], [START_REF] Kukavica | An upper bound for the winding number for solutions of the Ginzburg Landau equation[END_REF], [START_REF] Kukavica | Hausdorff length of level sets for solutions of the Ginzburg Landau equation[END_REF], [START_REF] Kukavica | Nodal volumes for eigenfunctions of analytic regular elliptic problems[END_REF], and [START_REF] Lin | Nodal sets of solutions of elliptic and parabolic equations[END_REF].

The paper is organized as follows. In Section 2, we present the relevant mathematical framework for the paper. In Section 3, we provide upper bounds for the two-dimensional Hausdorff measure H 2 l of the level sets associated with the vorticity of the Navier-Stokes system with hyperdissipation.

Notations and preliminaries

In this section we introduce notations and the definitions of standard functional spaces that will be used throughout the paper. We denote by H m (Ω), the Sobolev space of L per periodic functions. These spaces are endowed with the inner product

(u, v) = |β|≤m (D β u, D β v) L 2 (Ω) and the norm u m = |β|≤m ( D β u 2 L 2 (Ω) ) 1 2 .
Each u ∈ L per can be identified with its Fourier expansion

u (x) = k∈Z 3 u k exp(2iπk. x L )
where

u k ∈ C 3 satisfy u k = u -k . Then u is in L 2 if and only if u 2 L 2 = |Ω| k∈Z 3 |u k | 2 < ∞, |Ω| = L 3 , then the Sobolev space u ∈ H m (Ω), m ∈ R + can be characterized by H m (Ω) = {u, u k = u -k , k∈Z 3 k 2m |u k | 2 < ∞.} H -m (Ω) denote the dual space of H m (Ω).
We denote by Ḣm (Ω) the subspace of H m (Ω) with, zero average

Ḣm (Ω) = {u ∈ H m (Ω) ; Ω u (x) dx = 0}.
For m = 0, we have Ḣm (Ω) = L2 (Ω).

• We introduce the following solenoidal subspaces V s , s ∈ R + which are important to our analysis Section 2]. We refer the reader to R.Temam [START_REF] Temam | Navier-Stokes Equations[END_REF] for details on these spaces. Here the faces of Ω are numbered as

V 0 (Ω) = {u ∈ L2 (Ω) , divu = 0, u.n | Σi = -u.n | Σi+3 , i = 1, 2, 3}; V 1 (Ω) = {u ∈ Ḣ1 (Ω) , divu = 0, γ 0 u | Σi = γ 0 u | Σi+3 , i = 1, 2, 3}. V 2 (Ω) = {u ∈ Ḣ2 (Ω) , divu = 0, γ 0 u | Σi = γ 0 u | Σi+3 , γ 1 u | Σi = -γ 1 u | Σi+3 , i = 1, 2, 3}, see [29, Chapter III,
Σ i = ∂Ω ∩ {x i = 0} and Σ i+3 = ∂Ω ∩ {x i = L} , i = 1, 2, 3.
Here γ 0 , γ 1 are the trace operators and n is the unit outward normal on ∂Ω.

• The space V 0 is endowed with the inner product (u, v) L 2 (Ω) and norm

u = (u, u) 1′2 L 2 (Ω) . • V 1 is the Hilbert space with the norm u 1 = u V1 . The norm induced by Ḣ1 (Ω) and the norm ∇u are equivalent in V 1 . • V 2 is the Hilbert space with the norm u 2 = u V2 . In V 2 the norm induced by Ḣ2 (Ω) is equivalent to the norm △u . V ′
s denote the dual space of V s . Let P be the orthogonal projection in L 2 per R 3 3 with the range H. Let A = -P △ the Stokes operator. It is easy to check that Au = -△u for every u ∈ D (A). We recall that the operator A is a closed positive self-adjoint unbounded operator, with D (A) = {u ∈ V 0 , Au ∈ V 0 }. We have in fact,

D (A) = Ḣ2 (Ω) ∩ V 0 = V 2 .
The eigenvalues of A are {λ j } j=∞ j=1 , 0 < λ 1 ≤ λ 2 ≤ ...and the corresponding orthonormal set of eigenfunctions {w j } j=∞ j=1 is complete in V 0 Aw j = λ j w j , w j ∈ D(A), ∀j.

The spectral theory of A allows us to define the powers A l of A for l ≥ 1, A l is an unbounded self-adjoint operator in V 0 with a domain D(A l ) dense in V 2 ⊂ V 0 . We set here

A l u = (-△) l u for u ∈ D A l = V 2l ∩ V 0 .
The space D A l is endowed with the scalar product and the norm

(u, v) D(A l ) = A l u, A l v , u D(A l ) = {(u, v) D(A l ) } 1 2 .
(2.1)

In the case for l > 0, we have

D A l = {u ∈ H, ∞ j=1 λ 2l j (u, w j ) 2 < ∞}. For l ∈ R
the scalar product and the norm in (2.1 ) can wiriten alterntivly as

(u, v) D(A l ) = ∞ j=1 λ 2l j (u, w j )(v, w j ), u D(A l ) = { ∞ j=1 λ 2l j (u, w j )} 1 2 (2.2)
and for u ∈ D(A l ) we can write

A l u = ∞ j=1 λ l j (u, w j )w j .
Let us now define the trilinear form b(., ., .) associated with the inertia terms

b (u, v, w) = 3 i,j=1 Ω u i ∂v j ∂x i w j dx.
The continuity property of the trilinear form enables us to define (using Riesz representation Theorem) a bilinear continuous operator B (u, v); V 2 × V 2 → V ′ 2 will be defined by We recall some well known inequalities that we will be using in what follows.

B (u, v) , w = b (u, v, w) , ∀w ∈ V 2 . ( 2 
Young's inequality

ab ≤ σ p a p + 1 qσ q p b q , a, b, σ > 0, p > 1, q = p p -1 . (2.5) 
Poincaré's inequality The set D(e αA ) is called the Gevrey class of operator of order α ≥ 0 [START_REF] Foias | Gevrey class regularity for the solutions of the Navier Stokes equations[END_REF]. Our use of Gevrey classes shall be based on the following consideration. Denote with N 0 h = {x ∈ Ω : h(x) = 0} the zero (nodal) set of a function h in a set Ω, and let H 2 be the two-dimensional Hausdorff measure operating on subsets of R 3 (area in this case).

λ 1 u 2 ≤ A 1 2 u 2 for all u ∈ V 0 . (2.6) Denoting u 2 G(t) = e tA

Level Sets of the Vorticity Function

Using the operators defined above, we can write the modified system (1.1 ) in the evolution form

du dt + εA l u + νAu + B (u, u) = f (x) , in Ω × (0, ∞) u 0 (x) = u 0 , in Ω. (3.1)
The existence and uniqueness results for initial value problem (1.1 ) can be found in [START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires[END_REF]. The following theorem collects the main result in this work Theorem 3.1. For l ≥ d+2 4 , d is the space dimension, for ε > 0 fixed, f ∈ L 2 (0, T ; V ′ 0 ) and u 0 ∈ V 0 be given. There exists a unique weak solution of (1.1 ) which satisfies

u ∈ L 2 (0, T ; V l ) ∩ L ∞ (0, T ; V 0 ) , ∀T > 0.
The modern understanding of turbulence is that it is a collection of weakly correlated vortical motions, which, despite their intermittent and chaotic distribution over a wide range of space and time scales, actually consist of local characteristic 'eddy' patterns that persist as they move around under the influences of their own and other eddies' vorticity fields [START_REF] Hunt | Turbulence Structure and Vortex Dynamics[END_REF].

In fluid mechanics,the Reynolds number is important in analyzing any type of flow when there is substantial velocity gradient (i.e. shear.) It indicates the relative significance of the viscous effect compared to the inertia effect. The Reynolds number is proportional to inertial force divided by viscous force (see [START_REF] Foias | Navier-Stokes Equations and Turbulence[END_REF] )

Re = U l ν U 2 = L -2 u 2 2 (3.2)
where l the characteristic scale of the forcing and . is the long-time-average g(.) = lim

T →∞ sup( 1 T T 0 g(t)dt). (3.3) 
With Reynolds number calculator we can analyze what makes fluid flow regime laminar and what is needed to force the fluid to flow in turbulent regime. Experimental observations show that for 'fully developed' flow, laminar flow occurs when Re < R l e and turbulent flow occurs when Re > R t e. In the interval between R l e and R t e, laminar and turbulent flows are possible ('transition' flows) [START_REF] Foias | Navier-Stokes Equations and Turbulence[END_REF] and references therein. The nature of the vortex formed in the fluid flow depends strongly on the Reynolds number( [START_REF] Foias | Navier-Stokes Equations and Turbulence[END_REF]; and references therein). These transition Reynolds numbers are also called critical Reynolds numbers, and were studied by Osborne Reynolds around 1895 [START_REF] Reynolds | On the experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous[END_REF]. The transition to turbulence and the constructon of vortex are delayed by increasing the critical Reynolds number. If we assume that the critical Reynolds number R c e for the onset of vortex shedding is, atteint for µ is a positive constant.

Another nondimensional quantity that we use often is the so-called Grashof number, which is proportional to the forcing term f . Hence, we define the Grashof numbers in the 3-dimensional case, as in Foias, Manley, Rosa and Temam [START_REF] Foias | Navier-Stokes Equations and Turbulence[END_REF] by

Gr(f ) = 1 ν 2 λ 3/4 1 f (3.7)
The effects of variation in Grashof number on vortex have been shown in the work of Olson and Titi [START_REF] Olson | Determining modes and Grashof number in 2D turbulence -A numerical case study[END_REF], they keep the spatial structure of the forcing function fixed and vary the Grashof number by varying the amplitude of the forcing function. Namely, they vary the Grashof number by rescaling the forcing function by a multiplicative factor. This is equivalent to changing the viscosity or the size of the domain.

As increases, or equivalently as the viscosity decreases, the turbulent flow becomes more energetic and one would expect the number of numerically determining modes to increase as well. There are many reasons to suppose that the existene and intensty of vortex in our work should increase as the grashof numbre increases [START_REF] Henshaw | Numerical experiments on the interaction between the large and small-scale motions of the Navier-Stokes equations[END_REF][START_REF] Olson | Determining modes and Grashof number in 2D turbulence -A numerical case study[END_REF][START_REF] Perot | Turbulence Modeling Using Body Force Potentials[END_REF]. In [START_REF] Henshaw | Numerical experiments on the interaction between the large and small-scale motions of the Navier-Stokes equations[END_REF] zero forcing implies that the attractor has been reduced to zero. Since all solutions decay eventually to zero in the unforced case. This intuition is supported by existing theoretical critucal numbre G c r(f ) for the existence of level curves of representative vorticity fields.

Note the flow for Gr(f ) ≥ G c r(f ) has noticeably more large scale structure compared to the flow for Gr(f ) ≤ G c r(f ). This is consistent with the energy spectra, where most of the energy is in the lowest modes, that is, in the large spatial scales and eddies when the Grashof number is large [START_REF] Olson | Determining modes and Grashof number in 2D turbulence -A numerical case study[END_REF].

The effect of a body force on vorticity production and turbulence generation in a fluid flow is described by the Grashof numbre.

In addition, we assume without loss of generality that f is bounded. Than, there exist a maximum Grashof numbre G max r(f ) and a positive constant ρ such that the body force f satisfies the follwing inequality where

f ≤ ν 2 λ 3/4 1 G max r(f ) = ρ. ( 3 
F = ∇ × f. Theorem 3.2. [19]Suppose that a nonzero function h ∈ V 1 satisfies e αA h 1 ≤ M h 1 Then H 2 N 0 h ≤ C 1 L 2 (1 + log M ) e C2L/α .
Hereafter, C i for i ∈ N, stand for universal constants. The above statement is a special case of [START_REF] Kukavica | Hausdorff length of level sets for solutions of the Ginzburg Landau equation[END_REF]Theorem 2.1]. It will be used in conjunction with the following statement: Lemma 3.3. [START_REF] Kukavica | Level sets of the vorticity and the stream function for the 2D periodic Navier-Stokes equations with potential forces[END_REF]Let u ∈ V 0 , and let ω and be its vorticity. If

A 1 2 e αA 1 2 u ≤ M A 1 2 u (3.12)
for some M > 0, then, for every c ∈ R

e αA 1 2 (ω -c) ≤ M ω -c . (3.13) 
Using (3.19 ) and the following inequality

(f, u) ≥ - 1 2 f 2 - 1 2 u 2 (3.23)
Because the increasing sequence 0 ≤ λ 1 ≤ λ ≤ λ m we have 1 2

d dt u 2 ≥ (-νλ A 1 2 u 2 -(ελ l 2 m + 1 + β 2 2β 2 ) u 2 (3.24) note that since A 1 2 u ≤ C 3 we have that 1 2 d dt u 2 ≥ -C 3 -(ελ l 2 m + 1 + β 2 2β 2 ) u (3.25)
if we set η = -(ελ

l 2 m + 1 + β 2 2β 
2 ) then we have from (3.25 ) that 1 2

d dt u 2 ≥ -C 3 + η u .
Integrating the above inequality from 0 to t, we get

u 2 ≥ -C 3 η (1 -exp(ηt)) + u(0) 2 exp(ηt) (3.26) 
or, since -C 3 η (1exp(ηt)) ≥ 0.

Thus, we have the inequality (3.21 ).

Proposition 3.6. Let u ≥ β f and u 0 = 0, and suppose that u 0 ≤ C 3 νλ 1 2

1 .Then we have that

l (ω (t)) ≤ C 1 L(1 + 1 2 Log λ m λ 1 + (ελ l 2 m + 1 + β 2 2β 2 )t)e C 2 L αt for t ≥ 0, (3.27) 
for any α ≤ νλ Proof. By Theorem 3.4 and Lemma 3.5, we get for t ≥ 0 the following

A 1 2 e αtA 1 2 u ≤ 2 A 1 2 u 0 ≤ 2λ 1 2 u 0 (3.28)
and use the inequality (3.21 ) to get

A 1 2 e αtA 1 2 u ≤ 2λ 1 2 u (t) exp(ελ l 2 m + 1+β 2 2β 2 )t ≤ 2( λ λ1 ) 1 2 A 1 2 u (t) exp(ελ l 2 m + 1+β 2 2β 2 )t. (3.29)
The rest follows by combining (3.29 ) with Lemma 3.3 and Theorem 3.2.

The foundational result for our two-dimensional Hausdorff measure estimates of N 0 ω = {x ∈ Ω ⊂ R 3 / ω(x, t) = 0} the level sets of the vorticity ω of solutions is This result holds independently of m, with C 11 independent of m. The estimate grows in l at a rate lower than l 6 . If we impose the condition l = 1, the estimates become sup t→∞ l (ω (t)) ≤ C 11 G 1 6 . This result recover the usual 3D Navier-Stokes equations estimates, for the two-dimensional Hausdorff measure H 2 1 (N 0 ω ) estimates of the level sets associated with the vorticity. Here again our results indicate that under certain conditions the upper bounds for H 2 1 (N 0 ω ) converge to the associated upper bounds of the two-dimensional Hausdorff measure H 2 1 (N 0 ω ) estimates for the usual 3D Navier-Stokes equations with potential force.

Conclusion

Proving global regularity for the 3D Navier-Stokes equations is one of the most challenging outstanding problems in nonlinear analysis. The main difficulty in establishing this result lies in controlling certain norms of vorticity. More specifically, the vorticity stretching term in the 3D vorticity equation forms the main obstacle to achieving this control, C. Foias [START_REF] Foias | The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory[END_REF] and estimates on the number of degrees of freedom for the Navier-Stokes equations and its closure models are a measure of the complexity of the system J. Avrin [START_REF] Avrin | The Asymptotic Finite-dimensional Character of a Spectrally-hyperviscous Model of 3D Turbulent Flow[END_REF]. This paper proposed another interesting way to estimate this complexity through bounding the size of the nodal set for the vorticity and expressing this estimate in terms of G.

We provide upper bounds for the two-dimensional Hausdorff measure H 2 l of the level sets associated with the vorticity of modified three dimensional Navier-Stokes equations this bounds depend on m and l, this dependence is a fractional power of l. Thus answering a question raised by J. Avrin [START_REF] Avrin | The Asymptotic Finite-dimensional Character of a Spectrally-hyperviscous Model of 3D Turbulent Flow[END_REF].

Another interesting way to study decaying turbulence in the three-dimensional incompressible Navier-Stokes equations is to prvide a numerical investigation of our theoretical results on the size of the nodal set for the vorticity in the dependence of turbulence structure and vortex dynamics, as was done in [START_REF] Olson | Determining modes and Grashof number in 2D turbulence -A numerical case study[END_REF] for the number of numerically determining modes in the 2D Navier-Stokes equations. It would be interesting to see how the turbulence structure depend on l.

. 3 )

 3 Recall that for u satisfying ∇.u = 0 we have b (u, u, u) = 0 and b (u, v, w) = -b (u, w, v) .(2.4)

1 2 u 1 2 u, e tA 1 2

 211 and (u, v) G(t) = (e tA v).

. 8 )

 8 Since f is srictement positive we get u relation between u and f u ≥ β f . (3.10) Moreover, according to the definition of the Gevrey norm and the relation (3.10 ) we get u G ≥ β f G . The vorticity, ω = ∇ × u satisfies the equation ( d dt + u.∇ + ν△ + ε (-△) l )ω = ω.∇u + F (3.11)

For the rest of the paper, let u(t) be an arbitrary solution of the the modified Navier Stokes system (1.1 ) with u(0) = u 0 . Theorem 3.4. Let u ≥ β f for any α ≤ νλ Proof. For any α, t ≥ 0, We take the inner product of (3.1 ) with u, to obtain 1 2

(3.15) then using the Young's inequality (2.5 ) we have 1 2

this give 1 2

We get for

. We use the following inequality from [START_REF] Foias | Gevrey class regularity for the solutions of the Navier Stokes equations[END_REF] and [START_REF] Kukavica | Level sets of the vorticity and the stream function for the 2D periodic Navier-Stokes equations with potential forces[END_REF]Section 4] 

(3.16)

to obtain

To establish (3.14 ) we use the estimate [START_REF] Kukavica | Level sets of the vorticity and the stream function for the 2D periodic Navier-Stokes equations with potential forces[END_REF] a µ(1

By applying the Poincaré's inequality (2.6 ), we have that for µ = Au G(t) and

.

Letting α ≤ νλ

C6 = C 3 , the term with a logarithm in (3.18 ) is negative at t = 0, and thus (3.18 ) implies that A Theorem 3.4. implies that, for any solution u(t) of (1.1 ), the space analyticity radius of u(t) goes to infinity as t → ∞.

Let Ω be a periodic box, for simplicity assume Ω = (0, L) 3 , A has eigenvalues 0 < λ 1 < λ 2 < ... with corresponding eigenspaces E 1 , E 2 , ... Let P m be the projection on the eigenspaces E 1 ⊕E 2 ⊕...⊕E m and let Q m = I -P m we have u 2 = P m u 2 + Q m u 2 and we also have from (2.2 ) that A l u ≤ λ l m u for every l ≥ 0 and u ∈ D(A l ).

For any t ≥ 0, let ω(t) be the vorticity of u(t). We shall, for any fixed t > 0, estimate the quantity

Recall that for a function h : Ω → R, N 0 h = {x ∈ Ω : h(x) = 0}. We need the following fact Lemma 3.5. Let u ≥ β f for any β ≥ 0. Then u (t) ≥ u(0) exp(ηt) for every t ≥ 0.

(3.21)

Taking the scalar product of both sides of (1.1 ) by u(t) and using (2.4 ), we have that 1 2

Theorem 3.7. Let u ≥ β f and u 0 = 0, and suppose that u 0 ≤ C 3 νλ

m for t ≥ t 0 , (3.30)

for any α ≤ νλ

the inequality (3.27 ) implies

Since λ m ≥ λ 1 (3.31 ) follows directly from the above inequality.

The estimate of the Hausdorff measure H 2 l grows in m due to the term λm λ1 but at a rate lower than l 3 .

Proposition 3.8. Let u ≥ β f and u 0 = 0, and suppose that u 0 ≤ C 3 νλ

for any α ≤ νλ in 3D (see e.g. [START_REF] Avrin | The Asymptotic Finite-dimensional Character of a Spectrally-hyperviscous Model of 3D Turbulent Flow[END_REF][START_REF] Foias | Navier-Stokes Equations and Turbulence[END_REF][START_REF] Temam | Infinite-Dimensional Dynamical Systems in Mechanics and Physics[END_REF]) is an upper bound for ( l0 lǫ ) 2 . Hence, we obtain for the Hausdorff measure of the equation (1.1 ) the following estimate in terms of the Grashoff number G. Proposition 3.9. Let u ≥ β f and u 0 = 0, and suppose that u 0 ≤ C 3 νλ Then for any α ≤ νλ