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HAUSDORFF MEASURE OF VORTICITY NODAL SETS FOR

THE 3D HYPERVISCOUS NAVIER STOKES EQUATIONS WITH

GENERAL FORCES

ABDELHAFID YOUNSI

Abstract. In this paper, we modified the three dimensional Navier-Stokes
equations by adding a l-Laplacian. We provide upper bounds on the two-
dimensional Hausdorff measure H2

l
of N0

ω = {x ∈ Ω ⊂ R3/ ω(x, t) = 0} the
level sets of the vorticity ω of solutions. We express them in terms of the
Kolmogorov length-scale and the Landau–Lifschitz estimates of the number
of degrees of freedom in turbulent flow. We also, under certain hypothesis
recover the two-dimensional Hausdorff measure estimates for the usual 3D
Navier–Stokes equations with potential force. Moreover, we show that the
estimates depend on l, this result suggests that the modified Navier Stokes
system is successful model of turbulence and the size of the nodal set H2

l
(N0

ω)
leads the way for developing the turbulence theory.

1. Introduction

In this paper, we provide upper bounds on the two-dimensional Hausdorff mea-
sure H2

l of N0
ω the level sets associated with the vorticity of modified three di-

mensional Navier-Stokes equations. We modified the 3D Navier-Stokes system by
adding a higher-order viscosity term to the conventional system

du

dt
+ ε (−△)l u− ν△u+ (u.∇)u+∇p = f (x) , in Ω× (0,∞)

divu = 0, in Ω× (0,∞) ,
p(x+ Lei, t) = p(x, t), u(x+ Lei, t) = u(x, t) i = 1, ..., d t ∈ (0,∞)

u (x, 0) = u0 (x) , in Ω,

(1.1)

on Ω = (0, L)
d
with periodic boundary conditions and (e1, ..., ed) is the natural

basis of Rd. Here ε > 0 is the artificial dissipation parameter and ν > 0 is the
kinematic viscosity of the fluid, l > 1. The functions u is the velocity vector field,
p is the pressure, and f is a given force field. For ε = 0, the model is reduced to
the Navier-Stokes system.

Mathematical model for such fluid motion has been used extensively in turbu-
lence simulations (see e.g. [9]) also see Borue and Orsag [3, 4]. For further discussion
of theoretical results concerning (1.1 ), see [2, 19, 22].

For the 3D Navier–Stokes system weak solutions of problem are known to exist
by a basic result by J. Leray from 1934 [20], only the uniqueness of weak solutions
remains as an open problem. Then the known theory of global attractors of infinite
dimensional dynamical systems is not applicable to the 3D Navier–Stokes system.
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In particular, in case one accepts the point of view that the dimension of a global
attractor for the Navier–Stokes equations is associated with the number of degrees
of freedom in turbulent flows, then the two-dimensional Hausdorff measure H2

l (N
0
ω)

is an important way to the understanding of turbulence theory.
We are interested in the three dimensional case. Let Pm be the projection onto

the first m eigenspaces of the Stokes operator A = −△ and let N0
ω = {x ∈ Ω ⊂ R3/

ω(x, t) = 0} the nodal sets of the vorticity ω for solutions of the equation (1.1 ).
We provide an upper bound on the size of the nodal sets H2

l (N
0
ω) and we show that,

the bounds necessarily depend on m and l this dependence is a fractional power
of l. Thus answering a question raised by J. Avrin [1]. We also obtain here scale-
invariant estimates on the two-dimensional Hausdorff measure H2

l (N
0
ω) in terms

of the Landau–Lifschitz theory of the number of degrees of freedom in turbulent
flow. Since expressing the above estimates in terms of the (dimensionless) Grashoff
number G. In order to obtain an upper bound on the Hausdorff measure of level
sets associated, we use the method from [17] (see also [6], [7]).

The main purpose of the present article is to study the dependence of the two-
dimensional Hausdorff measure H2

l (N
0
ω) on the parameter l. Using a family of

Kolmogorov flows as base flows we can deduce also upper bounds on the Hausdorff
measure H2

l (N
0
ω). We also find here that the upper bounds on the two-dimensional

Hausdorff measure of N0
ω converges to the corresponding upper bounds on H2

1(N
0
ω)

the two-dimensional Hausdorff measure of the nodal sets of the usual 3D Navier-
Stokes as l = 1. Under certain hypothesis we recover the two-dimensional Hausdorff
measureH2

1(N
0
ω) estimates for the usual 3D Navier–Stokes equations with potential

force. We extend the method from [15] to a 3D Navier-Stokes with general forcing
modified by l-Laplacian. These estimates are obtained without using the Dirichlet
quotients [15].

We note, however, that for the incompressible 3D Navier-Stokes equations with
general force, it seems not so easy to get some better estimates on the Hausdorff
measure of the level sets associated with the vorticity as in the case of potential
force studied in [15, 16] for periodic solutions of the 2D. Related results for the
3D Navier–Stokes equations (with general forcing) can be found in [5]. The upper
bounds on the Hausdorff measures of the level sets associated with solutions of
some other partial differential equations were obtained in [7],[11], [12], [14], [17],
[18], and [21].

The paper is organized as follows. In Section 2, we present the relevant math-
ematical framework for the paper. In Section 3, we provide upper bounds for the
two-dimensional Hausdorff measureH2

l of the level sets associated with the vorticity
of the Navier-Stokes system with hyperdissipation.

2. Notations and preliminaries

In this section we introduce notations and the definitions of standard functional
spaces that will be used throughout the paper. We denote by Hm (Ω), the Sobolev
space of Lper periodic functions. These spaces are endowed with the inner product

(u, v) =
∑

|β|≤m

(Dβu,Dβv)L2(Ω) and the norm ‖u‖m =
∑

|β|≤m

(
∥

∥Dβu
∥

∥

2

L2(Ω)
)

1
2 .
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Each u ∈ Lper can be identified with its Fourier expansion

u (x) =
∑

k∈Z3

uk exp(2iπk.
x

L
)

where uk ∈ C3 satisfy uk = u−k. Then u is in L2 if and only if

‖u‖2L2 = |Ω|
∑

k∈Z3

|uk|2 < ∞, |Ω| = L3,

then the Sobolev space u ∈ Hm (Ω), m ∈ R+ can be characterized by

Hm (Ω) = {u, uk = u−k,
∑

k∈Z3

k2m |uk|2 < ∞.}

H−m (Ω) denote the dual space of Hm (Ω).

We denote by Ḣm (Ω) the subspace of Hm (Ω) with, zero average

Ḣm (Ω) = {u ∈ Hm (Ω) ;

∫

Ω

u (x) dx = 0}.

For m = 0, we have Ḣm (Ω) = L̇2 (Ω).

• We introduce the following solenoidal subspaces Vs, s ∈ R
+ which are

important to our analysis

V0 (Ω) = {u ∈ L̇2 (Ω) , divu = 0, u.n |Σi
= −u.n |Σi+3 , i = 1, 2, 3};

V1 (Ω) = {u ∈ Ḣ1 (Ω) , divu = 0, γ0u |Σi
= γ0u |Σi+3 , i = 1, 2, 3}.

V2 (Ω) = {u ∈ Ḣ2 (Ω) , divu = 0, γ0u |Σi
= γ0u |Σi+3 , γ1u |Σi

= −γ1u |Σi+3 , i = 1, 2, 3},
see [24, Chapter III, Section 2]. We refer the reader to R.Temam [25] for details

on these spaces. Here the faces of Ω are numbered as

Σi = ∂Ω ∩ {xi = 0} and Σi+3 = ∂Ω ∩ {xi = L} , i = 1, 2, 3.

Here γ0, γ1 are the trace operators and n is the unit outward normal on ∂Ω.

• The space V0 is endowed with the inner product (u, v)L2(Ω) and norm

‖u‖ = (u, u)
1′2
L2(Ω).

• V1 is the Hilbert space with the norm ‖u‖1 = ‖u‖V1
. The norm induced by

Ḣ1 (Ω) and the norm ‖∇u‖ are equivalent in V1.
• V2 is the Hilbert space with the norm ‖u‖2 = ‖u‖V2

. In V2 the norm

induced by Ḣ2 (Ω) is equivalent to the norm ‖△u‖.
V ′
s denote the dual space of Vs.

Let P be the orthogonal projection in L2
per

(

R3
)3

with the range H .
Let A = −P△ the Stokes operator. It is easy to check that Au = −△u for every
u ∈ D (A). We recall that the operator A is a closed positive self-adjoint unbounded
operator, with D (A) = {u ∈ V0, Au ∈ V0}. We have in fact,

D (A) = Ḣ2 (Ω) ∩ V0 = V2.

The eigenvalues of A are {λj}j=∞
j=1 , 0 < λ1 ≤ λ2 ≤ ...and the corresponding or-

thonormal set of eigenfunctions {wj}j=∞
j=1 is complete in V0

Awj = λjwj , wj ∈ D(A), ∀j.
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The spectral theory of A allows us to define the powers Al of A for l ≥ 1, Al is an
unbounded self-adjoint operator in V0 with a domain D(Al) dense in V2 ⊂ V0. We
set here

Alu = (−△)
l
u for u ∈ D

(

Al
)

= V2l ∩ V0.

The space D
(

Al
)

is endowed with the scalar product and the norm

(u, v)D(Al) =
(

Alu,Alv
)

, ‖u‖D(Al) = {(u, v)D(Al)}
1
2 . (2.1)

In the case for l > 0, we have D
(

Al
)

= {u ∈ H,

∞
∑

j=1

λ2l
j (u,wj)

2 < ∞}. For l ∈ R

the scalar product and the norm in (2.1 ) can wiriten alterntivly as

(u, v)D(Al) =
∞
∑

j=1

λ2l
j (u,wj)(v, wj), ‖u‖D(Al) = {

∞
∑

j=1

λ2l
j (u,wj)}

1
2 (2.2)

and for u ∈ D(Al) we can write

Alu =

∞
∑

j=1

λl
j(u,wj)wj .

Let us now define the trilinear form b(., ., .) associated with the inertia terms

b (u, v, w) =
3

∑

i,j=1

∫

Ω

ui
∂vj
∂x

i

wjdx.

The continuity property of the trilinear form enables us to define (using Riesz
representation Theorem) a bilinear continuous operator B (u, v); V2 ×V2 → V ′

2 will
be defined by

〈B (u, v) , w〉 = b (u, v, w) , ∀w ∈ V2. (2.3)

Recall that for u satisfying ∇.u = 0 we have

b (u, u, u) = 0 and b (u, v, w) = −b (u,w, v) . (2.4)

We recall some well known inequalities that we will be using in what follows.
Young’s inequality

ab ≤ σ

p
ap +

1

qσ
q

p

bq, a, b, σ > 0, p > 1, q =
p

p− 1
. (2.5)

Poincaré’s inequality

λ1 ‖u‖2 ≤ ‖A 1
2u‖2 for all u ∈ V0. (2.6)

3. Level Sets of the Vorticity Function

Using the operators defined above, we can write the modified system (1.1 ) in
the evolution form

du

dt
+ εAlu+ νAu+B (u, u) = f (x) , in Ω× (0,∞)

u0 (x) = u0, in Ω.
(3.1)

The existence and uniqueness results for initial value problem (1.1 ) can be found
in [22]. The following theorem collects the main result in this work
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Theorem 3.1. For l ≥ d+2
4 , d is the space dimension, for ε > 0 fixed, f ∈ L2 (0, T ;V ′

0)
and u0 ∈ V0 be given. There exists a unique weak solution of (1.1 ) which satisfies
u ∈ L2 (0, T ;Vl) ∩ L∞ (0, T ;V0) , ∀T > 0.

The vorticity, ω = ∇× u satisfies the equation

(
d

dt
+ u.∇+ ν△+ ε (−△)

l
)ω = ω.∇u+ F (3.2)

where F = ∇× f.
Denoting

‖u‖2G(t) =‖ etA
1
2 u ‖ and (u, v)G(t) = (etA

1
2 u, etA

1
2 v).

The set D(eαA) is called the Gevrey class of operator of order α ≥ 0 [10]. Our use
of Gevrey classes shall be based on the following consideration.

Denote with N0
h = {x ∈ Ω : h(x) = 0} the zero (nodal) set of a function h in a

set Ω, and let H2 be the two-dimensional Hausdorff measure operating on subsets
of R3 (area in this case).

Theorem 3.2. [17]Suppose that a nonzero function h ∈ V1 satisfies
∥

∥eαAh
∥

∥

1
≤ M ‖h‖1

Then

H2
(

N0
h

)

≤ C1L
2 (1 + logM) eC2L/α.

Hereafter, Ci for i ∈ N, stand for universal constants. The above statement is a
special case of [17, Theorem 2.1]. It will be used in conjunction with the following
statement:

Lemma 3.3. [15]Let u ∈ V0, and let ω and be its vorticity. If

‖ A
1
2 eαA

1
2 u ‖≤ M ‖ A

1
2u ‖ (3.3)

for some M > 0, then, for every c ∈ R

‖ eαA
1
2 (ω − c) ‖≤ M ‖ ω − c ‖ . (3.4)

For the rest of the paper, let u(t) be an arbitrary solution of the the modified
Navier Stokes system (1.1 ) with u(0) = u0.

Theorem 3.4. Let ‖u‖ ≥ β ‖f‖ for any α ≤ νλ
1
2
1

4
and β ≤ νλ1

2
√
2
. Then There

exists a universal constant C3 such that if ‖ A
1
2u ‖≤ C3, then

‖ A
1
2 eαtA

1
2 u ‖≤ 2 ‖ A

1
2 u0 ‖, t ≥ 0. (3.5)

Proof. For any α, t ≥ 0, We take the inner product of (3.1 ) with u, to obtain

1

2

d

dt
‖A 1

2 u‖2G(t) = α‖A 3
4 u‖2G(t) + (Au̇, u)G(t)

= α‖A 3
4 u‖2G(t) − ε‖A l+1

2 u‖2G(t) − ν‖Au‖2G(t) − b(u, u,Au)G(t) + (f,Au)G(t).

(3.6)
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then using the Young’s inequality (2.5 ) we have

1

2

d

dt
‖A 1

2 u‖2G(t) ≤ −ε‖A l+1
2 u‖2G(t) +

ν

4
‖Au‖2G(t) +

α2

ν
‖A 1

2 u‖2G(t) − ν‖Au‖2G(t)

+(
ν

2
‖Au‖2G(t) +

1

2ν
‖f‖2G(t)) + b(u, u,Au)G(t)

≤ −ε‖A l+1
2 u‖2G(t) +

ν

4
‖Au‖2G(t) +

α2

ν
‖A 1

2 u‖2G(t) − ν‖Au‖2G(t)

+(
ν

2
‖Au‖2G(t) +

β2

2λ1ν
‖A 1

2u‖2G(t)) + b(u, u,Au)G(t)

≤ −ε‖A l+1
2 u‖2G(t) +

−λ1ν

4
‖A 1

2u‖2G(t) +
α2

ν
‖A 1

2u‖2G(t)

+
β2

2λ1ν
‖A 1

2 u‖2G(t) + b(u, u,Au)G(t).

We get for β2 = 2λ1α
2

1

2

d

dt
‖A 1

2 u‖2G(t) ≤ −ε‖A l+1
2 u‖2G(t) −

λ1ν

4
‖A 1

2u‖2G(t)

+
2α2

ν
‖A 1

2u‖2G(t) + b(u, u,Au)G(t).

We use the following inequality from [10] and [15, Section 4]

b(u, u,Au)G(t) ≤ C4‖A
1
2 u‖2G(t)‖Au‖G(t)(1 + log

‖Au‖2
G(t)

λ1‖A
1
2u‖2

G(t)

)
1
2 (3.7)

to obtain

1
2

d

dt
‖A 1

2u‖2
G(t)

≤ −ε‖A l+1
2 u‖2

G(t)
− λ1ν

4
‖A 1

2u‖2
G(t)

+
2α2

ν
‖A 1

2u‖2
G(t)

+C4‖A
1
2 u‖2

G(t)
‖Au‖

G(t)
(1 + log

‖Au‖2
G(t)

λ1‖A
1
2u‖2

G(t)

)
1
2 .

To establish (3.5 ) we use the estimate [15]

a µ(1 + log
µ2

b2
)

1
2 ≤ dµ2 +

a2

d2
log

2a

bd
a, d > 0, µ ≥ b > 0. (3.8)

By applying the Poincaré’s inequality (2.6 ), we have that for µ = ‖Au‖G(t) and

d =
ν

8

1

2

d

dt
‖A 1

2u‖2G(t) + ε‖A l+1
2 u‖2G(t) ≤ −λ1ν

8 ‖A 1
2u‖2G(t) +

2α2

ν
‖A 1

2 u‖2G(t)

+C5‖A
1
2 u‖4G(t) log

C6‖A
1
2 u‖G(t)

λ
1
2
1

.

Letting α ≤ νλ
1
2
1

4
we have for β ≤ νλ1

2
√
2
that

1

2

d

dt
‖A 1

2 u‖2G(t) ≤ C5‖A
1
2 u‖4G(t) log

C6‖A
1
2u‖‖2

G(t)

λ
1
2
1

. (3.9)

If ‖A 1
2u0‖ <

λ
1
2
1

C6
= C3, the term with a logarithm in (3.9 ) is negative at t = 0, and

thus (3.9 ) implies that ‖A 1
2u‖G(t) is a decreasing function of t. �



3D NAVIER STOKES EQUATIONS. 7

Theorem 3.4. implies that, for any solution u(t) of (1.1 ), the space analyticity
radius of u(t) goes to infinity as t → ∞.

Let Ω be a periodic box, for simplicity assume Ω = (0, L)3, A has eigenvalues
0 < λ1 < λ2 < ... with corresponding eigenspaces E1, E2, ... Let Pm be the
projection on the eigenspaces E1⊕E2⊕...⊕Em and let Qm = I−Pm we have‖u‖2 =
‖Pmu‖2 + ‖Qmu‖2 and we also have from (2.2 ) that

‖Alu‖ ≤ λl
m‖u‖ for every l ≥ 0 and u ∈ D(Al). (3.10)

For any t ≥ 0, let ω(t) be the vorticity of u(t). We shall, for any fixed t > 0,
estimate the quantity

l (ω (t)) = sup
c∈R

H2
l (N

c
ω) . (3.11)

Recall that for a function h : Ω → R, N0
h = {x ∈ Ω : h(x) = 0}. We need the

following fact

Lemma 3.5. Let ‖u‖ ≥ β ‖f‖ for any β ≥ 0. Then

‖u (t) ‖ ≥ ‖u(0)‖ exp(ηt) for every t ≥ 0. (3.12)

With η = −(ελ
l
2
m + 1+β2

2β2 ).

Proof. Taking the scalar product of both sides of (1.1 ) by u(t) and using (2.4 ),
we have that

1

2

d

dt
‖u‖2 + ν‖A 1

2u‖2 + ε‖A l
2u‖2 = (f, u) for t ≥ 0. (3.13)

Using (3.10 ) and the following inequality

(f, u) ≥ −1

2
‖f‖2 − 1

2
‖u‖2 (3.14)

Because the increasing sequence 0 ≤ λ1 ≤ λ ≤ λm we have

1

2

d

dt
‖u‖2 ≥ (−νλ‖A 1

2 u‖2 − (ελ
l
2
m +

1 + β2

2β2
)‖u‖2 (3.15)

note that since

‖ A
1
2u ‖≤ C3

we have that
1

2

d

dt
‖u‖2 ≥ −C3 − (ελ

l
2
m +

1 + β2

2β2
)‖u‖ (3.16)

if we set η = −(ελ
l
2
m +

1 + β2

2β2
) then we have from (3.16 ) that

1

2

d

dt
‖u‖2 ≥ −C3 + η‖u‖.

Integrating the above inequality from 0 to t, we get

‖u‖2 ≥ −C3

η
(1− exp(ηt)) + ‖u(0)‖2 exp(ηt) (3.17)

or, since
−C3

η
(1− exp(ηt)) ≥ 0.

Thus, we have the inequality (3.12 ). �
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Proposition 3.6. Let ‖u‖ ≥ β ‖f‖ and u0 6= 0, and suppose that ‖u0‖ ≤ C3νλ
1
2
1 .Then

we have that

l (ω (t)) ≤ C1L(1 +
1

2
Log

λm

λ1
+ (ελ

l
2
m +

1 + β2

2β2
)t)e

C2L

αt for t ≥ 0, (3.18)

for any α ≤ νλ
1
2
1

4
and β ≤ νλ1

2
√
2
.

Proof. By Theorem 3.4 and Lemma 3.5, we get for t ≥ 0 the following

‖ A
1
2 eαtA

1
2 u ‖ ≤ 2 ‖ A

1
2 u0 ‖

≤ 2λ
1
2 ‖u0‖

(3.19)

and use the inequality (3.12 ) to get

‖ A
1
2 eαtA

1
2 u ‖ ≤ 2λ

1
2 ‖u (t)‖ exp(ελ

l
2
m + 1+β2

2β2 )t

≤ 2( λ
λ1
)

1
2 ‖ A

1
2u (t) ‖ exp(ελ

l
2
m + 1+β2

2β2 )t.
(3.20)

The rest follows by combining (3.20 ) with Lemma 3.3 and Theorem 3.2. �

The foundational result for our two-dimensional Hausdorff measure estimates of
N0

ω = {x ∈ Ω ⊂ R3/ ω(x, t) = 0} the level sets of the vorticity ω of solutions is

Theorem 3.7. Let ‖u‖ ≥ β ‖f‖ and u0 6= 0, and suppose that ‖u0‖ ≤ C3νλ
1
2
1 .

Then

l (ω (t)) ≤ C7λ
l
2
m for t ≥ t0, (3.21)

with t0 = 2C2L

νλ
1
2
1

for any α ≤ νλ
1
2
1

4
and β ≤ νλ1

2
√
2
.

Proof. With t ≥ 2C2L

νλ
1
2
1

the inequality (3.18 ) implies

l (ω (t)) ≤ C1e(2 +
1

2
Log

λm

λ1
+ (ελ

l
2
m +

1 + β2

2β2
)
C2L

α
) for t ≥ 0. (3.22)

Since λm ≥ λ1 (3.22 ) follows directly from the above inequality. �

The estimate of the Hausdorff measure H2
l grows in m due to the term λm

λ1
but

at a rate lower than l
3 .

Proposition 3.8. Let ‖u‖ ≥ β ‖f‖ and u0 6= 0, and suppose that ‖u0‖ ≤ C3νλ
1
2
1 .

Then

sup
t→∞

l (ω (t)) ≤ C8m
l
3 for t ≥ t0. (3.23)

for any α ≤ νλ
1
2
1

4
and β ≤ νλ1

2
√
2
.

Proof. Note that in the 3D case we have λj ≥ C9L
−2j

2
3 for some positive universal

constant (see, for example [24, Lemma VI 2.1]). Therefore, Since λm ∽ λ1m
2
3 the

growth in m of the Hausdorff measure (3.23 ) is less than m
l
3 . �
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If we impose the condition λm ≤ ( 1
lǫ
)2 or λm

λ1
≤ ( l0lǫ )

2 where l0 = λ
−1
2

1 represents

characteristic macroscopic length, and lǫ is the Kolmogorov length scale, i.e. lǫ =
ν3

ǫ
where ǫ is Kolmogorov’s mean rate of dissipation of energy in turbulent flow (see
e.g. [1, 9, 13, 24], and the references contained therein) is defined as

ǫ = λ
3
2
1 ν lim sup

T→∞

T
∫

0

‖ A
l
2 ‖22 ds.

Substituting this in (3.21 ) gives

sup
t→∞

l (ω (t)) ≤ C10(
l0
lǫ
)

l
3 . (3.24)

Since the (dimensionless) Grashoff number G =
supt≥0‖f‖

2
2

ν3λ
3
2
1

in 3D (see e.g. [1, 9, 24])

is an upper bound for ( l0lǫ )
2. Hence, we obtain for the Hausdorff measure of the

equation (1.1 ) the following estimate in terms of the Grashoff number G.

Proposition 3.9. Let ‖u‖ ≥ β ‖f‖ and u0 6= 0, and suppose that ‖u0‖ ≤ C3νλ
1
2
1 .

Then for any α ≤ νλ
1
2
1

4
and β ≤ νλ1

2
√
2
we have

sup
t→∞

l (ω (t)) ≤ C11G
l
6 for t ≥ t0. (3.25)

This result holds independently of m, with C11 independent of m. The estimate
grows in l at a rate lower than l

6 . If we impose the condition l = 1, the estimates

become supt→∞ l (ω (t)) ≤ C11G
1
6 . This result recover the usual 3D Navier–Stokes

equations estimates, for the two-dimensional Hausdorff measure H2
1(N

0
ω) estimates

of the level sets associated with the vorticity. Here again our results indicate that
under certain conditions the upper bounds for H2

1(N
0
ω) converge to the associated

upper bounds of the two-dimensional Hausdorff measure H2
1(N

0
ω) estimates for the

usual 3D Navier–Stokes equations with potential force.

4. Conclusion

Proving global regularity for the 3D Navier–Stokes equations is one of the most
challenging outstanding problems in nonlinear analysis. The main difficulty in es-
tablishing this result lies in controlling certain norms of vorticity. More specifically,
the vorticity stretching term in the 3D vorticity equation forms the main obstacle
to achieving this control, C. Foias [8] and estimates on the number of degrees of
freedom for the Navier-Stokes equations and its closure models are a measure of
the complexity of the system J. Avrin [1]. This paper proposed another interesting
way to estimate this complexity through bounding the size of the nodal set for the
vorticity and expressing this estimate in terms of G.

We provide upper bounds for the two-dimensional Hausdorff measure H2
l of the

level sets associated with the vorticity of modified three dimensional Navier-Stokes
equations this bounds depend on m and l, this dependence is a fractional power of
l. Thus answering a question raised by J. Avrin [1].

Our future investigations will be concerned with the corresponding problem for
the three dimensional case without any restriction on the general force.
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