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Introduction

In the paper we are interested in the limit behaviour as ε → 0 of the twodimensional conduction problem

-div (a ε ∇u ε ) = f in u ε = 0 on ∂ , ( 1.1) 
in a bounded open set of R 2 and for a given f in H -1 ( ). For each ε > 0, the conductivity a ε is a symmetric positive definite matrix-valued function in L ∞ ( ; R 2×2 ) which is ε-periodic, i.e. a ε (x) = A ε ( x ε ) with A ε (y 1 + 1, y 2 ) = A ε (y 1 , y 2 + 1) = A ε (y) for a.e. y ∈ R 2 . The sequence a ε is assumed to be equicoercive in (i.e. there exists α > 0 such that a ε α I a.e. in ) and bounded in L 1 ( ; R 2×2 ), but not bounded in L ∞ ( ; R 2×2 ).

The question we ask is can the high-conductivity regions induce nonlocal effects in the limit problem? In three (or greater) dimensions the answer is known to be positive. Indeed, Fenchenko and Khruslov [START_REF] Fenchenko | Asymptotic of solution of differential equations with strongly oscillating matrix of coefficients which does not satisfy the condition of uniform boundedness[END_REF] (see also [START_REF] Khruslov | Homogenized models of composite media. Composite Media and Homogenization Theory[END_REF]) first obtained nonlocal effects from microstructures a ε with high-conductivity regions. The model example, which was extended by Bellieud and Bouchitté [START_REF] Bellieud | Homogenization of elliptic problems in a fiber reinforced structure[END_REF] to a nonlinear framework, consists of a medium reinforced by one-directional and high-conductivity fibres. More precisely, in a cylinder := ω × (0, 1) the fibres form an ε-periodic lattice of x 3 -directional cylinders of radius ε r ε such that γ ε 2 |ln r ε | = 1 with γ > 0, their conductivity is equal to κ r -2 ε with κ > 0, and they are embedded in a medium of conductivity equal to 1. Then, the solution u ε of the conduction problem (1.1) weakly converges in H 1 0 ( ) to the solution u 0 of the nonlocal homogenized equation

   -u 0 + 2πγ u 0 - 1 0 u 0 (x 1 , x 2 , t) θ γ,κ (t, x 3 ) dt = f in u 0 = 0 on ∂ , (1.2) 
where the kernel θ γ,κ can be explicitely computed (see [START_REF] Bellieud | Homogenization of elliptic problems in a fiber reinforced structure[END_REF] for details). The nonlocal term in (1.2) is due to the diffusion along the fibres combined with their capacitary effect. These works were also extended by [START_REF] Briane | Fibered microstructures for some nonlocal Dirichlet forms[END_REF] and [START_REF] Briane | Homogenization of high-conductivity periodic problems: Application to a general distribution of one-directional fibers[END_REF] in conduction, as well as by [START_REF] Pideri | A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium[END_REF] and [START_REF] Bellieud | Homogenization of an elastic material reinforced by very stiff or heavy fibers. Nonlocal effects. Memory effects[END_REF] in elasticity. More generally, Mosco [START_REF] Mosco | Composite media and asymptotic Dirichlet forms[END_REF] proved that the energy associated with (1.1) converges to a quadratic form according to the Beurling & Deny [START_REF] Beurling | Espaces de Dirichlet[END_REF] representation formula. In some sense Camar-Eddine and Seppecher [START_REF] Camar-Eddine | Closure of the set of diffusion functionals with respect to the Mosco-convergence[END_REF] closed the topic not only in three-dimensional conduction by proving that any nonlocal effect can be attained by a suitable conductivity sequence, but also in threedimensional elasticity [START_REF] Camar-Eddine | Determination of the closure of the set of elasticity functionals[END_REF] by proving a remarkable closure result.

On the other hand, in any dimension, various conditions on the conductivity sequence a ε prevent the appearance of nonlocal effects. Firstly, Spagnolo [START_REF] Spagnolo | Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche[END_REF] with the G-convergence theory, then Murat and Tartar [START_REF] Tartar | Cours Peccot[END_REF]18] with the H -convergence theory, proved that the equi-coerciveness combined with the equiboundedness of the sequence a ε (without periodicity restriction) implies a compactness result for the sequence of problems (1.1). Buttazzo and Dal Maso [START_REF] Buttazzo | -limits of integral functionals[END_REF] (see also [START_REF] Carbone | Some properties of -limits of integral functionals[END_REF]) extended this compactness result to any sequence of isotropic conductivities a ε = α ε I such that α ε is bounded and equi-integrable in L 1 ( ). More recently, Briane [START_REF] Briane | Homogenization of non uniformly bounded operators: critical barrier for nonlocal effects[END_REF] proved that for any ε-periodic conductivity a ε (x) := A ε ( x ε ) with A ε bounded in L 1 (Y ), Y := (0, 1) d , the estimate of the weighted Poincaré-Wirtinger inequality

∀ V ∈ H 1 (Y ), Y A ε V -- Y V 2 dy C(ε) Y A ε ∇V • ∇V dy, with ε 2 C(ε) → 0, (1.
3) also leads to a classical limit of problem (1.1). However, the opposite behaviour ε 2 C(ε) 0 can imply nonlocal effects in three dimensions. In contrast with these previous works, the present paper points out the gap between the second and third (or greater) dimension regarding the appearance of nonlocal effects in conductivity. The main result of the paper (see Theorem 1) claims that any sequence of ε-periodic conductivities a ε , which is equi-coercive and bounded only in L 1 ( ; R 2×2 ), cannot induce nonlocal effects in dimension two.

The proof is based on a Poincaré-Wirtinger type inequality and a div-curl type lemma. These two auxiliary results are specific to dimension two and allow us to apply the method of the oscillating test functions of Tartar [START_REF] Tartar | Cours Peccot[END_REF], which implies a classical limit behaviour of the conduction problem (1.1).

On the one hand, the Poincaré-Wirtinger inequality (see Proposition 2) reads as, in the ε-periodic case,

∀ V ∈ H 1 (Y ), Y V -- Y V 2 dy C Y Ãε ∇V • ∇V dy where Ãε := A ε det A ε .
(1.4)

Inequality (1.4) can be regarded as the conjugate of inequality (1.3). However, contrary to (1.3) the constant C of the Poincaré-Wirtinger inequality (1.4) is independent of ε and thus cannot be blown up.

On the other hand, the div-curl result (see Proposition 3) is an extension of the classical div-curl lemma of Murat & Tartar [START_REF] Murat | Compacité par compensation[END_REF], for any sequence ξ ε with compact divergence in H -1 ( ), and such that a

-1/2 ε ξ ε (but not ξ ε ) is bounded in L 2 ( ; R 2 ).
The ingredients of this weak div-curl lemma is the representation of a divergence-free function by a stream function and the approximation of this stream function by a piecewise-constant function, based on the Poincaré-Wirtinger inequality (1.4). At this level and contrary to the third (or greater) dimension, an estimate on the two-dimensional curl of the stream function yields an estimate on its whole gradient. A three-dimensional counter-example (see Example 1) clarifies the two-dimensional character of the div-curl result.

The paper is organised as follows. In the first section we state the main result of the paper. The second section is devoted to the proofs and is divided into three parts. The first part deals with the Poincaré-Wirtinger inequality (3.2), the second one with the div-curl result, and the third one with the proof of Theorem 1.

Statement of the result

In the following: (i) | • | denotes the euclidian norm in R 2 as well as its subordinate matrixnorm:

|A| := max x∈R 2 \{0} |Ax| |x| = ρ(AA T ) for A ∈ R 2×2 ,
where ρ is the spectral radius and A T the transpose of the matrix A.

Note that |A| = ρ(A) if A is symmetric, which will be the case in the sequel;

(ii) I denotes the unit matrix of R 2×2 and J := 0 -1 1 0 ;

(iii) Y denotes the unit square (0, 1) 2 of R 2 ;

(iv)

L p # (Y ) (resp. H 1 # (Y )) denotes the set of the Y -periodic functions which belong to L p loc (R 2 ) (resp. H 1 loc (R 2 )); (v)
denotes a bounded open subset of R 2 ; and

(vi) D( ) denotes the set of the infinitely differentiable functions with compact support on .

Let A ε , for ε > 0, be a sequence of symmetric positive definite matrix-valued fiunctions and Y -periodic matrix-valued functions in L ∞ # (Y ). We assume that there exist two positive constants α, β such that

∀ ε > 0, A ε α I a.e. in R 2 ,
(2.1)

∀ ε > 0, Y |A ε | dy β. (2.2) Therefore, the sequence A ε is equi-coercive by (2.1) but only bounded in L 1 (Y ) due to (2.2). For each λ ∈ R 2 , let X λ ε be the unique function in H 1 # (Y ) with zero average value, solution of the equation div (A ε ∇W λ ε ) = 0 in D (R 2 ), where W λ ε (y) := λ • y -X λ ε (y), (2.3)
and let A * ε be the constant matrix defined by

A * ε λ := Y A ε ∇W λ ε dy, (2.4) 
which satisfies the equality

A * ε λ • λ = Y A ε ∇W λ ε • ∇W λ ε dy. (2.5)
For a fixed ε > 0, A * ε is the homogenized matrix induced by the oscillating sequence A ε ( x δ ) as δ tends to 0 (see e.g. [START_REF] Bakhvalov | Homogenized characteristics of bodies with a periodic structure[END_REF] or [START_REF] Bensoussan | Asymptotic Analysis for Periodic Structures[END_REF]).

We easily deduce from the equi-coerciveness (2.1), the boundedness (2.2) and from (2.5), that the sequence W λ ε satisfies the bound

∇W λ ε L 2 (Y ) β α |λ|, (2.6) 
and that A * ε satisfies the estimates

A * ε α I and |A * ε | β. (2.7)
Taking into account (2.7) we can assume that (up to a subsequence)

A * ε -→ ε→0 A * 0 , (2.8)
where A * 0 is a symmetric positive definite matrix. The main result of the paper is the following: Theorem 1. Assume that conditions (2.1) and (2.2) hold true. Then, the solution u ε of the conduction problem (1.1) with conductivity a ε (x) = A ε ( x ε ), weakly converges in H 1 0 ( ) to the solution u 0 of the conduction problem with the constant conductivity A * 0 defined by (2.8) and (2.4).

Remark 1. The result of Theorem 1 implies that the equi-coerciveness constraint (2.1) combined with the one of L 1 -boundedness (2.2) prevents the appearance of nonlocal effects in dimension two. Convergence (2.8), rather than the more restrictive condition (2.2), seems to be the natural assumption to obtain the previous homogenization result. We did not succeed in proving Theorem 1 by only assuming (2.8) together with the equicoerciveness (2.1). Indeed, our approach, through the Propositions 1 and 2 is essentially based on the boundedness (2.2). However, this condition is sufficiently general to point out the difference between the second and third dimension and the appearance of nonlocal effects in strong conductivity.

Proof of the result

The first section is devoted to a Poincaré-Wirtinger inequality and the second one to a div-curl lemma. We prove these two auxiliary results for a class of microstructures satisfying a kind of uniform L 1 -boundedness (see Definition 1), which contains any ε-periodic and L 1 -bounded conductivity. The third section deals with the proof of Theorem 1 in the case of ε-periodic microstructures.

A Poincaré-Wirtinger inequality

Definition 1. A sequence b ε , for ε > 0, of nonnegative measurable functions on is said to be ω-bounded in L 1 ( ) if there exists a positive function ω : (0, +∞) -→ (0, +∞) with zero limit at 0, satisfying

∀ δ > 0, ∃ ε 0 > 0 such that ∀ ε ∈ (0, ε 0 ), ∀ Q square of with |Q| δ, Q b ε dx ω(|Q|), ( 3.1) 
where |Q| denotes the Lebesgue measure of Q.

Proposition 1. Let b ε be the sequence defined on by b ε (x

) := B ε ( x ε ), where B ε is a Y -periodic positive sequence bounded in L 1 (Y ). Then, b ε is ω-bounded in L 1 ( ). Proof. Let Q be a square of with |Q| ε 2 . The square Q is included in a minimal square Q ε composed of a number N ε 9 ε -2 |Q|, of cells of the type ε(k + Y ), k ∈ Z 2 . The εY -periodicity of b ε implies that Q b ε dx Q ε b ε dx = N ε ε 2 Y B ε dy 9 sup ε>0 B ε L 1 (Y ) |Q|.
Therefore, the sequence b ε is ω-bounded in L 1 ( ) with ω(t) := c t, where c is a positive constant.

With Definition 1 we have the following result:

Proposition 2. Let a ε , for ε > 0, be a sequence of symmetric positive definite matrix-valued functions with a ε and a

-1 ε in L ∞ ( ; R 2×2 ), such that the sequence |a ε | is ω-bounded in L 1 ( ).
Then, there exists a positive constant C such that, for any δ > 0 and any ε > 0 small enough, each square Q ⊂ , with |Q| δ, satisfies the Poincaré-Wirtinger inequality

∀ v ∈ H 1 (Q), Q v -- Q v 2 dx C ω(|Q|) Q ãε ∇v • ∇v dx,
where ãε := a ε det a ε .

(3.2)
Remark 2. Inequality (3.2) is weighted by the matrix-valued ãε but, in contrast with (1.3), with a constant which is independent of δ and ε provided that ε is small enough with respect to δ. This constant also tends to 0 with the measure of Q. This result is strongly linked to dimension two as shown in the following proof.

Proof of Proposition 2. Let δ > 0 and let Q be a square of of side h

√ δ. Let v ∈ H 1 (Q) with Q v = 0 and let V ∈ H 1 (Y ) be defined by v(x) := V ( x-x h h )
, where Q = x h + hY . By the change of variable y := x-x h h , and using the embed- 

ding of W 1,1 (Y ) into L 2 (Y ) (which is specific to the second dimension) combined with the classical Poincaré-Wirtinger inequality in W 1,1 (Y ), we have Q v 2 dx = h 2 Y V 2 dy C h 2 Y |∇V | dy 2 = C Q |∇v| dx
Q |∇v| dx 2 Q |a ε | dx Q ãε ∇v • ∇v dx.
Therefore, we obtain the estimate

Q v 2 dx C Q |a ε | dx Q ãε ∇v • ∇v dx,
which combined with the ω-boundedness (3.1) of |a ε | implies the desired inequality (3.2), provided that ε is small enough.

A div-curl result

In this section we extend the classical div-curl lemma of Murat & Tartar [START_REF] Murat | Compacité par compensation[END_REF] to sequences which are not bounded in L 2 ( ; R 2 ): Proposition 3. Let a ε , for ε > 0, be a sequence of symmetric positive definite matrix-valued functions with a ε ∈ L ∞ ( ; R 2×2 ), such that for a given α > 0, a ε α I a.e. in and the sequence |a ε | is ω-bounded in L 1 ( ). Let ξ ε be a sequence in L 2 ( ; R 2 ) and let v ε be a sequence in H 1 ( ; R 2 ) which satisfy the following assumptions:

a -1 ε ξ ε • ξ ε dx c, (3.3) |∇v ε | 2 dx c, (3.4)
where c is a positive constant,

div ξ ε is compact in H -1 ( ), (3.5) 
and

∇v ε 0 weakly in L 2 ( ; R 2 ) or ξ ε 0 weakly * in M( ; R 2 ) (3.6)
in the weak * sense of the Radon measures on . Then, the following convergence in the sense of distributions holds true

ξ ε • ∇v ε 0 in D ( ). ( 3.7) 
The following example shows that the previous div-curl result does not hold in dimension three. Let := (0, 1) 3 , let ω ε ⊂ be the ε-periodic lattice of x 3 -parallel cylinders of axis x 1 = k 1 ε, x 2 = k 2 ε, for k 1 , k 2 ∈ N, and of radius ε r ε , and let a ε be the ε-periodic isotropic conductivity defined by

a ε (x) := κ r 2 ε I 3 if x ∈ ω ε I 3 if x ∈ \ ω ε ,
where r ε := exp -1 γ ε 2 and κ, γ > 0.

Let u ε be the solution in

H 1 0 ( ) of -div (a ε ∇u ε ) = f , where f is a given function in L 2 ( ). For a fixed R 0 ∈ (0, 1 2 ), let v ε be the ε-periodic function defined in by v ε (x) = V ε ( x ε ), where V ε is the continuous periodic function of period -1 2 , 1 2 3 , 
independent of y 3 , and defined on its period by

V ε (y) :=    0 ifr r ε ln r-ln r ε ln R 0 -ln r ε if r ε < r < R 0 , 1 ifr R 0 where r := y 2 1 + y 2 2 .
It can be checked that the sequences ξ ε := a ε ∇u ε and v ε satisfy the assumptions (3.3)-(3.6) of Proposition 3. In particular, ∇v ε 0 weakly in L 2 ( ; R 3 ) since v ε 1 weakly in H 1 ( ). Moreover, it can be proven (see e.g. [START_REF] Briane | Fibered microstructures for some nonlocal Dirichlet forms[END_REF]) that

ξ ε • ∇v ε = ∇u ε • ∇v ε 2πγ (u 0 -v 0 ) in D ( ), (3.8)
where u 0 is the weak limit of u ε in H 1 0 ( ) and v 0 is the weak * limit of

1 ωε πr 2 ε u ε
in the Radon measures sense on . The functions u 0 , v 0 are the solutions of the coupled system

         -u 0 + 2πγ (u 0 -v 0 ) = f in -κ ∂ 2 v 0 ∂x 2 3 + 2γ (v 0 -u 0 ) = 0 in u 0 (x) = 0 if x ∈ ∂ v 0 (x , 0) = v 0 (x , 1) = 0 if x = (x 1 , x 2 ) ∈ (0, 1) 2 , (3.9)
which is equivalent to the nonlocal problem (1.2). We easily deduce from (3.9) that u 0v 0 is nonzero if f is a nonzero function. Therefore, in this case convergence (3.8) contradicts the result (3.7) of Proposition 3.

Proof of Proposition 3. We have to prove that, for any ϕ ∈ D( ),

ξ ε • ∇v ε ϕ dx -→ ε→0 0.
By using a partition of the unity we may assume that the support of the test function ϕ is included in an open square Q with Q ⊂ .

The proof is divided in three steps. In the first step we replace the sequence ξ ε by a divergence-free one J ∇ ũε , where ũε is a stream function. In the second step we approach ũε by a piecewise-constant function ūε . In the third step we prove that the sequence ũε ∇v ε converges to 0 in the sense of distributions.

Step 1. Introduction of a stream function. First note that there exists a positive constant c Q such that

Q |ξ ε | dx c Q . (3.10)
Indeed, the Cauchy-Schwarz inequality combined with the ω-boundedness (3.1) of |a ε | and estimate (3.3), implies that for any ε small enough,

Q |ξ ε | dx |a 1 2 ε | |a -1 2 ε ξ ε | dx Q |a ε | dx 1 2 Q a -1 ε ξ ε • ξ ε dx 1 2 ω(|Q|) a -1 ε ξ ε • ξ ε dx 1 2 c Q ,
from which we get the desired estimate (3.10). Let u ε be the solution in H 1 0 ( ) of the equation u ε = div ξ ε in D ( ). Since the function ξ ε -∇u ε is divergence-free in Q, there exists a stream function ũε ∈ H 1 (Q) (see e.g. [START_REF] Girault | Finite Element Approximation of the Navier-Stokes Equations[END_REF], page 22) such that

ξ ε = ∇u ε + J ∇ ũε with Q ũε dx = 0. ( 3.11) 
Due to the compactness (3.5), the sequence u ε strongly converges in H 1 0 ( ) to some function u 0 . According to (3.6) we have the two following alternatives: (i) If ξ ε weakly * converges to 0 in M( ; R 2 ), then div ξ ε = u ε converges to 0 = u 0 in D ( ), from which u 0 = 0 and ∇u ε strongly converges to 0 in L 2 ( ; R 2 ). Therefore, the sequence ∇u ε • ∇v ε strongly converges to 0 in L 1 ( ), which implies

Q ξ ε • ∇v ε ϕ dx - Q J ∇ ũε • ∇v ε ϕ dx -→ ε→0 0. (3.12) 
(ii) Otherwise, ∇v ε weakly converges to 0 in L 2 ( ; R 2 ), then the strong convergence of ∇u ε in L 2 ( ; R 2 ) implies that ∇u ε • ∇v ε weakly converges to 0 in L 1 ( ). Therefore, limit (3.12) still holds true.

Moreover, since J T = -J and J ∇v ε is divergence-free, integrating by parts yields

Q J ∇ ũε • ∇v ε ϕ dx = - Q ∇(ϕ ũε ) • J ∇v ε dx + Q ũε ∇ϕ • J ∇v ε dx = Q ũε ∇ϕ • J ∇v ε dx.
Therefore, to prove the div-curl convergence (3.7) it is sufficient to prove that the sequence ũε ∇v ε converges to 0 in D (Q; R 2 ). Note that the sequence ũε is only bounded in W 1,1 (Q) due to (3.11) and (3.10), which does not imply its strong convergence in Step 2. Approximation of ũε by a piecewise-constant function. Let ∈ D (Q; R 2 ). For a fixed h > 0 small enough, let (Q k ) k∈K h be a finite covering of the support of by the squares

L 2 (Q) since the embedding of W 1,1 (Q) into L 2 (Q) is not com- pact in
Q k := h(k + Y ) ⊂ Q, for k ∈ K h ⊂ Z 2 .
By Proposition 2 there exists ω h > 0 which tends to 0 as h → 0 such that, for any ε > 0 small enough (it is sufficient that ε h by the proof of Proposition 1) and any k ∈ K h ,

Q k ũε -- Q k ũε 2 dx ω h Q k ãε ∇ ũε • ∇ ũε dx.
Moreover, the equalities ∇ ũε = J (∇u εξ ε ) and a -1 ε = J T ãε J imply that

Q k ãε ∇ ũε • ∇ ũε dx = Q k a -1 ε (ξ ε -∇u ε ) • (ξ ε -∇u ε ) dx,
from which the Cauchy-Schwarz inequality combined with a ε α I, yields

Q k ũε -- Q ũε 2 dx 2 ω h Q k a -1 ε ξ ε • ξ ε + α -1 |∇u ε | 2 dx. (3.13)
On the other hand, let ūε be the piecewise-constant function defined from the function ũε and the covering (Q k ) k∈K h by

ūε := k∈K h - Q k ũε 1 Q k , ( 3.14) 
where 1 Q k denotes the characteristic function of the set Q k . Then, summing the inequalities (3.13) over k ∈ K h , yields

Q | | 2 ( ũε -ūε ) 2 dx 2 2 L ∞ (Q) ω h Q a -1 ε ξ ε • ξ ε + α -1 |∇u ε | 2 dx.
Thus, the estimate (3.3) and the boundedness of ∇u ε in L 2 ( ; R 2 ) (which is strongly convergent) imply that

Q | | 2 ( ũε -ūε ) 2 dx c ω h .
Finally, by the Cauchy-Schwarz inequality combined with the boundedness of ∇v ε in L 2 ( ; R 2 ), we obtain that for any ε > 0 small enough,

Q • ∇v ε ( ũε -ūε ) dx c √ ω h , (3.15) 
where c > 0 is independent of h and ε and ω h → 0 as h → 0. The third step of the proof deals with the convergence of ūε ∇v ε . The convergence of ũε ∇v ε then follows thanks to the previous step.

Step 3. Convergence of ūε ∇v ε and ũε ∇v ε . Let us fix h > 0. The sequence ∇ ũε is bounded in L 1 (Q; R 2 ) by its definition (3.11) and estimate (3.10). Then, since Q ũε = 0 the sequence ũε is bounded in W 1,1 (Q) by the classical Poincaré-Wirtinger inequality, and thus in L 2 (Q) by the embedding of W 1,1 (Q) into L 2 (Q). Therefore, the sequence ũε weakly converges (up to a subsequence) in L 2 (Q) to some function ũ0 , from which the sequence ūε defined by (3.14) strongly converges in L ∞ (Q) to the function

ū0 := k∈K h - Q k ũ0 1 Q k .
Moreover, by (3.4) and by the regularity of Q, the sequence ∇v ε weakly converges (up to a subsequence) in

L 2 (Q; R 2 ) to ∇v 0 with v 0 ∈ H 1 (Q), whence Q ūε ∇v ε • dx -→ ε→0 Q ū0 ∇v 0 • dx. (3.16)
According to (3.6) we have the two following alternatives:

(i) If ξ ε weakly * converges to 0 in M( ; R 2 ), so does ∇ ũε by (3.11). Then, ∇ ũ0 = 0 in D (Q), which implies ũ0 = 0 since Q ũ0 = 0. The right-hand side of (3.16) is thus equal to 0. (ii) Otherwise, ∇v ε weakly converges to 0 in L 2 (Q; R 2 ) and the right-hand side of (3.16) is still equal to 0.

Therefore, for any h > 0 and for the whole sequence ε, we obtain

Q ūε ∇v ε • dx -→ ε→0 0.
The previous limit combined with the uniform (with respect to ε) estimate (3.15) yields

Q ũε ∇v ε • dx -→ ε→0 0 for any ∈ D(Q; R 2 ),
which concludes the proof.

Proof of Theorem 1

We will apply the method of the oscillating test functions of Tartar [21] by using the div-curl result of Proposition 3. To this end we consider for a fixed λ ∈ R 2 , the oscillating function w λ ε (x) := εW λ ε ( x ε ) for x ∈ , where W λ ε is defined by (2.3). We will determine the limit in the sense of distributions of the sequence a ε ∇u ε

• ∇w λ ε = a ε ∇w λ ε • ∇u ε . First note that, in virtue of Proposition 1 and the boundedness (2.2) of A ε , the sequence |a ε | is ω-bounded in L 1 ( ). Step 1. Limit of a ε ∇u ε • ∇w λ ε . Set ξ ε := a ε ∇u ε and v ε (x) := w λ ε (x) -λ • x, for x ∈ .
By the classical Poincaré inequality in H 1 0 ( ) and the equi-coerciveness a ε α I, we have

ξ ε • ∇u ε dx = f, u ε H -1 ( ),H 1 0 ( ) c f H -1 ( ) ∇u ε L 2 ( ) c √ α f H -1 ( ) ξ ε • ∇u ε dx 1 2 , from which ξ ε • ∇u ε = a -1 ε ξ ε • ξ ε is bounded in L 1 ( ) and estimate (3.3) holds true. The sequence ∇v ε satisfies estimate (3.4) since ∇W λ ε is bounded in L 2 # (Y ; R 2 ) by (2.6
). The equalitydiv ξ ε = f implies (3.5). Moreover, successively using the Y -periodicity of the zero average value function X λ ε and the Poincaré-Wirtinger inequality in H 1 # (Y ), yields

w λ ε -λ • x L 2 ( ) c ε X λ ε L 2 (Y ) c ε ∇X λ ε L 2 (Y ) = O(ε) by (2.6),
from which ∇v ε = ∇w λ ελ weakly converges to 0 in L 2 ( ; R 2 ), which implies (3.6).

Therefore, the convergence (3.7) of Proposition 3 yields (up to a subsequence)

a ε ∇u ε • ∇w λ ε = ξ ε • λ + ξ ε • ∇v ε ξ 0 • λ in D ( ), (3.17) 
where ξ 0 is the weak * limit of a ε ∇u ε in M( ; R 2 ).

Step 2. Limit of a ε ∇w λ ε • ∇u ε . Set ξ ε := a ε ∇w λ ε -A * ε λ, where A * ε is the matrix defined by (2.3)-(2.4), and v ε := u ε .

Thanks to the Y -periodicity of A ε ∇W λ ε • ∇W λ ε and estimate (2.6), the sequence ξ ε satisfies the bound (3.3). This combined with the bound (2.2) satisfied by A ε , implies that ξ ε is also bounded in L 1 ( ; R 2 ) (see the proof of (3.10)). The sequence v ε clearly satisfies (3.4). Moreover, the compactness (3.5) holds true since div ξ ε = 0 by rescaling (2.3). Thus, it remains to prove condition (3.6).

The function ξ ε (x) reads as ε ( x ε ), where ε is Y -periodic with zero average value and bounded in L 1 (Y ; R 2 ). Let ∈ D( ; R 2 ) and let ε be a piecewiseconstant function with compact support in , constant in each square ε(k + Y ), for k ∈ Z 2 , and such that ε L ∞ ( ) = o [START_REF] Bakhvalov | Homogenized characteristics of bodies with a periodic structure[END_REF]. Since the Y -periodicity of ε implies that

ε(k+Y ) ε x ε dx = ε 2 Y ε (y) dy = 0,
and since ξ ε is bounded in L 1 ( ; R 2 ), we have

ξ ε • dx = R 2 ε x ε • ε (x) dx + o(1) = 0 + o(1) -→ ε→0 0.
Therefore, the sequence ξ ε weakly * converges to 0 in D ( ; R 2 ) and is bounded in L 1 ( ; R 2 ), which implies (3.6). By applying Proposition 3 and convergence (2.8) we thus obtain (3.18) where u 0 is the weak limit (up to a subsequence) of u ε in H 1 0 ( ).

a ε ∇w λ ε • ∇u ε = A * ε λ • ∇u ε + ξ ε • ∇v ε A * 0 λ • ∇u 0 in D ( ),
Step 3. Conclusion. The limits (3.17) and (3.18) imply the equality ξ 0 • λ = A * 0 λ • ∇u 0 in D ( ), for any λ ∈ R 2 , from which ξ 0 = A * 0 ∇u 0 . Since the sequencediv ξ ε = f converges todiv ξ 0 in D ( ), we thus obtain the equation div A * 0 ∇u 0 = f in D ( ). Theorem 1 is now proved.

2 ,

 2 where C is a positive constant. Moreover, if λ ε µ ε := |a ε | are the eigenvalues of a ε , then the eigenvalues of ãε are µ -1ε λ -1 ε , the ones of ãε -1/2 are thus √ λ ε √ µ ε , from which | ãε -1/2 | = √ µ ε = |a ε | 1/2. Then, combining the equality | ãε -1/2 | = |a ε | 1/2 and the inequality |∇v| | ãε -1/2 | |ã ε 1/2 ∇v| with the Cauchy-Schwarz inequality yields

Example 1 .

 1 With reference to the model example presented in the Introduction.

  the second dimension. The next step provides an alternative based on the approximation of ũε by a piecewise-constant function combined with the Poincaré-Wirtinger inequality (3.2).
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