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Summary. In this chapter, we review some mechanisms of opinion dynamics that
can be modelled by kinetic equations. Beside the sociological phenomenon of com-
promise, naturally linked to collisional operators of Boltzmann kind, many other
aspects, already mentioned in the sociophysical literature or no, can enter in this
framework. While describing some contributions appeared in the literature, we en-
lighten some mathematical tools of kinetic theory that can be useful in the context
of sociophysics.
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New opinions are always suspected, and usually opposed, without any other

reason but because they are not already common.

John Locke, Essay on the Human Understanding

1 Sociophysics

1.1 Introduction

The success of statistical mechanics as a tool for describing physical systems
composed by a great number of interacting elementary entities has induced
some researchers to apply the same methodology to study problems of other
sciences having the common feature that a global behaviour is obtained as
a result of a chain of elementary processes. These new fields of application
involve, for example, biology, economy and sociology. In particular, when de-
scribing a social phenomena, the basic entities are individuals, who interact
with other members of the population by means of elementary mechanisms.
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The idea of using methods and concepts from physics to study sociological
phenomena appeared in 1971 in a pioneering paper of Weidlich [79]. Some
years later, Galam, Gefen and Shapir [38] first used the word sociophysics in
order to characterize this kind of approach. They stated a global frame for
sociophysics as a new field of research.

However, this strategy, even promising, is not exempted of conceptual
difficulties. A major problem is that the individuals cannot be thought as
simple mindless agents, and that their behaviour does not obey, in general,
to some exact formulae. Human beings are indeed the opposite of simple
elementary entities. The fine dynamics of their mental schemes is (and may
remain) unknown. Moreover, in the real world, it is not guaranteed at all that
two individuals, exactly stimulated in the same way, give the same answer.

Hence, a program based on the individuation of quantitative mechanisms
in social dynamics could seem hopeless: modelling the behaviour of social
agents by means of mathematical models implies an extreme simplification
of the problem and, as a consequence, the inference of the macroscopic phe-
nomenology starting from these basic models could seem without any predic-
tive value. However, as observed in many applications of statistical physics,
many qualitative (and sometimes quantitative) features of the system do not
depend on the microscopic details of the processes under examination: only
some high-level properties, such as conservation laws and symmetries, are
important in order to obtain a coherent and reasonably correct description.
Sociophysics is nowadays a recognized field research within statistical physics.

Beside the sociophysical approach, a good variety of other view points has
been proposed to study the aforementioned questions. For example, whereas
many papers adopt the point of view of mathematical statistics (for example,
[32, 33, 49, 56]), many other contributions are based on the language of game
theory (among others, [44, 64]) or fuzzy systems [24, 66, 67].

In what concern sociophysics, many problems have been studied and var-
ious approaches have been proposed. It is worth noting that, in the litera-
ture, the quantity of theoretical works is greater than empirical studies. The
set of the most explored questions includes, among others, opinion and cul-
tural dynamics, flocking, applause dynamics, hierarchies formation, human
dynamics (including social web) and social networks. Because of its interest
in the scientific community, a general overview on the research of social dy-
namics by means of a physical approach is available in some review articles.
We quote [20, 37] and their references, that provide an outlook on different
problems and methods.

1.2 Towards the kinetic viewpoint of opinion formation

Many strategies have been introduced in the literature to study the opinion
formation. Some papers describe the phenomenon by using a discrete opinion
variable, by working in the context of Ising models (for example, [38, 39, 73,
76]). An alternative strategy consists in describing opinion dynamics by using
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a continuous variable. Indeed, the opinion of an individual may smoothly
evolve in a continuous space of possible opinions. For instance, the position of
a social agent with a respect to a “yes/no” binary question can be expressed
with nuance from the two extreme positions (“yes” and “no” without any
doubt). An individual can also be indifferent regarding the question itself.
In [26], the opinions lie in the closed interval [0, 1]. The authors consider a
population of N agents, where each individual randomly interacts with one of
his neighbours, following a mechanism close to a collisional mechanism in the
Boltzmann equation with a cutoff effect. The population eventually reaches a
stationary state, which can be a priori determined.

This collisional mechanism is not the only one that can be taken into ac-
count. As an example, in [3], the binary interaction process of [26] is combined
with a diffusion one, which models the spontaneous changes of mind of the
individuals. The competition between the two processes generates three pos-
sibilities. In absence of diffusion, the results from [26] are of course recovered
and the concentration in some predefined opinions happens. When there is a
weak diffusion, the favoured opinions again exist, but the concentration is not
total. Eventually, when the diffusion is strong, the opinion becomes uniform
in the population. Of course, there are many other phenomena which can be
considered; some of them are discussed below.

We point out also that randomness is a key notion in the opinion forma-
tion process. As a matter of fact, the behaviours of the individuals can really
randomly change, as well as the dynamics of the interaction between peo-
ple. Moreover, the effects of external phenomena (such as, for example, mass
media) are not necessarily fully predetermined.

Hence, any description of opinion formation dynamics must be able to
consider random processes.

This consideration leads naturally to the kinetic approach, which is essen-
tially the deterministic description of an underlying probabilistic phenomenon.
It is based on a partial integrodifferential equation of Boltzmann type which
governs the time evolution of an unknown function (normally a probability
density) that describes the system.

Even if kinetic theory is an active area of research, however, a systematic
specialised review describing the state-of-the-art concerning the kinetic ap-
proach in opinion dynamics is still missing. Goal of this chapter is to fill in
the gaps in the existing literature. This review does not intend to cover all
the question and approaches of sociophysics. In particular, the reader is also
invited to read chapter ?? in the present book, which treats questions that
are closely related to the contents of this contribution.

This work is divided into three parts. In the first one, we briefly present
the Boltzmann equation, some of its mathematical properties and some way
to discretize it. Then we point out the main phenomenon induced by the
interaction mechanism between two social agents, the tendency to consensus.
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Eventually, we discuss other sociological phenomena which can be taken into
account to compete with the natural compromise process.

2 Kinetic approach in sociophysics: tools and methods

The strategies, based on nonequilibrium statistical mechanics, which are used
for modelling phenomena of opinion formation are mainly inspired to the
classical field of the kinetic theory of rarefied gases. In this section, we briefly
explain the basic aspects of the main examples of kinetic equation: the Boltz-
mann equation and its linear variant.

The purpose of both equations is to describe the time evolution of a sys-
tem – composed by a great number of particles – by means of a distribution
function in the phase space of the system, which can depend on a number
of variables which is greater than the number of independent variables of the
observables at a macroscopic scale.

We always assume that such a system is composed by identical particles,
obeying the laws of classical mechanics, with only translational degrees of
freedom. If the particles are contained in a domain Ω ⊆ R

3, the distribution
function f(x, v, t) of such a model should be defined on Ω ×R

3 ×R
+ and, for

all t, the integral
∫

x∈X

∫

v∈V

f(x, v, t) dx dv

represents the number of particles contained in the space volume X ⊆ Ω
with velocity in V ⊆ R

3. Note that, in order to give a sense to the previous
considerations, a reasonable hypothesis on f is

f(x, v, t) ∈ L1
loc

(Ω; L1(R3)), ∀ t ∈ R
+,

(or, at least, f(·, ·, t) is a positive bounded measure on K × R
3
v, for every

bounded subset K of R
3
x), which means that there is a finite number of parti-

cles in a bounded domain of the space. We shall here always consider, for the
sake of simplicity, that Ω = R

3, and that the system is isolated, to avoid the
effects of external forces on the particles.

If we suppose moreover that these particles do not mutually interact, then
the time evolution of the distribution function f is given by the free transport

equation
∂f

∂t
+ v · ∇xf = 0,

which means that the number of particles is conserved along the characteristics
dx/dt = v and dv/dt = 0 (that is, f(x, v, t) = f(x − vt, v, 0)).

On the contrary, if the effect of the collisions between particles is no longer
negligible, the description above does not hold, and one must also take into
account these collisions. This leads, as we shall see, to add a non-vanishing
second member in the free transport equation.
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In the next two subsections, we shall consider two situations: the Boltz-
mann equation and the linear transport equation. Then we provide some in-
sights about the numerical methods which can be used for the Boltzmann
equation.

2.1 The Boltzmann equation

If we suppose that the particles of the system interact through elastic and
binary collisions, then the time evolution of f is governed by the Boltzmann
equation [11, 12] which, in the whole space and without external forces, has
the following form:

∂f

∂t
+ v · ∇xf = Q+(f, f) − fL(f). (1)

Here Q+ and L are respectively a quadratic and a linear operator defined by

Q+(f, f) =

∫

R3

∫

S2

σ(v − v∗, ω)f(x, v′, t)f(x, v′∗, t) dω dv∗

and

L(f) =

∫

R3

∫

S2

σ(v − v∗, ω)f(x, v∗, t) dω dv∗.

The parameter ω is a unit vector of the unit sphere S2, so that dω is an element
of area on the surface of the sphere, and (v′, v′∗) are the pre-collisional velocities
of two incident particles, related to the post-collisional velocities (v, v∗) by the
following relations:

v′ =
1

2
(v + v∗ + |v − v∗|ω), v′∗ =

1

2
(v + v∗ − |v − v∗|ω).

Moreover, the kernel σ is a nonnegative function (or, at least, measure)
which takes into account the details of the interactions between particles.
It only depends on |v − v∗| and on the scalar product (k · ω), where k =
(v − v∗)/|v − v∗|.

The simplest case is when one deals with Maxwellian molecules. In this
situation, the kernel σ is reduced to a function of (k ·ω): σ(v−v∗, ω) = σ(k ·ω).

The spatially homogeneous Boltzmann equation (that is ∇xf = 0) associ-
ated to such a kernel has several features: for example, as shown by Wild [81],
it is possible to obtain a semi-explicit representation of the solution for the
Cauchy problem of (1) under the form of a convergent series.

Kinetic equations (in particular, those in which appears a collision kernel)
are usually derived (at the formal level) from Hamiltonian systems.

While, for linear equations, it is in general possible to give a rigorous proof
of those derivations (see for example [41] for the linear Boltzmann equation),
nonlinear equations are much more difficult to tackle, and rigorous results only
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exist for special regimes: in particular, for the Boltzmann equation, we men-
tion the derivation of local (in time) solutions [22,58], or global (in time) small
solutions [50, 51, 71]. When singular (nonlinear) kernels are concerned (non
cutoff Boltzmann kernel, or Landau kernel), the derivation of the correspond-
ing kinetic equation seems completely open, though the equations themselves
have been extensively studied, and the only result obtained up to now, in
that situation, is the kernel’s characterization performed in [30], which allows
to derive, starting from some physical abstract requirements, the collisional
kernels of the kinetic equations but not the equations themselves.

Texts of reference on the wide subject of the Boltzmann equation, in which
the arguments outlined above are more precisely discussed are [21, 22, 78].

Finally, we note that there is a quantity of variants of (1). Among others,
we recall Kac’s model [55] and the discrete velocity models (see [42,57,65,70]
for additional information and bibliography).

2.2 The linear transport equation for photons

The behaviour of the distribution function for a set of photons in a medium
can be governed by the linear transport equation. Even if it is simpler, this
classical transport equation retains some features of the Boltzmann equation,
among which the balance of gain and loss terms. The distribution function
for photons n = n(x, ν, ω, t) is defined on R

3 × R
+ × S2 × R

+. For all t, its
integral

∫

x∈D

∫

ν∈[ν0,ν1]

∫

ω∈Ω

n(x, ν, ω, t) dx dν dω

represents the number of photons contained in the space volume D ⊆ R
3, with

frequency included in the interval [ν0, ν1] ⊆ R
+ and with velocity direction

belonging to Ω ⊆ S2. The time evolution of the unknown n is governed by a
transport equation whose gain and loss terms are linear. In the whole space,
the Cauchy problem for this equation has the following form:

1

c

∂n

∂t
+ ω · ∇xn = −σ(ν)n + I(n) + S(ν), (2)

with initial condition

n(x, ν, ω, 0) = n0(x, ν, ω) (x, ν, ω) ∈ R
3 × R

+ × S2,

where σ(ν) is the total cross section of absorption and scattering, depending
on the frequency, S(ν) is a given source, c is the speed of light and I is a linear
scattering operator defined by

I(n) =

∫

R+

∫

S2

ν

ν′
σs(ν

′ → ν, ω′ · ω)n(ν′, ω′)dν′dω′.

Here ν′ and ω′ are respectively the pre-interaction frequency and velocity
direction, and σs is the scattering cross section, which represents the proba-
bility of a transition (ν′, ω′) 7→ (ν, ω).
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For a more extensive discussion we refer to the classical texts on the subject
(in particular, [19, 23]).

2.3 Numerical methods

The numerical solving of the Boltzmann equation (1) is ensured by a time
split algorithm. During a time step one solves, on the one hand, the transport
part, and, on the other hand, the collisional part. The latter part is usually
the most expansive one, because of the collision operator nonlinearity.

There are mainly two ways to discretize the distribution function: the
discrete velocity methods and the particle methods. One can find in the liter-
ature lots of improvement of the numerical methods briefly presented below,
depending on the aims of the user: conserve some physical properties, asymp-
totical preserving schemes, etc.

The reader is invited to refer to [29] for more details.

Particle method

The distribution function is approximated by a sum of Dirac masses in the
phase space [27, 28, 74]

f(x, v, t) =
∑

i

fi(t)δXi(t)(x)δVi(t)(v), (3)

where Xi(t) is the position of particle i at time t, and Vi(t) its velocity. The
solving of the transport part is easy, since we just have to follow the parti-
cles along their trajectories. The discretization of the collisional operator is
more intricate and is more often performed thanks to a Monte Carlo method,
which induces a probabilistic treatment [10, 68, 69]. At the end of each col-
lisional step, the locations and velocities of the particles have changed, but
the quantity fi(t) has not. The collision process for the numerical particles
mimics the behaviour of real physical particles, which ensures the conserva-
tion of physical quantities such that the momentum. Nevertheless, this kind of
method generates a lot of computational noise. There are mainly two ways to
decrease it: using a large number of particles or averaging numerical results.

Discrete velocity method

Deterministic methods can also be used to discretize the Boltzmann operator:
the discrete velocity methods, see [17, 52, 72] for example. The distribution
function is given by its value on a uniform and time independent phase space
grid. Formula (3) still holds, but this time, the positions and velocities do not
change, only fi(t). But a couple of pre-collisional velocities generates a small
number of possible post-collisional velocities. The mesh must then be very
fine, and the computational cost may be very high [45].
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In what concerns the models of opinion formation, the choice of the numer-
ical method widely depends on the phenomena taken into account, and the
relevance of each method must therefore be studied. Nevertheless, the time
splitting should still be considered since, in most situations, one deals with
several different phenomena, with specific modelling features.

3 The main phenomenon: the compromise

As we already pointed out, the feature which appears in almost all models of
opinion formation is the tendency to compromise, which mimics the collisions
happening in the traditional Boltzmann equation. That means that the bi-
nary interactions naturally tend to concentrate the opinions of the population
around some values (the average one, or, in other cases, periodic values, for
instance).

3.1 Basic models

Towards continuous models

The introduction of kinetic models in the context of sociophysics goes back
to the beginning of the nineties. In [47], Helbing points out that the mas-
ter equation and Boltzmann-like equations are suitable for the quantitative
description of behaviour changes and social processes.

In the aforementioned article, the author does not limit himself to consider
problems of opinion formation, but introduces a general framework for social
situations described by a system of N individuals, whose state y ∈ {1, . . . , S}
represents the possible behaviour strategies concerning a certain situation. It
is quite clear that the first Helbing model is a discrete velocity model. Note
that this kind of model have been used later on to study opinion dynamics
phenomena (for example, [6–9]). However, in the absence of spatial phenom-
ena, their structure more remembers a dynamical system than a kinetic model.
We therefore invite the interested reader to directly refer to the literature.

The dynamics of the system is then described by a master equation, which
is a phenomenological set of first-order differential equations describing the
time evolution of the probability of a system to occupy each one of a discrete
set of states.

If we denote by ny the number of subsystems in state y, which must satisfy
the constraint

∑

y

ny = N,

by n = (· · · , ny, · · · ) the configuration vector of the system and by P (n, t) the
probability of observing the configuration n at time t, the master equation of
the system is
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dP

dt
(n, t) =

∑

n′

w(n|n′; t)P (n′, t) −
∑

n′

w(n′|n; t)P (n, t), (4)

where w(n′|n; t) are the configurational transition rates from configuration n

to configuration n′.
There are two types of transitions: spontaneous changes of state of a sin-

gle subsystem, or a direct pair interaction. The form of the transition rates
w(n′|n; t) is

w(n′|n; t) = w1(y
′|y; t)ny

if n′ = (· · · , (ny′+1), · · · , (ny−1), · · · ), in the case of spontaneous transitions,

w(n′|n; t) = w2(y
′, z′|y, z; t)nynz

if n′ = (· · · , (ny′ + 1), · · · , (ny − 1), · · · , (nz′ + 1), · · · , (nz − 1), · · · ), in the
case of binary interactions, and

w(n′|n; t) = 0

otherwise.
Under this situation, and in absence of spontaneous transitions, the master

equation reduces to be an homogeneous discrete velocity model with quadratic
collisional part, whose quadratic structure is a discrete version of the colli-
sional integral of a Boltzmann equation.

The states of the system are strategies of individuals playing a game with
others, which they randomly meet. As a result of these collisions, they change
their strategies by adopting those of their more successful opponents with
probabilities proportional to the difference between the expected successes of
the latter and their own.

The author classifies the pair interactions in four types, denoted as (I),
(II), (III), (IV), whose interpretation is the following.

1. Interactions (I) describe imitative processes, that is the tendency to take
over the strategy of another individual.

2. Interactions (II) describe avoidance processes, where an individual changes
the strategy when meeting another individual using the same strategy
(processes of this kind are known as aversive behaviour, defiant behaviour
or snob effect).

3. Interactions (III) represent some kind of compromising processes, where
an individual changes the strategy to a new one (the “compromise”) when
meeting an individual with another strategy (such processes are found, if
a certain strategy cannot be maintained when confronted with another
strategy).

4. Interactions (IV) describe another kind of imitative processes, different
from processes of type (I): an individual changes the strategy despite
the fact that he convinces his interaction partner of the strength of his
strategy. Social processes of this kind are very improbable and can usually
be neglected.
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Moreover, the author studies the behaviour of the most probable strat-
egy distribution of the previous model and shows that its time evolution is
governed by a Boltzmann-like equation.

In [46], the author deeply explores the properties of the master equation
(4), and shows that it is consistent with many models of social theory, e.g. the
diffusion models, Lewin’s field theory, the logistic equation, the gravity model,
the Weidlich-Haag model, or the game dynamical equations.

Assuming that the set Ω of possible behaviours x is continuous, the master
equation (4) is reformulated as a space-homogeneous Boltzmann equation

∂P

∂t
(x, t) =

∫

Ω

[w(x|x′; t)P (x′, t) − w(x′|x; t)P (x, t)] dx′. (5)

A Kramers-Moyal expansion (which is essentially a second order Taylor ap-
proximation) of (5) leads to the Boltzmann-Fokker-Planck equation

∂P

∂t
= −

n
∑

i=1

∂(KiP )

∂xi
+

1

2

n
∑

i,j=1

∂2(QijP )

∂xi∂xj
,

where

Ki(x, t) =

∫

Ω

(x′
i − xi)w(x′|x; t) dx′, 1 ≤ i ≤ n,

are the effective drift coefficients and

Qij(x, t) =

∫

Ω

(x′
i − xi)(x

′
j − xj)w(x′|x; t) dx′ 1 ≤ i, j ≤ n,

are the effective diffusion coefficients.
Whereas the drift coefficients govern the systematic change of the distri-

bution P (x, t), the diffusion coefficients describe its spreading, due to fluctu-
ations resulting from the individual variation of behaviour changes.

This formulation allows to introduce two concepts: the social forces and
the social fields. We only remark here that a social field represents, in the
model, the influence of the public opinion, social constraints and tendencies.

In [48], a method for solving the master equation (4) is presented, by
writing the unknown P in an approximate form. The exact solution can then
be obtained as an approximate expression of a path integral.

Social state for an electoral competition

In his works [60–63], Lo Schiavo develops kinetic models of Boltzmann type
for social dynamics, to eventually reach a relevant description of an electoral
competition. The first model he used [60] is an adapted version of the Jäger
and Segel population dynamics model [53]. It is fitted to describe interacting
agents who are characterized by a continuous variable u ∈ R, called the social
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state (poor/rich). It opened the road to model an electoral competition in his
following articles.

Note that the model of [60] is close to Helbing’s, since the variable of the
density function is not yet the opinion, but a social state, which is quite similar
to the configuration vector n in [46–48].

In [61], the distribution functions describing the population are modified
by two kinds of phenomena: the collisions between individuals, which are
an internal process, and external forces. More precisely, the population is
divided into groups, e.g. political parties, and the agents can choose their
belonging to one group or another, or not belonging to any. The population
inside each party is then described by a specific distribution function. The
external forces can obviously have an effect each distribution function. They
also allow the transition between groups by somehow influencing the choice
of each individual with respect to the groups, i.e. the mass exchange between
each group related distribution function can happen.

Let us give some more details on the model. We denote by p the number
of available groups. The variable of the distribution functions this time lies
in [−1, 1]. It is not related to a specific group, it only represents the feeling
of an agent about his social condition and his opinion with regard to the
society where he lives. The positive values of u mean that the associated
individual is quite happy, and the negative ones mean he is unsatisfied. If the
collision process inside each group is standard, Lo Schiavo also defines another
interaction process between individuals with different states and groups. Like
in [2], the kinetic system that rises from these assumptions reads, for any
1 ≤ i ≤ p,

∂fi

∂t
+

∂(fiKi(f ))

∂u
= Q+

i (f ) − Q−
i (f ), (6)

where each fi is the distribution function for the ith party, f = (fi)1≤i≤p,
Q+

i (f) and Q−
i (f) are respectively the gain and loss terms for the ith party due

to the collisional processes, and eventually Ki(f ) is a propaganda operator,
which draws an individual from a given party to the ith party. Note that this
propaganda function is very similar to the social force defined by Helbing
in [48]. In the previous operators, some frequency functions are used to drive
the probability for which each kind of interaction occurs. Those frequencies
allow to describe the asymptotic behaviour of the model, see 3.2.

Fully collisional model

Since the main phenomenon in the opinion formation process is the compro-
mise, it is quite natural to investigate a model where only collisional effects
happen. We mainly focus now on systems where the variable of the distribu-
tion function is the opinion itself. It is systematically denoted with the letter
x in the remaining of the chapter.

Ben-Naim et al. [4, 5] use a very similar microscopic model to the one
from [26], to study the opinion dynamics, in a situation when the individuals
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reach compromise through binary interactions. They assume that the opinions
of the population lie in a closed interval [−∆, +∆], ∆ > 0. When the opinions
(x1, x2) of two individuals are close enough, in that case, |x2 − x1| < 1,
they both acquire the average opinion (x1 + x2)/2. Otherwise, there is no
interaction. The density function of the population f satisfies the following
rate equation of Boltzmann type:

∂f

∂t
(x, t) =

∫

|x∗−x|<1/2

f(x∗, t)f(2x − x∗, t) dx∗

−

∫

|x∗−x|<1

f(x, t)f((x + x∗)/2, t) dx∗, (7)

supplemented by the uniform initial condition f(x, 0) = 1 for any x ∈
[−∆, +∆]. We recover in (7) the form of the collision kernel, with a gain
term and a loss one. It is quite clear that the first two moments of f are
conserved. When ∆ < 1/2, (7) can be integrated, and one can prove that the
distribution function asymptotically reaches an equilibrium, which is a Dirac
mass in 0, weighted by the (constant) moment of f of order 0.

When ∆ ≥ 1/2, the system reaches a steady state with a finite number
of isolated, non-interacting opinion clusters. More precisely, the asymptotic
distribution function is a weighted linear combination of Dirac masses. The
weights must obviously satisfy the mass and momentum conservations. When
∆ grows, the number of the clusters undergoes a periodic sequence of bifur-
cations. Both strong (weight > 1) and weak (weight < 10−2) clusters appear,
and they are organized in alternating pattern. Moreover, the period of the
bifurcations govern the total number of clusters. If ∆ ≫ 1, there are 4∆/L
clusters appearing.

Note that, in [5], the authors also present a simplified and discretized
version of the latter model, where each individual has only three possible
opinion: left, centre and right. The range of interaction is then translated,
in that situation, by the fact that the people on the left and the right sides
cannot interact. It then results in everyone either with a centred opinion, or
with no people at the centre at all.

Compromise versus self-thinking

As we shall detail in Section 4, the opinion dynamics come from the competi-
tion between several phenomena. Nevertheless, we immediately present models
where this kind of competition takes place. Indeed, it allows to present specific
collisional rules, which are really studied in the articles of interest, and set
the basis for the majority of the following articles.

The first works of Toscani [77] and Boudin and Salvarani [15] on the opin-
ion formation are directly inspired from [3] in a kinetic formulation. Indeed,
they both involve two phenomena: the binary interactions between individuals
and the diffusion process, which models the possible spontaneous change of
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opinion of each individual, i.e. the self-thinking. The opinion variable x lies
in [−1, +1], where, once again, (−1) and (+1) denote the extreme opposite
opinions. They also both provide specific collision rules. The main difference
between the two models lies in the fact that the diffusion process is inserted
in the collision rules in [77], whereas, in [15], it is taken into account in the
kinetic equation.

In [77], the collision rules read

x′ = x − γP (|x|)(x − x∗ + ηD(|x|)), (8)

x′
∗ = x∗ − γP (|x∗|)(x∗ − x + η∗D(|x∗|)), (9)

where x and x∗ are the pre-collisional opinions, and x′ and x′
∗ the post-

collisional ones. In (8)–(9), γ is a constant such that 0 < γ < 1/2 which
describes the tendency to consensus. The random variables η and η∗, whose
values lie in a subset H of R, have the same distribution, with zero mean
and variance σ2, where σ is a parameter which characterizes the self-thinking.
Eventually, P and D model the local (in the opinion variable) influence of
each phenomenon.

Then the distribution function once again solves the following kinetic equa-
tion of Boltzmann type:

∂f

∂t
(x, t)=

∫

H2

∫ 1

−1

(

′β
1

J
f(′x, t)f(′x∗, t) − βf(x, t)f(x∗, t)

)

dx∗ dη dη∗, (10)

where ′x and ′x∗ are the pre-collisional opinions which give, after interaction,
the opinions x and x∗. The function β describes the interaction rate, and J is
the Jacobian of the collision rules (8)–(9).

In [15], the pre-collisional opinions x and x∗ are changed in the following
way:

x′ =
x + x∗

2
+ η(x)

x − x∗

2
, (11)

x′
∗ =

x + x∗

2
+ η(x∗)

x∗ − x

2
, (12)

where x′ and x′
∗ are the post-collisional opinions. The function η is an attrac-

tion coefficient: in general, it is a smooth function which describes the degree
of attraction of the average opinion with respect to the starting opinion of
the agent. The collision mechanism (11)–(12) translates the fact that a strong
opinion is less attracted towards the average opinion than a weaker one.

The self-thinking is taken into account as a global term in the kinetic
equation, which then reads

∂f

∂t
=

∂

∂x

(

α
∂f

∂x

)

+ Q(f, f). (13)

The function α only depends on the opinion variable, and holds the infor-
mation that a strong opinion is more stable than a weaker one. The collision
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kernel Q(f, f) can easily be written under a weak form. Let φ = φ(x) a suitable
test function. We have

〈Q(f, f), ϕ〉 = β

∫∫

(−1,1)2
f(t, x) f(t, x∗) [ϕ(x′) − ϕ(x)] dx∗ dx. (14)

Once again, β > 0 describes the interaction rate, but is set to a constant value
at the beginning.

In both papers, some mathematical properties of the model are discussed.
The discussion of [77] is focused on the moments of f to prepare for the
study of the quasi-invariant limit, see 3.2. In [15], the authors prove the ex-
istence of the solution to (13)–(14), with an initial datum in L1(−1, 1), lying
in L∞(0, T ; L1(−1, 1)), for any T > 0.

3.2 Mean field approximation

When one considers a kinetic system with lots of interacting particles, it is
most often very difficult to obtain an exact solution, except for very simple
cases, such as the one-dimensional Ising model, for instance. The main idea,
here, is to replace the microscopic interactions by a unique averaged interac-
tion implying, most of the time, moments of the distribution function. This
reduces the kinetic system into a simplified problem. The average behaviour
of the kinetic system can then be obtained in an easier way.

Consequently, we can also get more easily the time asymptotic behaviour
of the distribution function, which is relevant, because it helps to quite accu-
rately describe the stationary solutions of the kinetic equation. In the kinetic
framework, the asymptotic models are often quite simple, for example, of
Fokker-Planck type.

In the final part of [61], Lo Schiavo discusses, with a computational point
of view, the asymptotic behaviour of his basic and extended (with external
forces) models. He points out that this behaviour mainly depends on the
various frequencies of interaction used in the models.

The quasi-invariant limit

The studies from [77] and [16] tackle the question of the quasi-invariant limit
from both mathematical and numerical points of view. They both assume that
the collisional and diffusive effects are small, but remain linked.

Boudin and Salvarani [16] assume that their attraction function η used in
(11)–(12) is a constant close to 1, i.e. η = 1 − ε, ε > 0, and that the diffusion
coefficient α in (13) has the form α(x) = εkα0(x) for any x. They discuss
the limit, when ε goes to 0+, of the distribution function, with respect to the
parameter k. They derive three different regimes: the collision-dominated one
(k > 1), the diffusion-dominated one (k < 1) and the equilibrated one (k = 1),
where the collision kernel is replaced by both linear and nonlinear (because of
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a moment of f) terms. In the first case, they obtain an exact solution of the
limit equation, which goes to a Dirac mass, when the time grows. In the second
one, they provide an estimate of the convergence speed to the equilibrium of
the solution to the the limit equation, the existence of which was previously
obtained in [18]. Eventually, in the third case, they study the steady states
and obtain, under some assumptions on β, an exponential rate of convergence.

Toscani [77] shows that the constants γ and σ involved in (8)–(9) are the
key quantities to remember the microscopic collision mechanism when passing
to the quasi-invariant limit (i.e. when γ and σ both go to 0), through the ratio
λ = σ2/γ. In fact, he recovers the three same regimes as in [16] with respect
to the value of λ (0, in R

∗
+ or +∞). In the equilibrated regime, i.e.when

λ > 0, he obtains the convergence of the time scaled weak solutions f(x, τ/γ)
to (10), towards a function g(x, τ), which is a weak solution to the following
Fokker-Planck equation

∂g

∂τ
=

λ

2

∂2

∂x2

(

D(|x|)2 g
)

+
∂

∂x
((x − m)g), (15)

where

m =

∫ 1

−1

xf(x, 0) dx

is the initial mean opinion. Note that it is really important here to assume
that the interaction rate β does not depend on the opinion, and that P = 1.
For the other regimes, he also introduces a suitable asymptotic limit of the
model yielding a Fokker-Planck equation.

An example

Aletti, Naldi and Toscani [1] study one of these Fokker-Planck equations:

∂f

∂t
= γ

∂

∂x

(

(1 − x2)(x − m(t))f
)

, (16)

where γ is linked to the spreading (γ = −1) or the concentration (γ = 1) of
the opinions. For γ = 1, equation (16) directly comes from the asymptotic
limit in the collision-dominated case in [77], choosing P (y) = 1 − y2. For
γ = −1, it looks like the model presented in [73], obtained by a mean field
approximation of the Sznajd model [76], in the case of two opinions.

Unlike (15), (16) is really nonlinear, because the time depending mean
opinion is involved:

m(t) =

∫ 1

−1

xf(x, t) dx.

They use some properties of a pseudoinverse of the cumulative distribution
function to obtain the well-posedness of their problem, and the existence
and uniqueness of solutions. Then they derive results on their large-time be-
haviour. The two values of the parameter γ call for separate treatments. In
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the spreading case, they prove that the limit distribution function is given
by two masses located in ±1. In the concentration case, the limit has one or
three Dirac masses, and in the latter case, two of them are located in ±1 and
appear because they already exist at initial time.

4 Other sociological phenomena

Up to now, we pointed lout one main phenomenon in the opinion formation
process, the compromise. We even add for some basic models the self-thinking
process, which appears either in the collision mechanism [1, 77], or in the
kinetic equation itself [15, 16]. In fact, there are obviously lots of sociological
phenomena which can be a part of the competition with the collisional process.
We only present some of them here, because they appeared in the kinetic
literature. The reader can refer to the review articles on the topic [20, 37] to
find other tracks.

4.1 From the opinion to the choice

The question of the choice/vote naturally rises after the opinion formation.
Indeed, when someone votes, he does not necessarily only follow his own opin-
ion, he may try to prevent the electoral results to be too far away from his
opinion. It is quite clear that a vote model simultaneously depends on the
voter opinion and on the electoral system. In the sociophysical literature,
voting models are provided, for instance, in [40, 59, 75].

Comincioli, Della Croce and Toscani [25] propose a possible approach to
the formation of choice. They mostly follow [77], but they add a fixed distri-
bution of possible choices M(x), which can be seen, in the kinetic theory, as a
fixed background of field particles. Since they only consider opinions regard-
ing a finite number N + 1 of questions, they can write a typical form of the
background:

M(x) =

N
∑

0

ωiδx̄i
(x),

N
∑

0

ωi = 1. (17)

Let us give some explanations about the coefficients in (17). The parameters
ωi ∈ (0, 1) are the probability that an agent chooses the ith possibility. The
values x̄i ∈ (−1, 1)\{0} represent the stability of the ith choice. They reflect
the fact that extreme opinions are more difficult to change.

The population and the background interact, and it is translated in a
microscopic collision rule by

x′ = x − γP (|x − x∗|)(x − x∗) + η D(|x2|)), (18)

which is very similar to (8). The functions P and D, the random variable η
and the constant γ have the same meaning as in [77].
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The time evolution of the distribution function f is described by a kinetic
equation involving a linear collisional integral of Boltzmann type. It reads

∂f

∂t
= Q(f, M), (19)

where the collisional operator can be written in its weak form, for any smooth
enough test function φ, as

〈Q(f, M), φ〉 =

∫∫

(−1,1)2
f(x, t)M(x∗) (φ(x′) − φ(x)) dx dx∗. (20)

Then they tackle the quasi-invariant limit of their system (19)–(20). The
linear Boltzmann equation is again asymptotically well described by a Fokker-
Planck type equation. This Fokker-Planck type equation recovers and gener-
alizes analogous one obtained by mean field approximation of the voter model
in [75].

4.2 Contradictory individuals

In [34,36], Galam introduces and uses the notion of “contrarian” people to ex-
plain some major recent electoral phenomena. That kind of individuals cannot
be convinced by standard arguments. In fact, they may systematically oppose
the majority opinion, whatever it is.

In [13], the authors introduce the notion, a little bit different, of contradic-
tory people, opposed to conciliatory ones. When interacting with conciliatory
individuals, who tend to compromise, they follow the opposite microscopic
opinion, instead of simply going away from the average one.

More precisely, if they still consider conciliatory people who tend to com-
promise, they also take into account two kinds of interactions involving con-
tradictory people. Let x denote the opinion of a conciliatory individual and x∗

the opinion of a contradictory one, before interaction, and x′, x′
∗ the respective

post-collisional opinions. The first type of interaction writes

x′ =
x + x∗

2
+ η(x)

x − x∗

2
, (21)

x′
∗ = −α(x∗)

[

x∗ + x

2
+ η(x∗)

x∗ − x

2

]

. (22)

If (21) is still the same as in [15], the opinion of the contradictory individual
uses the standard post-collisional opinion and shifts it to an opposite value
using a reaction function α.

In the second kind of interaction, the value of x′ is the same as in (21),
but the new value of x′

∗ is given by
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x′
∗ =



























1 −
(1 − x′)(1 − x∗)

(1 − x)
if x < x∗,

x∗ if x = x∗,

(1 + x′)(1 + x∗)

(1 + x)
− 1 if x > x∗.

(23)

This time, the contradictory opinion tends to go to ±1, just to stay away from
the conciliatory one it interacted with.

For each kind of interaction, they also define the contradictory-contradictory
collision mechanism.

In any case, the kinetic system satisfied by f and g is the following:

∂f

∂t
= Q(f, f) + R1(f, g), (24)

∂g

∂t
= R2(f, g) + S(g, g), (25)

where Q(f, f) is the collision kernel associated to the interaction between
conciliatory people, R1(f, g) and R2(f, g) are the kernels for the mixed
conciliatory-contradictory interaction, and S(g, g) is the collision kernel as-
sociated to the interaction between contradictory people. The authors obtain
an existence result on f and g in L∞(0, T ; L1(−1, 1)).

They next numerically investigate the asymptotic behaviour of the solu-
tions of (24)–(25). If they use (21)–(22) as collision rules, both f and g go to
the Dirac mass centred at 0, and if they use (23) instead of (22), they obtain
two Dirac masses in ±1 for g, but not necessarily well-balanced, a concentra-
tion of f around an opinion which changes periodically in time. This latter
behaviour must be underlined, because it means that there is eventually no
steady state for f .

4.3 Leadership

The concept of leadership is a key point of sociology and many authors have
investigated its role in various aspects of the society. For example, many stud-
ies recognize that leaders have a crucial role in establishing the organization of
pyramidal hierarchies, including large corporations, universities, armies, trade
unions or political parties (see, for example, [35]).

In [31], the authors explain the formation of opinions in a society by sup-
posing that there exist two categories of people: the opinion leaders (group 2),
who are active media users that select, interpret, modify, facilitate and trans-
mit the information, and the less active part of the population (group 1),
more passive and ductile. The individuals of the population interact between
themselves and modify their opinions by means of a collisional rule which is
a variant of Toscani’s [77].

In fact, as in [77], the opinion variable x lies in [−1, 1]. Both groups are
described by distribution functions (fi)i=1,2. If two individuals from the same
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group i discuss, the post-collisional opinions x′, x′
∗ generated by the interac-

tion of individuals with pre-collisional opinions x, x∗ are obtained through
the following formulae:

x′ = x − γiPi(|x − x∗|)(x − x∗) + ηi1Di(x), (26)

x′
∗ = x∗ − γiPi(|x∗ − x|)(x∗ − x) + ηi2Di(x∗). (27)

This collision mechanism (26)–(27) is directly inspired from [77], where there
is only one group (of followers). On the other hand, the interaction between
a follower with opinion x and an opinion leader with opinion x∗ gives post-
collisional opinions

x′ = x − γ3P3(|x − x∗|)(x − x∗) + η11D1(x), (28)

x′
∗ = x∗. (29)

The update of a follower’s opinion (28) is exactly the same as in (26). On the
contrary, as stated in (29), a leader’s opinion does not evolve at all during an
interaction with a follower.

We refer to 3.1 for the meaning of γk, Pk, ηij and Dj, for k = 1, 2, 3 and
i, j = 1, 2.

The distribution functions fi, i = 1, 2, are then governed by the system of
two Boltzmann-like equations

∂f1

∂t
=

1

τ11
Q11(f1, f1) +

1

τ12
Q12(f1, f1), (30)

∂f2

∂t
=

1

τ22
Q22(f2, f2), (31)

where τij are the relaxation times, and the collision operators write, under
their weak form,

∫ 1

−1

Qij(fi, fj)(x, t)φ(x) dx

=
1

2

〈

∫∫

(−1,1)2
[φ(x′

∗) + φ(x′) − φ(x∗) − φ(x)] fi(x, t)fj(x∗, t) dx dx∗

〉

, (32)

for all smooth enough test functions φ.
Starting from microscopic interactions among individuals, the authors also

obtain a quasi-invariant limit, described by a system of Fokker-Planck-type
equations, and discuss its steady states.

4.4 Political plurality

The political plurality is one of the main characteristics of our societies. De-
spite the very theoretical viewpoint that the media should be totally indepe-
dent from the political class, it is clear that both are deeply interconnected.
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Besides, this topic is quite difficult to handle. Indeed, as we can see in the next
paragraphs, the models which are used here have, for each party, either sev-
eral distribution functions or a multidimensional opinion vector. The fact that
there are few works (see [43] for example) about that too is quite meaningful.

Propaganda and politicians

Following [61], in [62], Lo Schiavo designs a specific model to describe the
dynamics of a composite, structured society where there are two competing
political parties. The model structure once again contains terms with localized
interactions and mean field terms. The variable of the standard population
distribution function is again the social state u, but, this time, the population
division is more intricate. There are now two categories. The first one is con-
stituted of electors, who can be split into three subgroups: party 1, party 2
and the opinionless people regarding the parties. The second one is the polit-
ical class itself. Its associated variable can be seen as the ideological position
ν ∈ [−1, +1], which very much looks alike an opinion from the left (−1) to the
right wing (+1). We must emphasize that the ideological position variable of
the political class is not at all linked to the social state of the electors. Nev-
ertheless, they may be treated in the same way. Hence, the system which is
eventually obtained now is very similar to (6). Indeed, if we denote by f0 the
density function for the political class, by f1 and f2 the ones for the electors
respectively favouring party 1 and 2, by f3 the one for nonvoting electors,
and, again, by f = (fi)0≤i≤3, Lo Schiavo can write, for any t, u and ν,

∂fi

∂t
(t, u) +

∂(fiKi(f ))

∂u
(t, u) = Qi(f )(t, u) + Ri(f )(t, u), 1 ≤ i ≤ 3,(33)

∂f0

∂t
(t, ν) +

∂(f0K0(f))

∂ν
(t, ν) = S0(f )(t, ν). (34)

The functions Ki are again the propaganda functions, whose sociological
meaning is discussed in [54]. The operators Qi have the same meaning as
in (6), they model the microscopic interactions between electors. The oper-
ators Ri model the effect of the political class on the electors, and S0 takes
into account the interactions inside the political class.

Eventually, in [63], Lo Schiavo presents a reduced version of the previous
system (33)–(34). The model structure still contains terms with localized inter-
actions and mean field terms. The main strength of this work is to emphasize
the influence of some terms which were only briefly discussed in [62].

Mass media and multipartite situation

In [14], the authors propose a kinetic model to describe the evolution of the
opinion in a closed group with respect to a choice between multiple options,
such as political parties. Two main mechanisms of opinion formation are taken
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into account: the binary interaction between individuals, as in [15], and the
effects of the mass media.

In multi-choice situations, a major problem consists in the fact that, in
general, it is not possible to rank the options independently on the individual.
The authors introduce therefore an opinion vector, whose dimension coincides
with the number of possible choices. If there exist p ≥ 1 options of choice,
xi ∈ [−1, 1] is the agreement variable associated to the choice Pi, 1 ≤ i ≤ p,
and the opinion (or agreement) vector x = (x1, . . . , xp) ∈ [−1, 1]p gives, for
each individual of the population, its opinion about the plurality of options.
Nevertheless, the distribution function f , defined on R+ × [−1, 1]p, is still
one-dimensional.

The first phenomenon taken into account is the binary exchange of opinions
inside the population: if x, x∗ are the opinion vectors of two individuals
before an interaction, the post-collisional opinions are obtained through a
generalization of the collision rule defined in [15]:



















x′
i =

xi + x∗
i

2
+ η(xi)

xi − x∗
i

2

(x∗
i )

′ =
xi + x∗

i

2
+ η(x∗

i )
x∗

i − xi

2

1 ≤ i ≤ p. (35)

Once defined the collision rule (35), the interaction between individuals and
the corresponding exchange of opinions is described by a collisional integral
of Boltzmann type. The weak form of the collision kernel is

〈Q(f, f), ϕ〉 =

∫∫

(−1,1)2p

β(x, x∗)f(t, x)f(t, x∗) [ϕ(x′) − ϕ(x)] dx∗ dx, (36)

where ϕ is a smooth enough test function in the variable x, and β : [−1, 1]2 →
R+ is the cross section, which depends on a suitable pre-collisional opinion
distance.

The effects of the media on the population are modelled by a background,
which can be compared to the background introduced in [25]. This assumption
adds a linear kinetic term into the equation. For any media Mj , 1 ≤ j ≤ m,
the authors introduce two quantities: its strength αj , which translates the
influence of the media on the population and its opinion vector Xj ∈ [−1, 1]p,
with respect to each option of choice.

The effect of each media Mj on the individual is therefore described by an
interaction rule which reminds the collision rule (35):

x̃i = xi + ξj(|X
j
i − xi|) (Xj

i − xi),

for all i and j. The functions ξj are the microscopic media attraction functions.
The influence of each media is then described by a (possibly time-dependent)
linear integral operator, Lj , 1 ≤ j ≤ m, that has the classical structure of the
linear Boltzmann kernels (see 2.2). Its weak form is
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〈Ljf, ϕ〉 = αj

∫

(−1,1)p

f(t, x) [ϕ(x̃) − ϕ(x)] dx, (37)

where ϕ = ϕ(x) is a suitably regular test function.
By combining the two phenomena, the evolution law of the unknown f

is the following integro-differential equation of kinetic type, written in the
distributional sense,

∂f

∂t
=

m
∑

j=1

Ljf + Q(f, f), (38)

The authors prove the existence and uniqueness of the solution to (36)–(38)
in C0([0, T ]; L1((−1, 1)p)) for initial data in L1((−1, 1)p, and provide some
numerical tests. In particular, if they use time dependent Xj , they also obtain
time dependent behaviours for the parts of the population in favour of each
party. That means that we may not obtain a relevant asymptotic behaviour
of the distribution function.

5 Conclusion

In this chapter, we had the opportunity to describe numerous kinetic models
fitted to the study of opinion dynamics. We pointed out that the main fea-
ture of the opinion formation process is the tendency to compromise, and we
recovered it in all the models, obtaining Boltzmann-like equations. We also
presented models taking into account the self-thinking, the voting process,
the presence of contradictory people or leaders in the society, the propaganda
through the media, and a multipartite democracy. We gave some tracks about
quasi-invariant limits for those models, leading to Fokker-Planck equations.

In many papers we reviewed, some numerical results are given, often re-
garding simple situations of interest. Those results allow to emphasize the
main features of the models under study. We invite the reader to refer to the
articles themselves to check that numerical part of the works. The numerical
schemes or methods are discussed there, in link with our section dedicated to
the numerical methods to solve the Boltzmann equations 2.3.

As we already pointed out in 1.1, there are lots of theoretical contributions,
but not so many with sociophysical data. In fact, the auxiliary functions and
coefficients are not really investigated from a sociological point of view. Three
of the articles we reviewed in this contribution tried to open the road. Helbing
[48] worked on the German migration data given in [80]: having the state
y ∈ {1, . . . , S} means “living in a region y”, where S was the number of West
Germany regions. In [5], the authors discuss their model around the 1993
federal elections in Canada. Eventually, in [31], the authors test the behaviour
of their model by confronting them to the results of the state elections in
Carinthia (Austria). To enhance the models we investigate, we should try to
systematically confront them with real data, such as existing polls, and then
obtain more and more realistic models for the opinion formation.
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1973.



Modelling opinion formation by means of kinetic equations 25
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