
HAL Id: hal-00447602
https://hal.science/hal-00447602

Submitted on 15 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Colored Petri nets inversion for backward reachability
analysis

Mohamed Bouali, Pavol Barger, Walter Schön

To cite this version:
Mohamed Bouali, Pavol Barger, Walter Schön. Colored Petri nets inversion for backward reachability
analysis. Second IFAC Workshop on Depandable Control of Descrete Systems, Jun 2009, Bari, Italy.
pp.259-264. �hal-00447602�

https://hal.science/hal-00447602
https://hal.archives-ouvertes.fr

Colored Petri Net inversion for Backward
Reachability Analysis

Mohamed BOUALI, Pavol BARGER, Walter SCHON

Heudiasyc Laboratory, CNRS UMR 6599
Université de Technologie de Compiègne, France

email: {mohamed.bouali,pavol.barger,walter.schon}@hds.utc.fr

Abstract: Colored Petri Nets (CPN) are a powerful, recognized and intuitive modelling tool.
They allow a precise representation of distributed, embedded and/or real time systems. These
models can be then used among others for the dependability assessment. This paper develops
a new method of CPN analysis called the Backward reachability. It provides information about
different ways of reaching a particular CPN marking that represents, for example, a failure
state or a transilient fault. This analysis is performed on an inverse CPN which is obtained by
transforming original CPN structure while preserving the model proprieties. The work develops
mathematical tools to prove the pertinence of transformations allowing the definition of inverse
CPN. The main advantage of this method is that it allows to determine the sequence leading
from the initial to the final marking for any possible final marking vector.

Keywords: Colored Petri Net, Backward Reachability, formal methods, dependability, safety.

1. INTRODUCTION

System dependability is an important research issue espe-
cially if addressed to critical domain. Systems are verified
through tools that check compliance of their properties
with design specifications. Formal methods provide an
interesting way to study and develop verification tools
thanks to their precise characterization of the modelled
system. It is in this context that the presented work
applies a formal method approach to systems modelling
and analysis.

Petri Nets noted PN (Petri (1962)), and particularly,
Colored Petri Nets noted CPN (Jensen and Rozenberg
(1991)), are a powerful and recognized modelling tool.
They are endowed with a big expressiveness and allow to
represent the two aspects of a system : static thanks to the
PN structure and dynamic thanks to the token distribution
evolution. The PN analysis can be done in several manners:
exhaustive reachable state space enumeration, simulation,
structural analysis, etc. These methods allow to study re-
quest/action effects on the model behavior. The exhaustive
reachable state space enumeration gives correct results but
suffers from the combinatorial explosion. The Monte Carlo
simulation is a robust method but although the results
are statistically correct, they are bound with an estimable
error which can be decreased with an augmentation of
simulation repetitions. To avoid drawbacks of the these
methods, we propose to use the structural analysis using
directly the model itself.

Usually, the performed analysis is the forward one. That
means, by knowing an initial state, possible final states are
calculated. This is particularly adapted to the studies of
performances and the quality of service (QoS) of systems.
But, it is not adapted for studies with rare final state.
In such analysis, all possible initial configurations must be

studied to find those leading to the considered failure state.
This is why, in the case of ordinary Petri Nets, Khalfaoui
(2003) interested in the reachability between two markings
studied under two dual manners: the forward reachability
and the backward reachability. In the backward reachabil-
ity, the idea is to build, from the present state, predecessor
states until the reach of a state derived from the initial
state. Khalfaoui (2003) defined inverse Petri Net. Thus,
this method is defined and applicable for ordinary PNs
but not for CPNs.

Cho et al. (1996) propose a method, based on Leveson and
Stolzy (1987), for safety analysis using backward reachabil-
ity of CPN. It separates token values from transition firing
conditions. Possible tokens values are obtained by applying
a variation of the CPN fondamental evolution equation
allowing the backward evolution of the marking. Firing
conditions are obtained by performing logical unification
of the possible values with arc expressions. This process is
not always possible that is why the method introduced the
don’t care condition. It allows to split places of the CPN
into two distinct sets. The first set contains places whose
initial marking is known. The second contains places whose
initial marking is not known and allows a certain liberty
about unknown token values. This mechanism is efficient
but it truncates some conditions of the backward firing
transition and so hides some firing information.

This work proposes an approach based on the backward
reachability analysis applied to CPNs. To do this, the
method based on inverse PNs is generalized and inverse
CPNs are defined. The construction of inverse CPN pro-
ceeds by transformations done on the structure of the
original CPN. It allows to show up all conditions of the
backward firing transition. In this paper, the generaliza-
tion process is presented and transformations are formally
proved.

The paper is organized as follows: Section 2 gives the the-
oretical preliminaries required for transformations proof.
Section 3 shows the color mapping in CPNs and their
dual notation. Section 4 summarizes the construction of
the inverse PN. The main theoretical contribution of this
paper is presented in section 5 with the development of
elementary inversion rules for CPN. Section 6 gives a
comprehensive application example. The paper ends by
the conclusion and outlines future perspectives.

2. DEFINITIONS AND PRELIMINARIES

2.1 Petri Net and Colored Petri Net

A Petri Net (Petri (1962)), called also Ordinary Petri
Net or Place/Transition Net, is a directed bipartite graph
defined by the 4-tuple (P, T, Pre, Post), where: P is a finite
set of places, T is a finite set of transitions (P∩T = ∅), Pre
is the backward incidence application, Post is the forward
incidence application.

The notation of Colored Petri Net noted CPN (Jensen and
Rozenberg (1991)) introduces the notion of token types,
namely tokens are differentiated by colors, which may
be arbitrary data values. Each place has an associated
type determining the kind of data that the place may
contain. A non-hierarchical CPN is defined by the 9-tuple
(Σ, P, T, A,N,C, G,E, I) where :

• Σ is a finite set on non-empty types,
• P is a finite set of places,
• T is a finite set of transitions,
• A is a finite set of arcs such that: P ∩T = P ∩A = T ∩

A = ∅,
• N is a node function. It is defined from A into P ×

T ∪ T × P ,
• C is a color function. It is defined from P ∪T into Σ,
• G is a guard function. It is defined from T into

expressions such that:
∀t ∈ T : [Type(G(t)) = B ∧ Type(V ar(G(t))) ⊆ Σ],

• E is an arc expression function. It is defined from A
into expressions such that:
∀a ∈ A : [Type(E(a)) = C(p(a))MS ∧ Type(V ar(E(a))) ⊆ Σ]

Where p(a) is the place of N(a),
• I is an initialization function. It is defined from P

into closed expressions such that:
∀p ∈ P : [Type(I(p)) = C(p)MS]

For practical reasons, we write E in a split form Pre
and Post (as used in Haddad (1989)) such that Pre
(resp. Post) is the backward (resp. forward) incidence
application. It is defined as E where p(a) is the place of a
part of N(a) defined from A to P × T (resp. T × P).

2.2 Bilinear form

A form is an application of a vector space in his number
corp K (the number corp is a number set defining external
vectors multiplication such as integers, reals or complexes).
A Bilinear form is an application defined on a couple of
vectors x and y, from the Cartesian product of E×F that
have the same number corp. For a given application f , we
write:

f : E × F → K
(x, y) → f(x, y)

A form is said linear for its first variable if for each y0, the
application f which, to x, associates f(x, y0) is linear. In
the same way, the form is linear for its second variable if for
each x0, the application f which, to y, associates f(x0, y)
is linear. If the two previous proprieties are satisfied, the
form is bilinear.

2.3 Similitudes

Let consider E be a space provided with the bilinear form
φ : E × E → K. Let f : E → E be a linear application.
We define the symmetric bilinear form φf by

φf : E × E → K
(x, y) → φ(fx, fy)

We say that f is a similitude of φ multiplier µ (noted also
µ(f)) if the following propriety is verified:

∀x ∈ E,∀y ∈ E, φ(fx, fy) = φf (x, y) = µφ(x, y)
A result produced by this definition is that orthogonal
applications are similitudes (whose multiplier is 1).

2.4 Equivalence between linear and bilinear forms

A color function can be defined either from Bag(C(t)) 1

to Bag(C(p)) or from C(t)×C(p) to N. The two forms are
useful to define CPN transformations (developed later in
this work). It is why the same symbol is used to the two
forms. The formula that gives relation between the two
forms is expressed as follows:

f(c) =
∑

c′∈C(p)

f(c′, c).c′

Where f(c) denotes the mapping of c to an item of
Bag(C(p)) by f as a linear application and where f(c′, c)
denotes the mapping of (c′, c) to an integer value. We
note that no confusion can appear since the first definition
implies one argument while the second definition implies
two arguments.

2.5 Multi sets properties

• The Identity function of Bag(C) (noted Id) is defined
by Id(c) = c. This function can also be defined by
Id(c′, c) = (If (c = c′)1 else 0)

• A function f from Bag(C) to Bag(C) is orthonormal
if and only if there exists a substitution σ of C
such that f(c) = σ(c). The second definition is:
f(c′, c) = (If (σ(c) = c′)1 else 0). We can also write
this condition as a similitude form Evangelista et al.
(2005): ∀c ∈ C,∃c′ ∈ C ′, f(c, c′) = 1 and ∀c′ ∈
C ′,∃c ∈ C, f(c, c′) = 1

• The projection from Bag(C × C ′) to Bag(C) (noted
Proj) is defined by Proj(〈c, d〉) = c. The second
definition is: Proj(c′, 〈c, d〉) = (If (c = c′)1 else 0).

• A function f from Bag(C) to Bag(C ′) is quasi-
injective if and only if ∀c′ ∈ C ′,∀c1 ∈ C,∀c2 ∈ C :
f(c′, c1) 6= 0 ∧ f(c′, c2) 6= 0 ⇒ c1 = c2

• A function f from Bag(C) to Bag(C ′) is unitary if
and only if ∀c′ ∈ C ′,∀c ∈ C : f(c′, c) = 0∨f(c′, c) = 1

1 We note Bag(U) the multi set defined over U (U is a finite set).
A Bag (or multi set) is a non ordered set where the repetition is
permitted. An element of Bag(U) is noted

∑
u∈U

au.u. Using Bag
notion allow treatment of color sets case which are characterized by
the repetition of their values.

Fig. 1. Color correspondance in CPN

2.6 Composition

Let f be a function from Bag(C) to Bag(C ′) and g a
function from Bag(C ′) to Bag(C ′′). The composition of f
and g is a function g ◦ f from Bag(C) to Bag(C ′′) defined
by :

g ◦ f(c) = g(f(c)) =
∑

c′′∈C′′

(∑
c′∈C′

g(c′′, c′).f(c′, c)

)
.c′′

2.7 Orthonormalization of a transition

Let R be a CPN where R = (Σ, P, T, A,N, C, G,E, I), t
be a transition of R and f an orthonormal function of
C(t). The CPN Rr = (Σr, Pr, Tr, Ar, Nr, Cr, Gr, Er, Ir)
obtained by f − orthonormalization of t is defined by:

• Pr = P , Tr = T
• ∀t ∈ Tr,∀p ∈ Pr, Cr(t) = C(t) AND Cr(p) = C(p)
• ∀t′ ∈ Tr−{t},∀p ∈ Pr, Postr(p, t′) = Post(p, t′) AND

Prer(p, t′) = Pre(p, t′)
• ∀p ∈ P, Prer(p, t) = Pre(p, t) ◦ f AND Postr(p, t) =

Post(p, t) ◦ f
• ∀p ∈ Pr,Mr(p) = M(p)

3. COLOR CORRESPONDANCE IN CPN

Let us consider the case illustrated in Fig.1. The CPN
is constituted by a set of two places {p, p′} and a set of
one transition {h} such that the precondition of h is p
and the post condition of h is p′. The orthonormal func-
tion Pre(p, h) is defined from Bag(C(h)) to Bag(C(p)).
The function Post(p′, h) is defined from Bag(C(h)) to
Bag(C(p′)). So, we have: Pre(p, h) : C ′ → C and
Pre(p′, h) : C ′ → C ′′. The goal is to express relation
between C and C ′′.

By its definition, the function Pre(p, h) is orthonormal, i.e.
there exists a substitution σ of C such that f(c) = σ(c).
Using this substitution, we define the inverse substitu-
tion σ−1. This definition is possible thanks to a part of
the orthonormality condition which is ∀c′ ∈ C ′,∃c ∈
C, f(c, c′) = 1. This inverse substitution is associated to a
new color function noted Pre−1 defined from Bag(C(p))
to Bag(C(h)). Expressions of Pre−1(p, h) and Post(p, h)
can be expressed as follows:

Pre−1(p, h)(c) =
∑

c′∈C(h)

Pre−1(p, h)(c′, c).c′ for c ∈ C(p) . . . (1)

Post(p′, h)(c′) =
∑

c′′∈C(p′)

Post(p′, h)(c′′, c′).c′′ for c′ ∈ C(h) . . . (2)

Replacing c′ expressed in (1) by (2) gives :

Fig. 2. From practical notation to formal notation∑
c′∈C(h)

Pre−1(p, h)(c′, c).
∑

c′′∈C(p′)

Post(p′, h)(c′′, c′).c′′

=
∑

c′′∈C(p′)

c′′.Post(p′, h)(c′′, c′).
∑

c′∈C(h)

Pre−1(p, h)(c′, c)

=
∑

c′′∈C(p′)

c′′.
∑

c′∈C(h)

Post(p′, h)(c′′, c′).P re−1(p, h)(c′, c)

= Post(p′, h) ◦ Pre−1(p, h)(c′′, c)

Note that the relation between C and C ′′ is expressed as
Post(p′, h) ◦ Pre−1(p, h) which is defined from C to C ′′.
This result can be obtained by orthonormalization of the
transition h with the orthonormal function Pre−1(p, h).
This operation composes Pre(p, h) with Pre−1(p, h) and
composes also Post(p′, h) with Pre−1(p, h). Note that
Pre(p, h) ◦ Pre−1(p, h) equals to identity (Id), which
denotes the result.

Since the two CPNs are equivalent, we define a relation
(noted �) such that f � g = g ◦ f−1. This operator
allows to express that f is a precondition and g is a
postcondition and it is useful to handle easily symbolic
operations applied to incidence matrices of the CPN.

3.1 Dual CPN Notation

In this study, we exploit two different notations of CPN.
The first one is very useful to model real systems. It is
implemented in industrial softwares like the CPN-tools 2

(Ratzer et al. (2003)). It marks input arcs (of some
transition) by variables and output arcs by functions. This
notation is equivalent to the second one (Haddad (1989))
which is useful to perform formal proofs. In the second
notation, a transition takes its color values in a set defined
by a cartesian product C = C1 × · · · × Cn where each Ci

corresponds to colors original domain of arc expressions.
So Prei = Proji(C) noted Proji (or constant). Proji

projects transition color values to its ith precondition
place. Variables of output function take their values in C.
Fig.2 illustrates a concrete example. C = C(t) = C1×C2×
C3 × C4. The function f1 takes its values in C1 such that
C1 = Proj1(C) (that can be noted Proj1). In the same
manner, f2 takes its values in C2 which is a projection of
C on its second item.

4. ORDINARY PN INVERSION

Consider an ordinary PN R = (P, T, Pre, Post). Inverse
PN R−1 is defined by R−1 = (P ′, T ′, P re′, Post′) where:

• P ′ = P , T ′ = T ,
2 http://wiki.daimi.au.dk/cpntools

• Pre′ and Post′ are defined as ∀p ∈ P,∀t ∈

T

{
Pre′(p, t) = Post(p, t)
Post′(p, t) = Pre(p, t)

In an informal way, a place/transition PN inversion is done
by direction inversion of arcs composing the PN which is
equivalent to replace Pre by Post and vice versa.

To study formally this aspect, it is necessary to work on
incidence matrices (Pre and Post). To express forward
relation between places (one step), we multiply Pre|P |×|T |
(|P | lines and |T | columns) by Postt|T |×|P | (Post trans-
posed having |T | lines and |P | columns). To express
backward relation between places, we transpose the ma-
trix Pre.PostT . In an other side, we have the relation
(Pre.PostT)T = (PostT)T .P reT = Post.PreT . Note that
to express the inverse relation in the PN the same formula
is used with a permutation between Pre and Post. This
proves the coherence of the inverse PN construction.

5. COLORED PETRI NET INVERSION

The inversion applied to ordinary PN can be generalized
to CPN in two steps: 1) inversion of arcs direction and
2) CPN functions transformation. The application of only
the first step, i.e. generalize the inversion method as
announced for ordinary PN, may lead to the construction
of a CPN whose precondition expressions are neither
orthonormal, nor unitary, nor quasi-injective. This is why
it is necessary to check and to transform (second step).

5.1 Trivial transformation

In trivial case, input arc is marked by identity function
(Id) and the output arc by a function f . In this case, it is
necessary to know whether f is orthonormal. If yes, it is
necessary to define its inverse f−1. Applying the two steps
mentioned above leads to mark input arc by the identity
function Id and the output arc by f−1. This gives:{

Pre′(p2, t) = Pre−1(p1, t)
Post′(p1, t) = Post−1(p2, t)

The proof is a generalization of the demonstration applied
in Ordinary PN. The forward relation between places (one
step) is given by Pre.PostT and the backward relation
(one step) is given by the transpose of this last matrix
which is Post.PreT . Let’s check these relations in the
Trivial transformation case.

We have :

Pre =
(

Id
0

)
, Post =

(
0
f

)
, P re.PostT =

(
0 Id � f
0 0

)
So, the relation between P1 and P2 is verified by the
expression Id � f = f ◦ Id−1 = f . In addition, we

have backward relation Post.PreT =
(

0 0
f � Id 0

)
which

verifies a relation from P2 to P1 through the term f � Id.
As f � Id = Id ◦ f−1, the algorithm provides the inverse
CPN.

5.2 Mixed transformations

Fig.2 shows a mixed case where some input arcs are
marked with variables {x, y} and other arcs by constants

Fig. 3. Mixed transformations for CPN inversion

{a, b}. Output arcs are marked with constants {c} and
reversible functions {f1, f2}. This CPN inversion is a mix
(generalization) of basic transformations. For arcs marked
with a constant, it is sufficient to generalize the rule
applied on PNs (changing the direction of arcs). For the
remaining arcs, we have to apply the rule used in the
trivial case. So, we have to associate each variable to its
function in order to respect origin places of arcs marked
by variables and sink places which receive resulting tokens.
The following constraint has to be verified: each variable
is used by one and only one function. The algorithm
describing the mixed transformation can be written as
follows :

• Pre′(qj, t) = Post(qj, t), j = 1 . . .m if Post(qj, t) is
marked with a constant,

• Post′(pi, t) = Pre(pi, t), i = 1 . . . n if Pre(pi, t) is
marked with a constant,

• Pre′(qj, t) = Pre−1(pi, t), i = 1 . . . n, j = 1 . . .m if
Pre(pi, t) is marked with a variable and this variable
is associated to the function Post(qj, t),

• Post′(pi, t) = Post−1(qj, t) ,i = 1 . . . n, j = 1 . . .m
if Post(qj, t) is marked with a function and this
function is associated to the variable Pre(pi, t).

Proof: Fig.3 illustrates the two steps allowing to inverse
the CPN. The first one is equivalent to what was applied in
trivial case, means, inversion of arcs direction. It remains
to prove the transformation to the interpreted form of the
CPN.

Let’s note by C colors domain of the transition such as
C = C1 × C2 × · · · × Cn. We define fi : Ci → C ′, and a
projection Proji : C → Ci. The composition of the two
functions is defined by fi(Proji) : C → C ′.

Let’s note by C̃i The colors domain defined by C̃i = C1 ×
. . . Ci−1 × C ′ × Ci+1 × · · · × Cn. We define f̃i : C̃i → C ′

with f̃i(x) = (proj1(x), . . . , P roji−1(x), fi(Proji(x)),
P roji+1(x), . . . , P rojn(x)). We define also a projection
Proji : C̃i → C. The composition of the two functions
is defined by Proji(f̃i) : C → C ′.

Note that f(Proji) and Proji(f̃i) gives the same result.

Proji(f̃i)(x)
= Proji(proj1(x), . . . , P roji−1(x), fi(Proji(x)),
P roji+1(x) . . . , P rojn(x))
= f(Proji)(x)

Finally, we define the function f̃−1
i such as

f̃−1
i (x) = (proj1(x), . . . , P roji−1(x), f−1

i (Proji(x)),
P roji+1(x) . . . , P rojn(x))

The transformation is done thanks to orthonormalization
sequence using f̃−1

i . For each function f̃−1
i , three different

parts are identified :

(1) The first one is the part of the transition composed
by an input arc marked with the function fi ◦ Proji

and an output arc marked by Proji. The composition
with the function f̃−1

i gives the following results: In
input arc side we have

fi ◦ Proji ◦ f̃−1
i = fi ◦ f−1

i ◦ Proj1
= Proji

In output arc side, we have Proj1◦ f̃−1
i = fi◦Proji

We conclude that the composition produces a part
of transition which can be evaluated (functions in-
dexed by i).

(2) The second one is the part of the transition composed
by an input arc marked with the function fj ◦ Projj

(such as j 6= i) and an output arc marked with the
function Projj . The composition with the function
f̃−1

i gives the following results. At input arc side, we
have fj ◦Projj ◦ f̃−1

i = fj ◦Projj . At output arc side,
we have Projj ◦ f̃−1

i = Projj . So, this composition
does not affect other functions that those indexed by
i.

(3) The last one is the remaining part of the transition,
means, arcs marked with constants. Knowing that
composition does not affect constants, this still true
for the composition with f̃−1

i .

To complete the transition transformation, it is enough
to repeat precedent steps for all functions marking input
arcs.

5.3 Parallel transformations

The term parallelism means here the existence of a shared
variable, means the same variable is used by more than
one function. To inverse such a transition, we have to
calculate the inverse of only one function using the shared
variable (that supposes existence of, at least, one reversible
function). Let be f a reversible function. In the original
CPN, the firing of transition t produces one tokens in each
post place of t. Each token value results from a function
applied to the shared variable. The associated inverse CPN
must produce a token in the pre place of t by firing it.
But it is not enough to have tokens in post places to fire
t. That means, token in post places must have coherent
values toward applied functions. For this reason, we define
a guard associated to transition t. It checks coherence of
the values in post places. If the guard value is True, t will
be fired, then the initial marking will be found. If the guard
value is False, t will not be fired.

The algorithm describing the parallelism transformation
can be written as follow:
Let R be a CPN containing a variable x (Pre(p1, t) = x)
which is shared by n functions f1, f2, . . . , fn (Post(qi, t) =
fi(x), i = 1 . . . n) with f1 reversible. The inverse CPN is
defined by :

• Pre′(q1, t) = Pre−1(p, t),
• Pre′(qi, t) = Idi, i = 2 . . . n,
• Post′(p, t) = Post−1(q1, t),
• Guard(t) =

∧i=2
n [Pre′(qi, t) == fi(f−1

1 (Pre′(q1, t)))].

Fig. 4. Proof of Mixed transformations for CPN inversion

Proof: As in previous inversions, the proof on parallel
transformation is composed of two steps. The first is the
inversion of arcs directions. So, it remains to prove the
transformation to interpreted form on the inverse CPN.
This proof can be performed in the case of two parallel
functions, and then, generalized for any number of parallel
functions.

The transformation, as illustrated in Fig.4 can be done by
an orthonormalization of the transition. The choice of the
orthonormal function is arbitrary (f or g in Fig.4). This
gives two possible inverse CPN which are equivalent. The
scheme Fig.4 left is obtained by composition with g−1 and
Fig.4 right is obtained by composition with f−1.

The two inverse CPN are equivalent means that functions
f−1 and g−1 are applicable to a subset of transition color
domain c ∈ Bag(C(t)) where f−1(c) = g−1(c). For this
colors subset, f ◦ g−1 = Id and g ◦ f−1 = Id. By
substitutions in arc expressions, illustrated in Fig.4 (left
and right), identical results are obtained. The inverse CPN
obtained is endowed with a restrictive condition about
colors domains. This condition is called guard and it is
expressed with the notation related to the transition.

6. CASE STUDY

This section shows a practical use of the backward reacha-
bility (through an inverse CPN). The application example
is inspired from ”Simple Protocol” 3 . It describes a com-
munication protocol with an identified acknowledgement.

The basic question studied here is whether the receiver
could possibly receive a hypothetical sequence of frames.

Fig. 5. CPN model of the communication protocol

The normal functioning of this system would not allow
doublets (the correct reception of two identical frames).
Thus for example the marking with 3 following packets in
3 http://wiki.daimi.au.dk

place Receiver where the first is identified as 1, two others
frames equal to each other and identified as 2 represent
and unreachable state. In the following this marking will
be noted as 〈1 + 2 + 2〉.Send.

To verify the reachability of the previously given marking
(〈1 + 2 + 2〉.Send), the backward reachability analysis is
performed using the inverse CPN, illustrated in Fig.6.
Inversions of Transmit P and Transmit Ack are basic
transformations. Those of Receive Ack is a case of para-
metric transformation (The input variable X is not used
in an output function). The goal of this transition is to
delete the old value in Next Send and to replace it by the
token value of the place D. So, in the inverse reasoning,
the goal is to put in D the token value of Next Send and
to put in Next Send an arbitrary value. The token already
contained in this place is then returned. The inversion of
transition Send is a parallel one. This can be seen through
the input variable X which is used in two output functions
(toward A and Next Send). This explains the new variable
Z and the guard [X = Z]. The inversion of Receive is a
combination of parallel and parametric (the function are
parameterized by X and Y). In the inverse problem, tokens
in Receive are known which is equivalent to consider that
possible initial values of X are known.

Fig. 6. Inverse CPN of the communication protocol

In the original CPN, the sequence of transition fir-
ing is : Send, Transmit P , Receive, Transmit Ack,
Receive Ack. This corresponds to a partial order of tran-
sition firings. The inverse CPN analysis (endowed by the
marking 〈1+2+2〉.Send) must respect the inversed order
starting with transition Receive which is the unique po-
tentially valid transition. The receive firing is done using
marking enhancement. Two tokens have to be added to the
model : the first one into place Next Rec and the second
into place C. The two tokens are numbered 3 because
this value is the only one that fulfills guard constraints.
This marking enhancement corresponds to the assumption
that the packet numbered 2 was correctly received. The
result is a token of value 2 in places Next Rec and B
after firing Transmit P in A. The firing of Send requiers
a token valued 2 in Next Send which assumes a correct
packet transmission. The marking evolution (without any
enhancement) processes the packet numbered 1 thanks to
all transitions firings (one time for each one). This leads
to a deadlock situation with a packet numbered 2 in place
Receiver.

Thus the conclusion is reached and expresses that there is
no coherent initial marking possible to obtain the 〈1+2+

2〉.Send marking in place Receiver. Upon the detection of
such marking, an unexpected fault has to be declared.

7. CONCLUSION

The present paper introduces backward reachability ap-
plied to Colored Petri Nets by using inverse CPN. As this
is a new approach of direct high level model based analysis,
the theoretical developments are introduced. They are
completed with an analysis of a practical example.

The main application domain of this work is the reachabil-
ity analysis of undesired state. This can be a fundamental
question for diagnostic, safety and security fields. The
cases concern the situations when the initial and final
states are both perfectly known. But the final state rep-
resents a rare state which is difficult to find with classical
forward analysis. Reaching a limit value is an example of
such a final state.

In the actual progress phase, only a limited number
of inversion patterns are developed. This is why the
application at the moment can only be done on small
academic examples. The development of rules required for
realistic examples is the main perspective. As the inclusion
of all possible cases will not be possible, the studied
domain will have to be delimited and clearly stated. The
method is then intended to be applied in the corresponding
studies in our industrial research projects concerned with
real-time system safety demonstrations.

REFERENCES

Cho, S.M., Hing, H.S., and Cha, S.D. (1996). Safety
analysis using colored petri nets. In Proc. Asia-Pacific
Software Engineering Conference (APSEC-96), 4-7 De-
cember 1996, Seoul, Korea, 176–183.

Evangelista, S., Haddad, S., and Pradat-Peyre, J.F.
(2005). Syntactical colored petri nets reductions. Auto-
mated Technology for Verification and Analysis (ATVA
05) Taipei, Taiwan, October 4-7, 202–216.

Haddad, S. (1989). A reduction theory for coloured nets.
Lecture notes in Computer science n 424 Springer-
Verlag, 209–235.

Jensen, K. and Rozenberg, G. (1991). High-level Petri
Nets: Theory and Application. Springer-Verlag, Ger-
many.

Khalfaoui, S. (2003). Mthode de recherche des scnarios
redouts pour l’valuation de la sret de fonctionnement
des systmes mcatroniques du monde automobile. Ph.D.
thesis, Institut National polytechnique de Toulouse
(France).

Leveson, N.G. and Stolzy, J.L. (1987). Safety analysis
using petri nets. IEEE Trans. Softw. Eng., 13(3), 386–
397.

Petri, C.A. (1962). Communication with automata. Ph.D.
thesis, Darmstadt Institut fr Instrumentelle Mathe-
matik, Bonn (Germany).

Ratzer, A., Wells, L., Lassen, H., Laursen, M., Frank,
J., Stissing, M., Westergaard, M., Christensen, S., and
Jensen, K. (2003). Cpn tools for editing, simulating, and
analysing coloured petri nets. In Applications and The-
ory of Petri Nets 2003: 24th International Conference,
ICATPN 2003, 450–462. Springer Verlag.

