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ABSTRACT

Context. Thin X-ray filaments are observed in the vicinity of young supernova remnants (SNR) blast waves. Identifying processes
involved in the creation of such filaments would provide a direct insight of particle acceleration occurring within SNR,in particular
regarding the cosmic ray yield issue.
Aims. The present article investigates magnetic amplification inthe upstream medium of SNR blast wave through both resonant and
non-resonant regimes of the streaming instability. It aimsat a better understanding of the diffusive shock acceleration (DSA) efficiency
considering various relaxation processes of the magnetic fluctuations in the downstream medium. Multi-wavelength radiative signa-
tures coming from the SNR shock wave are used in order to put tothe test the different downstream turbulence relaxation models.
Methods. Analytical and numerical calculations coupling stochastic differential equation schemes with 1D spherical magnetohydro-
dynamics simulations are used to investigate, in the context of test particles, the issues regarding the turbulence evolution in both the
forshock and post-shock regions. Stochastic second order Fermi acceleration induced by resonant modes, magnetic fieldrelaxation
and amplification, turbulence compression at the shock front, are considered to model the multi-wavelength filaments produced in
SNRs.γ-ray emission is also considered through the Inverse Compton mechanism.
Results. We confirm the result of Parizot et al (2006) that the maximum CR energies should not go well beyond PeV energies in
young SNRs where X-ray filaments are observed. In order to match observational data, we derive an upper limit on the magnetic field
amplitude insuring that stochastic particle reacceleration remain inefficient. Considering then, various magnetic relaxation processes,
we present two necessary conditions to achieve efficient acceleration and X-ray filaments in SNRs: 1/the turbulence must fulfil the
inequality 2− β − δd ≥ 0 whereβ is the turbulence spectral index whileδd is the relaxation length energy power-law index; 2/the
typical relaxation length has to be of the order the X-ray rimsize. We identify that Alvénic/fast magnetosonic mode damping does
fulfil all conditions while non-linear Kolmogorov damping does not. Confronting previous relaxation processes to observational data,
we deduct that among our SNR sample, the older ones (SN1006 and G347.3-0.5) fail to verify all conditions which means thattheir
X-ray filaments are likely controlled by radiative losses. The younger SNRs, Cassiopeia A, Tycho and Kepler, do pass all tests and
we infer that the downstream magnetic field amplitude is lying in the range of 200-300µ Gauss.

Key words. ISM: supernova remnants - Physical data and processes: Acceleration of particle - Magnetohydrodynamics (MHD) -
Shock waves - Turbulence - Supernova: individuals: Cassiopeia A - Tycho - Kepler - SN1006 - G347.3-0.5

1. Introduction

Recent Chandra high-angular resolution X-ray observations of
young supernova remnants (SNR) as for instance Cassiopeia
A, Kepler or Tycho, have revealed the presence of very thin
X-ray filaments. They are likely associated with the supernova
(SN) forward shock expanding into the interstellar medium
(ISM) (Gotthelf et al 2001; Hwang et al 2002; Rho et al 2002;
Uchiyama et al 2003; Cassam-Chenaı̈ et al. 2004; Bamba et
al 2005a; Bamba et al 2005b; Cassam-Chenaı̈ et al. 2007).
The physical properties of these filaments have been reviewed
by Vink & Laming (2003), Vink (2004), Weisskopf & Hughes
(2006), Ballet (2006), Parizot et al (2006), Bamba et al (2006)
and Berezhko (2008). The existence of such filaments is believed
to be the result of synchrotron radiation emitted by TeV elec-

trons. The rim-like filaments usually exhibit few arc-seconds an-
gular size as reported in Parizot et al (2006). Their actual width,
however has to be inferred from de-projection calculationstak-
ing into account the curvature of the remnant (Berezhko et al
2003a; Ballet 2006). It is believed that this size will depend on
the magnetic field strength, local fluid properties (the shock ve-
locity and compression ratio) and the relativistic electron diffu-
sion regime.

Recent measurements of the X-ray rim size led to a lower
limit on the magnetic field located downstream from the shock
front. Typical field strengths two orders of magnitude abovethe
standard ISM valuesB∞ have been reported; e.g., Berezhko et
al (2003a), Vink (2004), Völk et al (2005), Parizot et al (2006)
and Berezhko (2008). Vink (2004) showed that advective and
diffusive transports contribute similarly to the filament exten-
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sion at high energy close to the electron cut-off. The aforemen-
tioned constraints favour value of the electron spatial diffusion
coefficient few times larger than the Bohm limit in the down-
stream region from the shock1. These results support the stan-
dard scenario of diffusive shock acceleration (DSA) in SNRs and
require a strong magnetic field amplification at the shock pre-
cursor. However, Chandra observations have been obtained in a
limited frequency range. Thus diffusion regimes differing from
the Bohm diffusion cannot be ruled out by these sole observa-
tions (Marcowith et al 2006). For instance, alternative diffusion
regimes may affect high energy particle transport then modifying
the way synchrotron spectrum cut-off is reconstructed from the
extrapolation of the radio spectrum (Zirakashvili & Aharonian
2007). However recent hard X-ray detection in SNR RXJ1713-
3946.5 by Suzaku (Takahashi et al 2008) supports a cut-off spec-
trum in agreement with a Bohm-like diffusion regime.

The origin of the magnetic fluctuations sustaining the dif-
fusive behavior of non-thermal particles is still widely debated.
One possibility is that the turbulent magnetic field is generated
by the relativistic particles themselves through their streaming
motion ahead of the shock front (Bell & Lucek 2001). The field
amplification has strong implications on the physics of cosmic-
ray (CR) acceleration at SNRs shocks. For instance, a calcula-
tion including the effect of non-linear turbulence transfer has
concluded to the possibility of proton acceleration up to the CR
spectrum knee at∼ 3 × 1015eV. This calculation was done in
the most extreme shock velocity regimes, particularly for SNRs
propagating in a hot interstellar medium free of ion-neutral wave
damping (Ptuskin & Zirakashvili 2003). Recently, Bell (2004)
discussed a non-resonant regime of the streaming instability that
can generate a very strong turbulent magnetic field (and boost
the CR maximum energy) readily at the very early stage of
the SNR free expansion phase. Diamond & Malkov (2007) and
Pelletier et al (2006) further insisted on the importance ofdeter-
mining the saturation level of the magnetic fluctuations which
was partially discarded in the previous work. Pelletier et al
(2006) shown that both resonant and non-resonant regimes of
the streaming instability have to be considered simultaneously
in order to fix the magnetic field spectrum and strength at the
shock front. In fast shocks, the non-resonant instability domi-
nates the magnetic field generation, the level of fluctuationat the
shock being found similar to the value derived by Bell (2004).
The resonant instability dominates in slower shock regimes. The
turbulence generated upstream may then relax downstream from
the shock front, producing a limitation of the spatial extension
of the non-thermal particle journey (Pohl et al 2005). This pos-
sibility has not yet been completely taken into account in the
DSA process and the corresponding maximum energy reachable
by relativistic particles. This issue is investigated in a dedicated
section of the present article. Note that the problem of the max-
imum CR energy has been addressed recently by Zirakashvili
& Ptuskin (2008) using a semi-analytical approach of the non-
resonant streaming modes generation. The authors found a max-
imum CR energy lying between the two confinement limits ex-
pected in either a standard ISM medium or in a completely am-
plified magnetic field. One should keep in mind that several ef-
fects may alterate these conclusions as for instance the propaga-
tion into a partially ionised medium (Bykov & Toptyghin 2005;
Reville et al 2007), thermal effects in the dispersion relation of

1 The Bohm diffusion coefficient is obtained once the particle mean
free path exactly matches its Larmor radiusrL = E/ZeB; i.e., DBohm =

rLc/3.

the non-resonant instability (Reville et al 2008) or a back reac-
tion on the CR current (Riquelme & Spitkovsky 2009).

While still a matter of debate (see the discussions in Katz
& Waxman (2008) and Morlino et al (2008)), the production
of relativistic hadrons in SNRs has found observational support
in the recent detection of a few TeVγ-ray emitting SNRs in
the galactic plane by the HESS telescope. Thisγ-ray emission
may favor the interaction of relativistic hadrons with a dense
molecular cloud leading to the Compton up-scattering of low
energy photons (Aharonian et al 2004, 2006; Albert et al 2007).
Nevertheless, more observations are mandatory before drawing
any firm conclusion on this important issue.

The present article aims at investigating issues regarding
DSA processes involving magnetic field amplification and re-
laxation. The paper considers the effect of shock acceleration,
spatial variation of the magnetic field (and of the corresponding
diffusion coefficient), the possibility of finite diffusive extension
zones and the effect of stochastic Fermi acceleration by the elec-
tromagnetic fluctuations generated in the shock precursor.This
modelling is achieved by means of numerical calculations. The
numerical scheme is based upon the stochastic differential equa-
tions (SDE) and is described in appendix C. Section 2 presents
the general framework adopted in this article. In particular, it
investigates the required conditions to develop turbulence up-
stream from the shock, as expected from the non-linear evolu-
tion of the various regimes of the streaming instability. Sections
3 and 4 investigate the impact of post-shock turbulence upon
particle acceleration. Section 3 deals with advected downstream
turbulence while section 4 refers to a downstream relaxing turbu-
lence. All calculations are then compared to a sample of young
SNRs already presented in Parizot et al (2006).
Tab.(1) summarises the notations used in this article (the section
where the parameter is reported at first is also indicated).

2. Upstream turbulence generation and accelerated
particle diffusion

Highly turbulent supernova shocks involve several complexpro-
cesses that modify the standard DSA model at some stage of
the SNR evolution. In the upstream region, the properties ofthe
turbulence are controlled by the fastest growing instability and
its saturation mode (Pelletier et al 2006). The diffusion regime
strongly depends on the competition between the wave growth
and the energy transfer to other scales provoked by non-linear
cascades (Marcowith et al 2006). The turbulence is then com-
pressed at the shock-front; i.e., parallel modes (parallelto the
shock normal) do have wavelengths shortened by a factor cor-
responding to the (sub)shock compression ratio. In the down-
stream region, the turbulence can either relax (Pohl et al 2005) or
be amplified (Pelletier et al 2006; Zirakashvili & Ptuskin 2008).
The turbulent magnetic field coherence length may also vary
with the distance to the shock, which can be modeled using self-
similar solutions (Katz et al 2007).

Section 2.1 recalls the properties of the two regimes (both
resonant and non-resonant) of the streaming instability aswell as
the magnetic field profiles that will be inserted into the coupled
SDE-Magnetohydrodynamics(MHD) numerical calculations.In
section 2.3 we derive the general form of the diffusion coef-
ficient. Finally, section 2.4 displays the general expression of
the particle distribution function, at the shock front, expected in
the case of spatially varying diffusive zones. The various expres-
sions derived in this section will be used in sections 3 and 4.
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Turbulence parameters β One D power-law spectral index of the turbulence spectrum [Eq.(6)]
ηT Level of magnetic fluctuations with respect to the mean ISM magnetic field [Eq.(6)]
φ Logarithm of the ratio of the maximum momentum to the injection momentum [Eq.(4)]
λmax Largest wavelength of the magnetic turbulence spectrum (sect. 2.3)
`coh Coherence length of the magnetic fluctuations (sect. 2.3)
σ Normalisation factor entering the turbulent spectrum (sect. 2.3)

δu/d
Power-law energy dependance index of the relaxation lengths either up-
or downstream (sect. 4 and [Eq.(23])

H Ratio of the upstream to the downstream diffusion coefficient at the shock front [Eq.(16)]
δB Ratio of the resonant to the non-resonant magnetic field strength at the shock front [Eq.(3)]

Relativistic particle
parameters

ξCR Ratio of the CR pressure to the shock dynamical pressure [Eq.(3)]
rL Larmor radius of a particle (defined using resonant magneticfield)
ρ Ratio of the particle Larmor radius toλmax/2π (also called reduced rigidity, see sect. 2.3)
ECR−max Maximal cosmic ray energy (sect. 2.3)
Ee−max Maximal electron energy (sect. 3.1)
Eγ−cut Cut-off synchrotron photon energy emitted by electrons atEe−max (sect. 3.1)
ECR−min Injection energy of the cosmic rays (sect. 4.1.4)
Ee−obs Energy of the electrons producing the observed X-ray filaments (sect. 4.2.4)

SNRs parameters Vsh,4 Velocity of the SNR shock wave (in 104 km/s unit)

Bd/u,−4
Magnetic field amplitude at the shock front respectively in the
down- and upstream medium (in 10−4 Gauss unit)

rB, rsub, rtot Magnetic, sub-shock and total shock compression ratios (sect. 3.1)
∆RX,−2 X-ray filament deprojected width (in 10−2 parsec unit, sect. 4.2.4)

Equation parameters y(r) 3r2/(r − 1) [Eq.(19)]
K(r, β) q(β) × (H(r, β)/r + 1) [Eq.(36)]
fsync H(r, β) + r/H(r, β)/r2

B + r [Eq.(39)]
g(r) 3/(r − 1)× (H(r, β)/r + 1) [Eq.(40)]
C(δd) (Ee−max/Ee−obs)δd [Eq.(41)]

Table 1.Summary of the notations used in this article to denote the various physical quantities and parameters involved in our description of high
energy particle yield in supernova remnants (SNR).

2.1. The cosmic-ray streaming instabilities

The streaming instability, provoked by the superalfvenic motion
of accelerated energetic particles, generates magnetic fluctua-
tions over a large interval of wave numbers. The resonant in-
stability involves wave-particle interaction at wave scales of the
order of the particle gyro-radiusrL (Skilling 1975; Bell & Lucek
2001). The non-resonant regime has been adapted to the SNRs
shock waves only recently by Bell (2004); see also Pelletieret
al (2006), Zirakashvili & Ptuskin (2008) and Amato & Blasi
(2009) for further details. The non-resonant waves are produced,
at least in the linear growth phase of the instability, at scales
much smaller thanrL . However the ability of the instability to
both deeply enter into the non-linear regime and to saturateat a
magnetic field levelδB� B∞ is still a matter of debate (Reville
et al 2008; Niemiec et al 2008; Riquelme & Spitkovsky 2009).
In the next paragraph, we recall the main properties of the wave
modes generated by the non-resonant streaming instability(sec-
tion (2.1.1)). Then we present the characteristics of the resonant
regime in section (2.1.2).

2.1.1. The non-resonant regime

In the linear phase, the most rapidly growing waves have large
wave numbers (Bell 2004):

k ≤ kc =
jcrB∞
ρ∞V2

a∞c
(1)

where jcr = ncreVsh is the current produced by the cosmic rays
ahead of the shock wave;nCR is the CR density andVsh is the
shock velocity measured in the upstream rest-frame.

The wave number corresponding to the maximal growth rate
γmax = kupVa∞ is:

kup =
kc

2
=

ncr

n∞
×Ωcp×

Vsh

2V2
a∞
, (2)

wheren∞, Ωcp = eB∞/(mpc) and Va∞ = B∞/
√

4πn∞ are re-
spectively the density, the cyclotron frequency and the Alfvén
velocity in the ISM2.

MHD calculations (Bell 2004; Zirakashvili & Ptuskin 2008)
have shown that beyond an exponential growth phase located
over a typical scale

xg = Vsh/γCR−max

2 The densityn∞ is usually the ion density but when the coupling be-
tween ion and neutrals is effective it must involve the density of neutrals
either
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from the shock, the instability enters into a non-linear regime.
The magnetic fluctuations are redistributed towards largerscales
while the turbulence level evolves in a linearly phase. Bell
(2004) and Pelletier et al (2006) discussed several saturation
processes all leading to an energy transfer from the dominant
wavelength towards large wavelengths (see the discussion in
Riquelme & Spitkovsky (2009)). One may then expect the coher-
ence length of the turbulence to be transferred from a scale`coh−L
wherek−1

max ≤ `coh−L � r̄L−CR−max to a scalè coh−NL < r̄L−CR−max
where ¯rL−CR−max = rL−CR−max× B∞/B̄ is the renormalised max-
imum energy CR gyro-radius in the amplified magnetic fieldB̄.
Resonant modes having a harder spectrum (Pelletier et al 2006)
contribute to the increase of the coherence length of the turbu-
lence (see section 2.1.2). So, hereafter, we will consider both
regimes producing a turbulence with a coherence scale closeto
r̄L−CR−max; i.e. we neglect the extension of the upstream region
where the non-resonant instability is in the linear regime (see
section 2.3).

Another important property of non-resonant modes is that
they have non-vanishing helicity (Pelletier et al 2006). Indeed,
these modes are mostly proton induced and do have a right-
handed polarisation with respect to the mean magnetic field far
upstream. This non-zero helicity can be the origin of further am-
plification in the downstream medium where the total magnetic
field can eventually reach values close to the equipartitionwith
the kinetic energy of the thermal gas.

2.1.2. The resonant regime

The resonant regime develops simultaneously with the non-
resonant regime (Pelletier et al 2006) andcannot be discarded.
The total amplification factor of the magnetic fieldA2

tot =

B2
tot/B

2
∞ at a distancex from the shock front is a combinai-

son of both non-resonant and resonant contributions, namely
A2

tot(x) = A2
NR(x)+A2

R(x). The exact spatial dependence ofAR(x)
is derived in appendix A for completeness. It is found that a good
approximation isAR ∝ A1/2

NR.
In order to quantify the previous assertion, we can parametrise
the contribution of each instability regime. Pelletier et al (2006)
argued that the shock velocity is the main controlling factor of
the each contribution. This dependence can be deduced from
Eq.(A.2). Comparing the respective saturation values of each
regimes, one gets:

BR(x = 0)
BNR(x = 0)

= δB =

(

ξCRc
Vsh

)1/4

. (3)

While:
BNR(x = 0)

B∞
= δ−6

B ×












3c2ξ4CR

φV2
A∞













1/2

. (4)

The level of magnetic fluctuations at the shock front given by
Eq.(3) and (4) are controlled byδB and the fractionξCR of the
SNR dynamical pressure transferred into the CR. The parameter
φ = log(pmax/pinj) is the logarithm of the ratio of the maximum
to the injection momentum and its order of magnitude is approx-
imately between 15 and 16.

As a fiducial example, let us takeξCR = 0.2, B∞ = 4 µGauss
and set the ion density asni = 0.7 cm−3. We then get three distinct
domains:

1. δB ≥ 3 (corresponding toVsh ≤ c/400): the magnetic field
amplification provided by the streaming instability is modest
for slow shock velocities.

2. 1< δB < 3 (corresponding to c/400< Vsh < c/10): we get
here the orderingBR ≥ BNR > B∞ and the ratioBR/BNR does
not exceed a factor 2.

3. δB ≤ 1 (corresponding toVsh ≥ c/10): the magnetic ordering
becomesBNR ≥ BR > B∞. In that case, an upper limit veloc-
ity stands close toc. Beyond that limit, the amplification by
the non resonant instability is maximal. An accurate analysis
is then necessary to compare the saturation of the instability
induced by both advection and non-linear effects (Pelletier et
al 2009).

Electrons and protons (or ions) moving in the forward or back-
ward direction can resonate with either forward or backward
modes. Efficient mode redistribution is expected to produce
waves in both direction in the shock precursor (see the ap-
pendix of Pelletier et al (2006) for further details). It is note-
worthy that the interaction between resonant Alfvèn wavesand
the shock do produce magnetic helicity different from either+1
or −1 and makes second order Fermi acceleration by the reso-
nant modes unavoidable in the downstream region (Campeanu
& Schlickeiser 1992; Vainio & Schlickeiser 1999). This effect
will be discussed in section 3.2.

2.2. A note on the evolution of non-resonant modes

Non-resonant modes are purely growing modes having a null
frequency, at least in the linear phase. They do not correspond to
any normal mode of the plasma as it is the case for the resonant
regime. Consequently they are expected to be rapidly damped
once the source term is quenched; i.e., at the shock front. The
damping length should be of the order of a few plasma skin
depths. However, these modes have also a non-vanishing helicity
(Pelletier et al 2006; Zirakashvili & Ptuskin 2008) (as we will
see in section 4.1.4 ). So a fraction of the turbulent spectrum
can further grow downstream by dynamo action. At this point,
the downstream evolution of the non-resonant spectrum is not
clear. It may well happen that in some condition the combinaison
of magnetic field compression and non-resonant mode damping
at the shock front lead to a downstream magnetic fieldsmaller
than the upstream field, especially in the very fast shock regime
(regime 3. discussed in section 2.1.2). This is not the case in the
SNR sample considered in this work as the resonant modes tend
to be dominant at the shock front. A complete investigation of
this difficult issue would require a detailed investigation of the
interstellar medium interaction with shocks, in order to fixthe
ratio BR/BNR. For this reason we will assume hereafter that the
downstream behaviour of the turbulence is dominated by the res-
onant mode. However, even ifBR/BNR > 1 at the shock front, the
fastest growing channel is the non-resonant one and it is essen-
tial while considering the complete setting of the magneticfield
turbulence in the upstream region. We acknowledge the fact that
this assumption weakens the analysis developed in the following
sections and consider this first work as an attempt to isolatethe
main properties of the turbulence around a SNR shock.

2.3. Upstream diffusion regimes

As previously discussed, the most energetic CRs do generate
fluctuations at scales much smaller thanrL−CR−max. These par-
ticles experience a small scale turbulence exclusively in the un-
amplified magnetic field. Thus the diffusion coefficient at max-
imum energy scales asD(ECR−max) = (rL−CR−max/`coh)2`cohc
(see next). This allows us to comparexg and `diff(ECR−max) =
D(ECR−max)/Vsh, the diffusive length of the most energetic cos-
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mic rays. One can then write (Pelletier et al 2006):

xg =
2φ

3ξCR
×

PB∞

ρ∞V2
sh

×
Vsh

Va∞
×

`coh

rL−CR−max
× `diff(ECR−max) . (5)

We get xg � `diff(ECR−max) in fast shocks (Vsh > 10−2c) as
(PB∞/ρ∞V2

sh) Vsh/Va∞ ∼ Va∞/Vsh. The following notations have
been used to derive the previous result: the CR density is linked
to the CR pressure bynCR = 3PCR/φp∗c andp∗ = pCR−max at a
distancex = `diff(ECR−max) from the shock. The parameterξCR is
likely to lie between 0.1 and 0.3.

CRs and electrons having energy smaller thanECR−max, dif-
fuse through a large scale turbulence, their transport properties
being different from the most energetic CRs (Zirakashvili &
Ptuskin 2008). Whatever the turbulence level, the angular dif-
fusion frequency (for a relativistic particle in an amplified field)
can be estimated as (Casse et al 2002) (their Eq.A22) :

νs '
π

3
r̄−2
L × (β − 1)× b c

δB2

B̄2
, (6)

with

b = `coh×
∫ kmax−NR`coh

kmin−NR`coh

d ln(k)(k`coh)
−β . (7)

The turbulence spectrum is assumed to spread over the range
[k−1

max, k
−1
min] with a 1D power-law spectral indexβ. If β = 1, the

term 1/(β − 1) has to be replaced by a factorσ = ln(kmax/kmin).
The corresponding spatial diffusion coefficient is by definition
D = c2/3νs. Its energy dependence is related to the development
of the instability. In the linear phase (small scale turbulence), we
recover the above expression for`diff(ECR−max). If kmin−NR`coh '
1, introducing the level of turbulenceηT = δB2/B̄2, we find

D(E) =
β

π(β − 1)
× `cohc
ηT
×

(

r̄L

`coh

)2

. (8)

In the non-linear phase (i.e. large scale turbulence), we have
kmin−NR ∼ r̄L and so:

D(E) =
β

π(β − 1)
× `cohc
ηT
×

(

r̄L

`coh

)2−β

. (9)

The results obtained by Casse et al (2002) can be recovered
using `coh = ρMλmax/2π and adopting a reduced rigidityρ =
2πr̄L(E)/λmax. The lengthλmax ' 20̀ coh is the maximum scale
of the turbulence andρM is a number∼ 0.2 − 0.3. This latter
number corresponds to the reduced rigidity where the transi-
tion between the two diffusive regimes operates. For instance,
assumingηT ' 1 andβ = 5/3, one getsD ' 2.2DBohm at
r̄L = `coh. This result is consistent with the numerical solutions
found by Casse et al (2002). Ifβ = 1, the energy independent
ratio D/DBohm = 3σ/π ' 15− 16.

We will hereafter refer toq(β) as the normalization of the
diffusion coefficient such that

D(E) =
q(β)
π
× `cohc
ηT
×

(

r̄L

`coh

)2−β

. (10)

It is noteworthy that the normalization of the diffusion coefficient
is given byq(β) and must not be confused with the normalization
of the turbulent spectrum. Both quantities appear to have similar
expressions as seen from quasi-linear theory calculationsor from
numerical estimates obtained in Casse et al (2002). Nevertheless,
they can differ in a strong turbulence regime. Reville et al (2008)
discussed some solutions clearly displaying diffusion coefficient

having sub-Bohm values. This issue is beyond the scope of the
calculations done here and are postponed to a future work (see
also a recent work by Shalchi (2009)). Considering such uncer-
tainties we considerq(β) as a free parameter hereafter.

Pelletier et al (2006) obtained a 1D stationaryβ = 2 power-
law solution regarding the non-resonant wave spectrum. We
see from the above analysis that the energetic particle transport
properties around the shock front depend on the possibilityfor
the non-resonant instability to deeply enter into the non-linear
regime. Verifying such condition leads to a diffusion coefficient
at E � ECR−max given by the Eq.(9),the magnetic field profile
being characterised by an exponential growth over a scalexg and
a linear growth over a scalex < `diff(ECR−max).

This qualitative analysis confirms that the non resonant insta-
bility contributes to the turbulence level over a large interval of
parameters (once the non-linear regime of the instability is estab-
lished) as well as the control of the turbulence coherence length.
The analysis presented in Pelletier et al (2006) shows however
that the resonant instability at least in the domain 2 of our fidu-
cial example above also contributes to the magnetic fluctuation
spectrum. The resonant wave spectrum is found to be harder; i.e.
for a CR distribution spectrum scaling asp−4, the 1D turbulence
spectrum has an indexβ = 1. In this work a turbulence index
lying within the range 1≤ β ≤ 2 is then admitted.

2.4. Shock particle distribution

Before discussing the effect of turbulence evolution in the down-
stream region, we present here the general solution of the parti-
cle distribution at the shock front in the case of spatially vary-
ing diffusion coefficients where radiative losses are discarded.
The complete calculation is presented in appendix B. We briefly
outline our result (see Eq.B.5) as follows: we have assumed up-
stream and downstream magnetic fluctuations variation lengths
`u/d to be scale (or energy) dependent (see section 4). The slope
of the stationary particle distribution (neglecting any radiative
loss) at the shock front is:

d ln fS(p)
d ln p

= − 3r
r − 1

×
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(
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(11)

The value of the spectrum slope is controlled by the functions
θu/d = uu/d/Du/d − d ln Du/d/dx (see Eq.B.3). In the basic case
where both upstream and downstream diffusion coefficients can
be assumed as space independent over lengths`u/d from the
shock (and vanishing beyond these distances), the above expres-
sion reduced to (Ostrowski & Schlickeiser 1996):

d ln fS(p)
d ln p

= −
3

r − 1

(

r
1− exp(−uu`u/Du)

+
1

exp(ud`d/Dd) − 1

)

.

(12)
If the shock wave is modified by the CR back-reaction,r will
then depend on the particle energy and the shock spectrum will
not behave as a power-law. Let us note that provided functionsθ
are remaining large compared to unity, the previous relation indi-
cates that we will get the standard power-law spectrum expected
from DSA theory.

The present article investigates the effects of energy and spa-
tial dependencies of theθ functions both in up- and downstream
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regions, relying on a set of available multi-wavelength data of
five SNR: Cassiopeia A, Tycho, Kepler, SN1006 and G347.3-
0.5 (also known as RXJ 1713-3946.5). All these remnants are
in the case 2 discussed in section 2.1.2 and correspond to mildly
fast shocks where both resonant and non-resonant magnetic field
amplification occur.

3. Particle acceleration in case of downstream
advected magnetic field

This section examines the DSA process in the case of an ef-
ficient turbulence amplification mechanism producing a large
magnetic field in the shock precursor (see section 2). In the first
section (3.1), we reconsider the calculations achieved by Parizot
et al (2006) but this time including the effect of turbulent scale
compression at the shock front. Section (3.2) then addresses the
usually overlooked aspect of stochastic particle acceleration in
the downstream flow. Finally section (3.3) deals with tests in-
volving the shock solutions obtained recently by Zirakashvili &
Aharonian (2007) regarding various turbulent spectrum scaling.
We then incorporate particle losses and Fermi stochastic accel-
eration into the Fermi cycles and proceed to different numerical
experiments. We conclude by a comparison between X-ray and
γ-ray filaments produced by Inverse Compton up-scattering of
cosmic microwave background photons.

3.1. Downstream diffusion regimes and maximum particle
energies

Downstream of the shock, the particle distribution has beenfully
isotropised (to an order ofV/v) and the streaming instability is
quenched. We insert the magnetic profiles derived in the previ-
ous section into the diffusion coefficients (see Eq.9). In order to
derive the downstream diffusion coefficients, we need to spec-
ify how the transition occurs at the shock front properly. We
only consider here the case of a strong magnetic field amplifi-
cation at the shock precursor. The upstream magnetic field being
highly disordered, the magnetic compression ratio then becomes

rB =

√

(1+ 2r2
sub)/3 ≤ rsub (with rsub≥ 1)3:

Bu = Bd ×












1+ 2 r2
sub

3













−1/2

=
Bd

rB
. (13)

Parizot et al (2006) only considered this last effect. But in the
meantime, the maximum turbulence scale downstream is re-
duced by a factorrsub:

λmax−d =
λmax−u

rsub
. (14)

3 We make a distinction between the compression ratio at the sub-
shock (rsub ≤ 4) and the total shock compression ratiortot ≥ 4. In the
case of weakly modified shocks, we havertot ' rsub ' r = 4. In the
case of strongly CR modified shocks, one getsrtot > r > rsub. If the
sole adiabatic heating of the precursor is considered, valuesrsub= 2− 3
and rtot > 10 are possible (see e.g. Berezhko & Ellison (1999)). If a
substantial gas heating in the precursor is produced for instance by the
absorption of Alfvèn waves, the total compression ratio cannot be much
larger than 10, under ISM conditions considered above (Bykov 2004).
Whithin strongly modified shock, the most energetic electrons produc-
ing the X-ray filaments have energy E� ECRmin and do experiment a
compression ratio close tortot. This value will be used in the next esti-
mations. Values ofrsub = 2 andrtot = 10 are accepted in this work in
the case of strongly CR modified shock.

This scale compression induces an enhancement of the tangen-
tial magnetic field component and a reduction of the maximum
turbulence length in the downstream region. The downstream
turbulence is then anisotropic, displaying elongated eddies in the
direction parallel to the shock front (Marcowith et al 2006)un-
less other non-linear processes prevail (Zirakashvili & Ptuskin
2008). The coherence length of the turbulence is hereafter as-
sumed as a constant.

We can define the downstream diffusion coefficient accord-
ingly to the definition of the upstream coefficient given in Eq.(9):

Dd =
q(β)
π
× ρMλmax−dc

2πηT−d
×

(

ρLd

ρM

)2−βd

, (15)

In the rest of the present article, we will only consider the case
whereβu = βd = β.

Using Eq.(9) evaluated atx = 0 as well as Eq.(13) and (14),
we end up linking up- and downstream diffusion coefficients at
the shock front (where we have assumedηT ' 1).

Du = Dd × rsub

(

rB

rsub

)2−β

= Dd × H(rsub, β) , (16)

Once the up- and downstream diffusion coefficients are set, mag-
netic field at the shock front can be inferred following the same
procedure as the one adopted in Parizot et al (2006) (see the arti-
cle for the detailed derivation). The balance between the electron
acceleration rate and the mean synchrotron loss rate fixes the
maximum electron energy astacc(Ee−max) = 〈tsyn(Ee−max)〉. The
synchrotron loss timescale is obtained from Eq.(17) of Parizot et
al (2006) using the mean square magnetic field experienced by
relativistic electrons during one Fermi cycle:

〈B2〉 = B2
d ×













H(β)/r2
B + rtot

H(β) + rtot













. (17)

The acceleration rate is, following DSA standard theory:

tacc(E) =
3r2

r − 1
Dd(E)

V2
sh

×
[

H(r, β)
r(E)

+ 1

]

. (18)

Basic analytical relations can be derived when Bohm diffusion
regime prevail. In that case, electron and proton accelerations
are no longer related as the diffusion coefficient does not depend
onλmax anymore4. Eq.(30) in Parizot et al (2006) can be used to
derive the downstream magnetic field amplitude and then to give
an estimate of the synchrotron photon energy cut-off:

Eγ−cut ' [0.875 keV]×
V2

sh,4

q̄ȳ(rtot)(1+ H/rtotr2
B)
, (19)

where we have noted ¯y(rtot) = 3r̄2
tot/(rtot − 1), r̄tot = rtot/4 and

q̄ = q(β = 1)/16. The maximum electron energy is found tolie
around 10 TeV in our SNR sample, a value close to the max-
imum CR energy. To derive such result, we have assumed that
the compression ratior at E = Ee−max is approximatively∼ rtot.

We have listed in Tab.(2) the inferred values of the down-
stream magnetic field in the context of an advection dominated
X-ray rim where a Bohm-type turbulence is occurring. We have
also displayed the theoretical values ofEγ−cut required to verify
tacc(Ee−max) = 〈tsyn(Ee−max)〉. The parameters are the same as in
table 1 of Parizot et al (2006) except for SN1006 where we have
used an actualized value of the shock velocity (4900km/s) given

4 excepted at the highest energies.
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Supernova remnant Bd (µG)
Eγ−cut

Eγ−cut,obs
Bd−FII (mG)

Cas A 558 0.2 2.7
Kepler 433 0.3 2.3
Tycho 586 0.7 1.5

SN 1006 170 0.07 0.56
G347.3-0.5 131 0.05 2.1

Table 2. Inferred values of the downstream magnetic field amplitude and synchrotron photon cut-off energy in the case of anadvection dominated
rim where Bohm diffusion regime prevails (β = 1 andq(β = 1) = σ). The magnetic field values have been calculated assumingrtot = rsub = 4. In
the last column, the FII magnetic field amplitudes stand for limit values beyond which regular Fermi process is overtakenby the stochastic Fermi
process . The surrounding ISM densities are given as approximate and averaged values as follows (in cm−3 units): Cas A:n∞ = 1 (Berezhko et
al 2003b), Kepler:n∞ = 0.7 (Aharonian et al 2008), Tycho:n∞ = 0.4 (Hughes 2000), SN1006:n∞ = 0.05 (SE rims see Acero et al (2007)),
G347.3-0.5:n∞ = 1 (poorly constrained see Aharonian et al (2006)).

in Acero et al (2007). The results presented in this table were per-
formed using a diffusion coefficient normalizationq(β = 1) = σ
corresponding to predictions by the quasi-linear theory.

It appears,under the aforementioned assumptions, that older
SNRs (TSNR > 1000 yr) would have synchrotron cut-off energy
much lower than the observed value. However, as for instance
in the case of SN1006, the cut-off frequency depends on the ob-
served region of the SNR and 3 keV is likely an upper limit. On
the other hand, young SNRs (TSNR < 500yr) exhibit, in the same
context, large magnetic fields and synchrotron energies cut-off
close to the cut-off deduced from the observations. The effect is
even stronger in case of modified shocks. Parizot et al (2006)
already noticed that the Bohm regime does not allow the DSA
theory to reproduce accurately the X-ray filaments unless the dif-
fusion coefficient normalization is replaced by a factork0 of the
order of a few. This is confirmed by the good agreement between
the two cut-off energies obtained for the young SNR.

Several uncertainties may produce shifted cut-off frequency
from the extrapolation using the radio data. Zirakashvili &
Aharonian (2007) pointed out that the electron particle distri-
bution can be cut off in a smoother way compared to a pure
exponential cut-off. In that case theactual cut-off frequency is
shifted towards higher energies. In the meantime, the observed
synchrotron cut-off used previously is likely to be an upper limit
because of the back-reaction of CR on the shock structure pro-
ducing a curved shape of the spectrum. It seems justified to de-
velop a detailed non-linear calculation to improve the estimate of
the discrepancy of these solutions with a simple exponential cut-
off. This aspect should also be an important issue for the next
hard X-ray satellites generation like nuStar or Next. We post-
poned its investigation to a future work.

As a summary, we can say that the effect of scale compres-
sion has a very limited impact on the above calculation and that
the results derived in Parizot et al (2006) are found to be quite
robust.

3.2. Considering downstream stochastic Fermi acceleration

The downstream magnetic field amplitudes derived in section3
are actually lower limits while the observed filament sizes are
just upper limits because of the lack of resolution of X-ray in-
struments. If the downstream magnetic field reaches values close
to mGauss and does not relax rapidly, then at some stage Alfv´en
velocity will be of the order of the downstream fluid velocity. In
that case, stochastic Fermi acceleration cannot be neglected any-
more. Electrons will interact with turbulence modes generated
by the resonant streaming instability since non-resonant modes
are right-handed polarized and thus cannot interact with elec-

trons. We included in our numerical calculations the so-called
Fermi second order process (in addition to the usual first-order
acceleration) combined with energy losses, namely synchrotron
losses for the electrons. We implicitly assume in our next analy-
sis that an efficient redistribution among forward and backward
waves is operating through the interplay of non-linear interaction
with magneto-sonic waves (Pelletier et al 2006). In that case, for-
ward and backward modes transmitted downstream are in bal-
ance (Vainio & Schlickeiser 1999). Such assumption enables
us to estimate the magnetic field amplitude regarding dominant
stochastic Fermi acceleration. Issues dealing with imbalanced
magnetic turbulence are beyond the scope of this paper and will
be investigated in a future work.
The acceleration timescale characterising the stochasticFermi
process for a relativistic particle can be written as:

tacc,FII '
9D(E)

V2
A,d

. (20)

The condition to get a stochastic acceleration less efficient than
the usual shock acceleration can be transposed into a condition
on the downstream magnetic field by writingtacc,FII ≤ tacc,FI.
Using Eq.(18) and (20) one can easily get that

Bd−FII ≤ [714µGauss]×
n1/2
∞,−1Vsh,3r̄

1/2
tot

ȳ(r)1/2(H(rtot, β)/rtot + 1)1/2
, (21)

In this expression we have exceptionally used a shock velocity
expressed in units of 103 km/s and the ISM density in units of
0.1 cm−3.

In the case of young SNRs propagating into a standard ISM
medium with typical hydrogen densities∼ 10−1 cm−3 the previ-
ous limit leads to magnetic field strengths∼ 1 − 2 mGauss for
typical shock velocity of the order of 5× 103 km/s. This is con-
firmed with the estimation of the limited magnetic field strengths
given in the table 2 for each SNR. The surrounding gas density
in most of the cases is only a crude estimation or is derived from
averaged values over the entire remnants (see however the in-
vestigation of the gas density around SN1006 by Acero et al
(2007)).

The Fermi stochastic acceleration process produces an en-
ergy gain in the downstream medium and a hardening of the par-
ticle distribution at the shock front (see Eq. 15 in Marcowith
et al (2006) and the simulations in section 3.3.2). As particles
are continuously reaccelerated downstream, they are expected
to produce larger X-ray filaments. Both effects seem clearly in-
compatible with the available data. The magnetic field fluctua-
tions in resonance with electrons are then expected to saturate at
the shock front with magnetic field amplitude� Bd−FII below
equipartition with thermal pressure of the flow.
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Fig. 1. Shock front energy spectra of relativistic electrons provided by
multi-scale simulations where the MHD part of the simulation mim-
ics the behavior of a SNR blast wave (velocity of the downstream fluid
3000 km/s, compression factorrsub = 4) and where uniform upstream
and downstream magnetic field are set (rB =

√
11). The numerical spec-

tra are displayed using items while solid lines stand for theanalytical
spectra cut-off profiles given by Zirakashvili & Aharonian (2007). We
have set various diffusion regime (D ∝ EαD ) while using our new nu-
merical SDE scheme described in appendix C.

3.3. Numerical experiments

The SDE method presented in appendix C does not account
for the back-reaction of CR over the fluid flow. This would
require a special smoothing and difficult treatment of the CR
pressurePCR. The latter calculated from the particle distribu-
tion f (p, r) at each grid point would produce unphysical fluc-
tuations that develop with time. Several numerical works have
started to included wave generation effects in CR modified shock
hydrodynamics (Vladimirov et al 2006; Kang & Jones 2007;
Vladimirov et al 2008). Some semi-analytical works have also
started to investigate the effect of the wave precursor heating on
the CR back-reaction process (Caprioli et al 2008a). Both ap-
proaches seem to converge to a similar conclusion: the heating
of the precursor by the wave damping reduces the gas compress-
ibility and thus reduces the shock compression (Bykov 2004).
Stationary solutions are found to be rather close to the testpar-
ticle case. Calculations performed in the test particle framework
using SDEs can then reproduce the main properties of the par-
ticle acceleration process. SDE have several advantages: they
are simple to implement and rather simple to couple with MHD
equations. SDE schemes enable a fast and large investigation of
the parameter space of the DSA mechanism. For instance, the
inclusion of Fermi stochastic acceleration is rather simple in the
SDE scheme as well as the use of various spatial diffusion coef-
ficient regimes. Our results can, for instance, be used as limiting
tests for future non-linear simulations.

3.3.1. Synchrotron spectrum solutions

We first validate the aforementioned numerical scheme by
achieving calculations in different configurations, as for instance
reproducing the analytical results of Zirakashvili & Aharonian
(2007). In this last work, the authors provide the expression
of the relativistic electron energy spectra at the shock front
in the presence of a discontinuous magnetic field (the discon-

Fig. 2. Energy spectrum of relativistic electrons at the shock front
given by MHD-SDE simulations in the conditions of the KeplerSNR
(velocity of the upstream fluid is 5.4 × 103km/s, compression factor
rsub = 4) and where uniform downstream magnetic field is set while
upstream magnetic field is calculated using results contained within ap-
pendix A. The density of ISM is 0.7 cm−3. Bohm diffusion regime has
been assumed. The dashed-line shows the stationary solution found in
Marcowith et al (2006) which includes particle re-acceleration in the
Fermi cycle. In the upper right panel the acceleration (withthe sole
regular Fermi acceleration), the diffusive and downstream residence
timescales are displayed. Diamonds are obtained using a numerical cal-
culation of the acceleration timescale. The slight excess is produced by
the stochastic Fermi acceleration process. We also displayed the syn-
chrotron spectrum and the magnetic profile around the shock front at
t = 400yr.

tinuity is located at the shock). We have performed several
SDE-MHD simulations where constant upstream and down-
stream magnetic fields prevail (Bd/Bu = rB =

√
11, rsub is

set to 4) and where the shock velocity of the flow is set to
3000 km/s. The various presented simulations differ only from
their implemented spatial diffusion coefficients whereD =

DBohm(Einf )(E/Einf )αD (the particles are injected at energyEinj =

5 TeV). Zirakashvili & Aharonian (2007) provided the shape
of the electron energy spectra at the shock front beyond the
energy cut-off Ee−max induced by synchrotron losses, namely
N(E) ∝ exp(−(E/Ee−max)1+αD ). Fig.1 displays three simulations
with αD = 1 (Bohm diffusion),αD = 1/2 (Kraichnan turbulence)
andαD = 0 (constant coefficient). The result of the numerical
calculations are displayed using items while analytical solutions
of Zirakashvili & Aharonian (2007) are displayed using solid
lines. The agreement between numerical calculations and ana-
lytical profile is good and proves that the skew SDE numerical
scheme is valid for all kind of diffusion regime and can handle
magnetic discontinuities properly (see section (C.2.1) for further
details).

3.3.2. Shock particle distribution and second order Fermi
process

Fig.2 and Fig.3 show the shock particle distribution and syn-
chrotron spectra for the parameters corresponding to the con-
ditions that prevail in the Kepler and G347.3-0.5 SNRs respec-
tively. In the case of Kepler SNR we have used the following pa-
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Fig. 4.The unprojected and projected X-ray andγ-ray rims in the conditions of the Kepler SNR (same physical conditions than Fig.2). For clarity
both X- andγ-ray rims have been normalized to one.

Fig. 3. Same plots than in Fig.2 but in the G347-0.5 SNR (velocity of
the shock is 4×103km/sand compression ratiorsub = 4). The density of
ISM is 1cm−3. The Bohm regime for the diffusion coefficient has been
assumed withq(β = 1) = 15. The simulation has been performed until
time t = 1600 years.

rameters:Vsh = 5.4× 103 km/s, Bd = 433µG, β = 1. Upstream
density is 0.7cm−3 (Berezhko et al (2006) estimated the density
n∞ ≤ 0.7cm−3). In the case of G347-0.5 we have set parameters
asVsh = 4000 km/s, Bd = 131 µG, β = 1. The averaged up-
stream density is 1 cm−3 (Aharonian et al 2006). In both cases
the magnetic profiles used in the simulations are also presented.
The maximum CR energy (and the aspect ratiokmax/kmin) cor-

responds to the maximum CR energy limited either by particle
escapes in the upstream medium or by the SNR age limit. At
ECR−max, the maximal upstream diffusion coefficient allowed by
the escaping limit is:

D(ECR−max) = χ × Rsh Vsh . (22)

The factorχ is usually not well defined. An accurate determina-
tion of this parameter requires to perform non-linear simulations
of DSA including the effect of the turbulence generation back-
reaction on the flow. A fraction of few tenth of percent of the
SNR radius is usually assumed in theoretical calculations and
seems to be reasonable (Berezhko 1996; Caprioli et al 2008b).
The normalization ¯χ = χ/0.3 is then accepted in this text.

It can be seen from Fig.2 and Fig.3 that stochastic acceler-
ation slightly modifies the shock particle spectrum in the case
of Kepler SNR. The synchrotron losses create a bump close
to the maximum electron energies. In the Kepler remnant, the
synchrotron cut-off is found to be around 0.2 keV (see Fig.2)
while in the case of G347.3-0.5 it is around 0.5 keV (see Fig.3).
We have verified that lowering the normalization factorq(β) of
the diffusion coefficient from 16 down to 3 produces a cut-off
around 1 keV (Kepler) and 2.5 keV (G347.3-0.5), namely a
higher cut-off requires a lowerq(β) (see Eq. 19). The density
around G347.3-0.5 is badly constrained andn∞ < 1cm−3 would
lead to similar effects. It is noteworthy that the above simula-
tions maximize the incidence of the stochastic acceleration as
we considered that the resonant field dominates the total field in
the downstream medium (see Eq. 3).

As a conclusion it clearly appears that the downstream
Alfvenic Mach numberVd/VA,d cannot be much less than a fac-
tor of the order of unity otherwise: 1/ the X-ray filament would
be too large with respect to the observed widths (see next sec-
tion), 2/ the X-ray cut-off frequency would be far larger than
Eγ,cut (see Fig.2) 3/ the radio spectrum would be harder thanν−0.5

(see Fig.2). Generally speaking, the maximum downstream res-
onant magnetic field cannot be much larger than a few mGauss
downstream of the shock front, otherwise regular acceleration
process would be dominated by stochastic Fermi acceleration.
This set an important constraint on the combined value of the
magnetic field and the local ISM density as well as the respec-
tive contribution of the resonant and the non-resonant instability
to the total magnetic field at the shock front.
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Fig. 5. The unprojected and projected X-ray andγ-ray rims in the conditions of the G347-0.5 SNR (same physical condition than in Fig.3). For
clarity both X- andγ-ray rims have been normalised to one.

3.3.3. Comparisons between X- and γ-ray filaments

We end this section by a detailed comparison between X- and
γ-ray filaments produced by the relativistic electrons. The inclu-
sion of neutral pion decay that results from the hadronic interac-
tion with the interstellar fluid or with the shocked matter would
require a complete modelling of both the hadron spectrum and
the ISM density profile around the SNR. Such study is postponed
to a future work.

In our calculations, the leptonicγ-ray emission has been
integrated in two characteristic wavebands 10-30 GeV and 1-
3 TeV using the standard expression of the isotropic Inverse
Compton emissivity (Blumenthal & Gould 1970). The rims are
produced by the scattering off the cosmic microwave photons
with relativistic electrons. They are displayed in Fig.4 and Fig.5
where they were obtained with parameters adapted to the dy-
namics of the Kepler and the G347-0.5 SNR respectively. We
also displayed two X-ray wavebands ( 4−6 keV and 0.5−1 keV,
even if this later wave band is usually dominated by the thermal
emission). In each case both projected and deprojected filaments
are reproduced. The relative normalization between X-ray and
γ-ray filaments mostly depends on the intensity of the magnetic
field; it is found to scale for the same particle energy domainas
B2 as expected. The width of theγ-ray TeV rim is usually the
largest one as an important fraction of the IC radiation is pro-
duced upstream. The 10− 30 GeVγ-rays are produced closer
to the shock upstream comparing to 1− 3 TeV γ-rays. In the
downstream region, the the highest energetic electrons arecon-
fined closer to the shock because of their shorter radiative loss
timescales. The projected rims show that only a slight difference
exists between the position of the peak of the gamma and X-
ray emission. As the size of theγ-ray rims is actually not much
larger than the X-ray filaments, it seems impossible for any ac-
tualγ-ray instrument to separate both components. This will be
also the case for future instruments like CTA unless the filaments
being very large (see the case of Vela Junior discussed in Bamba
et al (2005a)).

4. Diffusive shock acceleration in case of
downstream spatially relaxing turbulence

In this section, we will now consider a scenario where the down-
stream magnetic field fluctuations vary over a length-scale much
shorter than the SNR shock radiusRSN. This scale noted̀d can
depend on the wave numberk of the fluctuations. The damping
of the turbulence in the downstream medium and its compres-
sion at the shock front can modify the particle mean residence
time and the relativistic particle return probability to the shock.
Hence such magnetic relaxation is expected to modify the effi-
ciency of the diffusive acceleration process itself.

Equation (12) shows that the particle energy spectrum at the
shock front remains a power-law provided quantities (at a given
energyE) zu/d(E) = uu/d`u/d/Du/d are large compared to unity.
Havingzu/d(E) ≤ 1 will produce a strong softening of the parti-
cle distribution and a drop off of the acceleration timescale, the
latter being dominated by the particles experimenting the short-
est residence time. A softening effect induced by the upstream
losses is only expected at highest energy nearECR−max, namely
oncezu → 0 5. The diffusive length of particles having energy
smaller thanECR−max is always smaller than the variation scale of
the magnetic fluctuations̀u (controlled by the highest energy),
hence we havezu(E < ECR−max) � 1, leading to a vanishing ex-
ponential factor in the above solution. Conversely, the softening
effect downstream can be significant at energies much smaller
thanECR−max as`d can be highly scale (and thus energy) depen-
dent. This is precisely the main topic of this section, namely try-
ing to identify the parameter space that allows the Fermi accel-
eration process to be efficient in the context of a relaxing down-
stream turbulence.

Hereafter the downstream relaxation length`d is considered
to be energy dependent and we normalize it with respect to the
maximum CR energy;ECR−max:

`d(E) = `d,M ×
(

E
ECR−max

)δd

= `d,M ×
(

kmin

k

)δd

. (23)

5 Again, a correct way to handle this effect requires to account prop-
erly for the particle back-reaction on the flow.
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The scalè d,M is the relaxation scale at the maximum particle en-
ergy6. Let us recall that the relationship between energy particle
and wave vector comes from the condition for a given particleto
resonate with a turbulence mode,krL ∼ 1. In this section, we
first investigate the magnetic field profiles in the downstream
medium resulting from various relaxation processes (Section
4.1). In Section 4.2 the efficiency of the DSA with respect to
the turbulence properties (turbulence index, relaxation index) is
discussed, in particular concerning the effect of the downstream
magnetic field amplitude. Various numerical experiments, pre-
sented in Section 4.3 illustrate the effect of the magnetic field
spatial variation on the particle dynamics and the associated X-
andγ-ray rims.

4.1. Downstream magnetic field relaxation

This work considers various turbulent magnetic field damped
profiles: the case of an energy dependent Heaviside profile,
the profile produced by a non-linear Kolmogorov-type damping
(Ptuskin & Zirakashvili 2003) and the profile produced by the
Alfvén or fast magnetosonic cascades (Pohl et al 2005). We also
briefly discuss the case of a turbulent dynamo action downstream
(Pelletier et al 2006). In this section unless specifiedδd ≥ 0 is
implicitly assumed.

4.1.1. Heaviside profiles

Heaviside-type magnetic relaxation accounts for an idealized ap-
proach of turbulence relaxation where a given turbulence mode
is assumed to be uniform up to a distance`d(k) from the shock
and to vanish beyond that distance. This relaxation model isvery
likely to be unphysical but it enables to catch the basic features
of the turbulence relaxation effects upon particle acceleration.
Assuming such profile, we write the magnetic energy turbulence
spectrum as (the downstream medium is defined byx > 0):

W(k, x)d =W(x = 0+, k)Π(`d(k) − x) +W∞Π(x− `d(k)) (24)

whereΠ functions are Heaviside functions andx is the dis-
tance from the shock front. The magnetic energy density far
downstream isW∞. The normalization of the turbulent spec-
trum W(k) = W0k̄−β is related to the magnetic field at the shock
front throughW0 = B2(x = 0+)/4πσkmin, with kmin = 2πλ−1

max,d,
k̄ = kλmax,d and againσ(β = 1) = ln(kmax/kmin) andσ(β > 1) '
1/(β − 1).

The Heaviside profile, despite it crudely approximates the
variation of the magnetic energy density downstream, permits
us to derive a basic spatial profile of the total magnetic fieldas
given by

δB2(x)
4π

=

∫ kmax

kmin

W(k, x)dk (25)

which, for instance in the case of a Bohm turbulence leads to
(`min is defined as̀d,M × (kmin/kmax)δd)

0 < x ≤ `min :
δB2(x)

4π
=
δB2(0+)

4π
+
δB2
∞

4π

`min ≤ x ≤ `d,M :
δB2(x)

4π
=
δB2(0+)

4π
ln

(

`d,M/x
)

δd ln(kmax/kmin)
+
δB2
∞

4π

`d,M ≤ x :
δB2(x)

4π
=
δB2
∞

4π
(26)

6 All quantities with an index M are to be taken at the maximum
particle energy.

At any given downstream locatioǹd,M ≥ x ≥ `min , the
maximum non-vanishing turbulence wave number iskmax(x) =
kmin(`d,M/x)1/δd. Beyond`d,M, all turbulent modes vanish giving
a total magnetic fieldB∞ close to the ISM magnetic field value.
The spatial variation of the magnetic field for any other diffu-
sion regime is more complex, as it scales as 1− (`d,M/x)(1−β)/δd

for x ≥ `min. The total magnetic field is required to calculate the
synchrotron losses properly but also the normalization entering
the particle Larmor radius and the local Alfvèn velocity. Once
total magnetic field is known, we can calculate, for every rela-
tivistic particle having energyE, what is the fraction of the total
magnetic field that can resonate with this particle, namely inte-
grating all turbulence modes verifying 1/r̄L(E) ≤ k ≤ kmax(x).
This is done by computing the functionb defined in Eq.(7). If
magnetic turbulence relaxation follows a Heaviside prescription
then one obtains:

b(0 < x ≤ `min,E) ' `coh

β

(

r̄L(E)
`coh

)β

(27)

b(x ≥ `min,E) =
`coh

β















(

r̄L(E)
`coh

)β

−
(

r̄L(ECR−max)
`coh

)β ( x
`d,M

)β/δd














Once both the total magnetic field and functionb are known, it
is easy to compute in our simulations both spatial and energy
diffusion coefficients for every test particle which are mandatory
to get the particle motion and stationary particle distribution so-
lutions in Eq.(11) and Eq.(B.2). The procedure is repeated in the
same way for any magnetic profile.

4.1.2. Non-linear Kolmogorov damping

In models of incompressible MHD turbulence described by the
Kolmogorov energy cascade towards the large wave numbers,
the non-linear damping kernel scales ask5/2W(k)3/2. Following
Ptuskin & Zirakashvili (2003) this kernel can be simplified while
still respecting the spatial relaxation profile. We have:

ΓNL(k, x) ' Γ0 × k3/2W(k, x)1/2 , (28)

whereΓ0 ' 5 × 10−2 × Va,d/(B2
d/4π)

1/2. Here we consider the
cascade to be initiated behind the shock and use the local total
magnetic field and Alfvén velocity.
In the shock rest-frame, the turbulence relaxation downstream
(for x > 0) is described by a stationary equation:

Vsh

rtot
× ∂W(k, x)

∂x
= −2ΓNL(k, x)W(k, x) , (29)

and a boundary solutionW(k, x = 0+) = W0 × k̄−β. The solution
of Eq.(29) is:

W(k, x) =
W(k, x = 0+)

(

1+ k̄(3−β)/2 x
x0

)2
. (30)

An estimate of the scalex0 is (see Pohl et al (2005)):

x0−K ' [300× λmax,d] ×
Vsh,4n

1/2
∞ r̄1/2

subσ̄
1/2

r̄tot
× B−1

d,−4 . (31)

We used ¯σ = σ/16 and the shock velocityVsh,4 is expressed in
units of 104 km/s. The downstream maximum turbulence scale
λmax,d can be connected to the maximum Larmor radius of CRs
upstream through Eq.(14). Reduced rigidity at maximal energy
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ECR−max is such thatρLu ' ρM as the diffusion coefficient rapidly
increases asE2 beyondECR−max. Both conditions set the max-
imum upstream turbulence scaleλmax,u and the maximum CR
energyECR−max. We find λmax,d ' 5.2 rL−max,u/r̄subρ̄M , where
ρ̄M = ρM/0.3.

The relaxation scale is̀d(E) = `d,M×(E/ECR−max)(3−β)/2. The
factor`d,M is defined as the length on which turbulence level has
decreased of 1/e compared to its value at the shock front; i.e.
`d,M = (

√
e − 1)x0. The spatial dependence of the total mag-

netic field and functionb have been calculated using Eq.(25)
and Eq.(7). These expressions, rather tedious especially for the
b function in the Eq.(6), have been implemented into the code
but are not explicitly given here.

4.1.3. Exponential profiles

When turbulence damping rate does not depend on space but
remains dependent on wave number (Γ = Γ(k)), the relaxation
of the downstream magnetic field follows an exponential cut-off
on a scale length̀d(k) = rtotΓ(k)/Vsh. The turbulent magnetic
energy spectrum is then

W(k, x) =W(k, 0+) × exp

(

− x
`d(k)

)

(32)

The Alfvén and Magnetosonic waves cascades considered by
Pohl et al (2005) follow this scaling, the corresponding damp-
ing rates and expression forx0 can easily be obtained from their
Eq. (8) and (11) respectively. Considering the Alfvenic cascade,
we obtain

x0−A '
[

ρ̄
1/2
M × λmax,d

]

×
Vsh,4n

1/2
∞ r̄1/2

sub

r̄tot
× B−1

d,−4 . (33)

The coherence scale of the downstream turbulence is`coh =

λmax,d ρM/2π. The fast magnetosonic cascade leads to a similar
expression except that the wave phase velocity can be approxi-
mated asVFM,d = (V2

A,d + c2
s,d)1/2, cs,d being the sound velocity

behind the shock front. Notice that the above expression forthe
Alfvén cascade results from the combinaison of the critical bal-
ance and the anisotropy obtained in the Goldreich-Sridhar phe-
nomenology of strong turbulence (Goldreich & Sridhar 1995).
Again, the expressions of the total magnetic field and resonant
field are rather tedious and are not given here. It is noteworthy
that Eq. (31) and (33) show that the Kolmogorov damping leads
to slower cascade timescales and thus to larger relaxation scales
than for an exponential damping.

4.1.4. Turbulent dynamo downstream

Pelletier et al (2006) (see also Zirakashvili & Ptuskin (2008))
discussed the action of a turbulent dynamo in the downstream
medium that would lead to a further amplification of the mag-
netic field. The magnetic field is expected to saturate at value
close to equipartition with the dynamic gas pressure. The dy-
namo action is driven by the non-vanishing helicity of the non-
resonant turbulent modes.

The corresponding scale of magnetic field variation is given
by the ratio of the magnetic turbulent diffusivity νt to the dy-
namo amplification coefficientαD. The two coefficients can be
expressed as (Pelletier et al 2006):

αD '
2c
3π
×

(

V̄a

Vsh

)2

× ln (rL (ECR−Max) /rL (ECR−min)) , (34)

and

νt '
2cλmax,d

3π2
×

(

V̄a

Vsh

)2

. (35)

ECR−min stands for the smallest resonant energy. Then the am-
plification scale is`ampl ∼ λmax,d/(πφ). Turbulence modes
having wavelength larger thaǹampl grow and saturate close
to the equipartition. Other turbulence modes are expected to
damp rapidly (over a few plasma skin depths) because the non-
resonant waves are not normal modes of the plasma, as already
stated in section 2.2.

4.2. Particle acceleration in a relaxed-compressed
turbulence

In the next paragraphs, we present some useful analytical esti-
mations for the analysis of the numerical simulations presented
in section 4.3. These calculations used the Heaviside related pro-
files derived in section 4.1.1. Let us note that the followingchar-
acteristic timescales are strictly valid in the framework of in-
finitely extendeddiffusive zones but are used to discuss the ef-
fect of aspatially limiteddiffusive zones. However we will see
in section 4.3 that these approximations lead to correct energy
spectrum features, except near highest energies.

4.2.1. General statements on the turbulence parameters

Pohl et al (2005) have discussed various possible downstream
relaxation processes. First, the non-linear Kolmogorov damp-
ing produces a relaxation length̀d(k) ∝ k(β−3)/2. Each turbu-
lence modek being in resonance with relativistic particle whose
Larmor radius verifieskr̄L ≥ 1, we obtainδd = (3 − β)/2 ≥ 0
(between 1 and 1/2 for 1≤ β ≤ 2). The two other processes con-
sidered by Pohl et al (2005) scale ask−1/2, namelyδd = 1/2. A
variation range ofδd between 1/2 and 1 is then clearly identified.
We will extend it to encompass the regimeδd = 0, a limiting
case where relaxation lengths are spatially independent.

What about havingδd negative ? A strict lower limit onδd is
given by the conditioǹd(ECR−min) ≤ Rsh. A non-relativistic min-
imum resonant energyECRmin ' 0.1× (

√
2− 1)mpc2 seems ac-

ceptable so thatδd ≥ δd,lim = ln(Rsh/`d,M)/ ln(ECR−min/ECR−max).
The lower limit δd,lim has typical values between -0.3 and -
0.2 when identifying̀ d,M with the size of the X-ray filament.
Relaxation regimes havingδd < 0 do not necessary correspond
to any known damping process but has some interesting proper-
ties, in particular concerning the radio filaments.

4.2.2. The dominant loss mechanism

Comparing typical energy loss timescale is a useful tool to de-
termine whether or not diffusive particle losses can affect the en-
ergy spectrum of relativistic particles. Assuming that turbulence
relaxation follows a Heaviside prescription, we can express these
timescales assuming constant downstream magnetic field on the
relaxation length̀d relativz to particle having energyE.

Four timescales are relevant in order to set the maximum
particle energy in a relaxed and compressed turbulence:

1. The acceleration timescale:

tacc(E) ' [7 yrs]× ρ̄M × ȳ(r)K(β, r) ×
λmax,d−2

V2
sh,4

×
(

ρd(E)
ρM

)2−β

(36)
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where K(β, r) = q(β) × (H(β, r)/r + 1) and where the maxi-
mum wavelength of the downstream turbulence is expressed
in units of 10−2 pc.

2. The advection timescale: the time required for a particleto
travel over a distancèd while being advected with the down-
stream flow.

tadv(E) =
`d(E)

Vd
' [4 yrs]× r̄ V−1

sh,4`d−2(E) . (37)

3. The diffusive timescale: this is the time required for a particle
to travel over a distancèd in a diffusive motion.7:

tdiff(E) =
`d(E)2

6Dd(E)
' [0.3 yrs]× `d−2(E)2

q(β)ρ̄Mλmax,d−2
×
(

ρd(E)
ρM

)β−2

.

(38)
4. The synchrotron loss timescale:

tsyn(E) ' [1.25× 103 yrs]× E−1
TeV × B−2

d−4 × fsync . (39)

Parameter fsync stands for (H(β, r)+ r)/(H(β, r)/r2
B + r). This

expression takes into account both mean residence time in
the upstream and downstream medium.

The maximum electron energy is given by the equality
tacc(Ee−max) = tloss(Ee−max), wheretloss is the smallest timescale
among synchrotron, advective and diffusive timescales. When
X-ray filaments are controlled by the radiative losses, we have
tloss = tsyn. In case of escape losses dominated filaments, we
then havetloss = min(tdiff , tadv). It can be seen that fro particles
having energy close toEe−max, diffusive losses are always dom-
inant compared to the advection losses, hencetloss(Ee−max) =
tdiff(Ee−max). It is noteworthy that the downstream residence time
tres,d ' (Vd/c)tacc (during one Fermi cycle) should not be com-
pared to the diffusive or advective timescales as only particles
returning to the shock are able to experiment a full Fermi cycle.
Doing such comparison would lead to a maximum particle en-
ergy Ee−max much larger than values obtained in the context of
our numerical simulations.

4.2.3. Conditions for an efficient particle acceleration

In the context of relaxation dominated filaments, the ratiosof
the acceleration timescale (Eq.36) to the diffusive (Eq.38) and to
the advective(Eq.37) timescales vary asE2(2−β−δd) andE(2−β−δd)

respectively. Two different regimes have now to be discussed.

2− δd − β > 0: OnceE ≤ Ee−max the various timescales order
astacc ≤ tdiff andtacc ≤ tadv: the acceleration process can occur
without noticeable losses and thus particle energy spectrum be-
haves as a power-law. It is noteworthy that for energy smaller
than Eadv, advection losses become dominant compared to the
diffusive losses. Formally, we derive this energy limit by setting
tacc(Ee−max) = tdiff(Ee−max), which leads to

Eadv = Ee−max×
(

g(r)
6

)1/2(2−δd−β)

, (40)

whereg(r) = 3/(r − 1)× (H(β, r)/r + 1). We will note hereafter
ḡ(r) = g(r)/g(4).

2− δd − β < 0: In that case, the ratio of the diffusive to advective
timescales is always smaller than unity, i.e. diffusive losses dom-
inate for all energies. OnceE ≤ Ee−max, downstream escapes

7 The factor 6 in the denominator of Eq.(38) appears as the random
walk along the radius of a sphere is in fact composed of 3 independent
random walks along each Cartesian coordinates

limit the shock acceleration process considerably as the acceler-
ation time becomes larger thantdiff as energy is decreasing. The
same conclusion can be obtained from a close examination of
the particle distribution given in Eq.(12). The termzd = ud`d/Dd
is proportional to (tdiff/tacc)1/2, and 2− β − δd < 0 leads tozd
tending toward zero. The particle energy spectrum then steepens
at low energy, which is obviously in complete disagreement with
the Fermi acceleration scenario.

Hence, efficient Fermi acceleration is solely possible if 2−
δd−β ≥ 0. For instance, an energy independent relaxation length
δd = 0 (as well asδd < 0) verifies such a criterion for all diffu-
sion regimes. In the case of a Kolmogorov type non-linear tur-
bulence damping, the supplementary relationδd = (3− β)/2 im-
posesβ ≤ 1 which means that only the Bohm regime can ful-
fil the previous condition (we will see in Section 4.3 that par-
ticle acceleration is not efficient in that case). In the context
of Alfvén and magnetosonic cascades, Kolmogorov turbulence
regime (β = 5/3) is the sole regime failing to verify the previous
condition.

4.2.4. Magnetic field limits in a relaxed-compressed
turbulence

In the context of X-ray filaments controlled by the down-
stream turbulence damping, we can link the size of the fil-
ament, noted∆RX, to the maximal relaxation length̀d,M as
`d,M = ∆RX(Ee−max/Ee−obs)δd = C(δd)∆RX. 8 The energyEe−obs
is the energy of particles emitting in the 4− 6 keV band and this
value depends on the local value of the total magnetic field.

A downstream magnetic field estimationBd,diff can be ob-
tained from the dynamics of the electrons by requiring that
tacc(Ee−max) = tdiff(Ee−max) using the previous relation between
`d and∆RX. In the context of the Bohm diffusion, one obtains

Bd,−4,diff ' 3.7× q(β = 1)2/3 ×
















E1/2
γ−cut,keVȳ(r)1/2

∆RX,−2C(δd)Vd,3

















2/3

, (41)

whereVd,3 = Vd/103 km/s and again ¯g(r) = g(r)/g(r = 4). If
β > 1 the derivation of the magnetic field amplitude is more
cumbersome.

Having the SNRs X-ray filaments dominated either by
the relaxation of the downstream magnetic turbulence or by
synchrotron losses is provided by the conditiontdiff(Emax) =
tsyn(Emax) = tacc(Emax). The corresponding limit value of the
magnetic field is (again in case of Bohm diffusion)

Bd,−4,lim ' 8.9×
















Vsh,4

r̄ ḡ(r)1/2
×

E−1/2
γ−cut,keV

C(δd)∆Rx,−2
× fsync

















2/3

. (42)

In order to get SNRs X-ray filaments dominated by the relax-
ation of the magnetic field, it is compulsory to haveBd,diff <
Bd,lim. The factorq(β) has been isolated in expression (41) to
show that no solution is then possible ifq(β = 1)� 1. In other
words, a diffusion coefficient close to the Bohm value is required
to allow the relaxation of the turbulence to control the sizeof the

8 The dependence of̀d with respect to the wavelengthλ is a priori
valid only up toλmax ' RL(ECR−max) and rigourously, we should not ex-
pect the scaling of̀d to extend beyondλmax. Aboveλmax, the diffusion
coefficient increases asR2

L and particle acceleration still proceeds be-
yondECR−max but the number of particle accelerated and the turbulence
energy density both rapidly drop. For this reason we still considerδd to
be controlled by the kernel of the damping rate aboveECR−max; e.g. in
the case of the Kolmogorov dampingδd = 3/2 in this energy regime.
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SNR
Bd−di f f

q(1) = 1
Bd−di f f

q(1) = 1
Bd−lim/Bd−di f f

q(1) = 1
Bd−lim/Bd−di f f

q(1) = 16
Cas A 311 394 2.3 0.4
Kepler 220 293 3 0.5
Tycho 210 333 5.1 0.8

SN 1006 174 189 1.2 0.2
G347.3-0.5 164 183 0.95 0.15

δd = 0 δd = 1/2 ∀δd ∀δd

Table 3.Table presenting analytical estimates for the downstream magnetic field value in the context ofdiffusive loss dominatedSNRs rims. The
SNR rim observed parameters are the same as in Parizot et al (2006) and the shock compression ratios arertot = rsub= 4.

filaments. We have also to keep in mind that the downstream
magnetic field amplitude have to be coherent with the aforemen-
tioned assumption that an amplification upstream has occurred,
namelyBd� BISM.

Concerning cosmic rays having energyE ∼ ECR−max, the
downstream diffusive losses will dominate if particles cannot
escape from the upstream region into the ISM. This imposes
a constraint on the magnetic field amplitude at the shock ob-
tained from Eq.(22). Indeed, upstream escape losses are dom-
inant if tacc(ECR−max) < tdiff(ECRmax), using `d(ECR−max) =
∆RX(ECR−max/Ee−obs)δd.

– In caseδd = 0, downstream diffusive escapes downstream
always control the maximum CR energy.

– For δd , 0 the previous condition leads to an upper limit on
the downstream magnetic field, notedBd,esc. Hence ifBd ≥
Bd,escthe CR maximum energy will be fixed by the upstream
escape losses and conversely ifBd ≤ Bd,escthe CR maximum
energy will be set by the downstream escape losses.

The downstream magnetic field then has to fulfilBd,diff ≤
min(Bd,esc, Bd,lim) in order to let the downstream turbulence re-
laxation be the controlling process of the energy cut-off of rel-
ativistic particles. Applying the previous conditions to our SNR
sample, we always find thatBd,lim < Bd,esc. This means that an
intermediary regime may exist where electrons lose their energy
through radiative losses while cosmic rays cut-off is set by down-
stream diffusive losses. Of course, if the magnetic amplification
process is efficient enough to generate higher turbulent magnetic
field amplitude then upstream losses will take over.

Tab.(3) displays the values ofBd,lim andBd,diff related to our
SNR sample. The Kolmogorov regime was discarded as it does
not produce any efficient acceleration as we will see in section
4.3. We show that for SN 1006 and G347.3-0.5, not much room
is effectively left for the case of magnetic relaxation controlled
filaments. This result seems rather robust as a variation of the
shock velocity by a factor of 40%, or a variation of the syn-
chrotron cut-off by a factor of 2 does not lead to any variation of
the magnetic field larger than 25%. However a variation of the
filament width by a factor of 2 would imply a variation of the
magnetic field by a factor of 60% which may slightly modify the
previous conclusion. Quite generally, the maximum magnetic
field amplitude is found to lie in the range∼ 200− 300µGauss.
In summary we find that if downstream magnetic relaxation is
controlling the features of the SNRs X-ray filaments, a Bohm
like diffusion regime is likely to occur while the particle diffu-
sion coefficient normalization factorq(β = 1) has to be quite
close to unity, i.e. the diffusion regime has to be close to a gen-
uine Bohm diffusion regime. In that context, we show that only
a fraction of our SNR sample is able to achieve such consid-
eration, namely the young ones. Indeed, using the various ob-
servational constraints related to the older SNRs (SN1006 and

G347.3-0.5), we have shown that the X-ray filaments existingin
these objects are likely to be ruled by radiative losses associated
with synchrotron emission.

4.2.5. Radio filaments

The energy of the radio electrons is typically four order of mag-
nitude below the X-ray emitting electrons:

Eeobs,R ' [1.5GeV] B−1/2
d,−4 E1/2

γ−obs−GHz ,

whereEγ−obs−GHz is the energy of the radio electrons emitting in
the GHz band. Using both Eq.(39) and (37), one can easily check
that the synchrotron loss timescale atEeobs,R is always larger than
the advective loss timescale, unlessδd is lower than typical val-
ues of the order of−0.5, a value always smaller thanδd,lim . If
δd−lim ≤ δd ≤ 0, the small turbulence scales relax on distances
larger than∆RX . This very particular case would produce radio
filaments larger than the size of X-ray filaments inferred from
the Chandra observations. Conversely, the regimeδd ≥ 0 would
let the largest fluctuating scales controlling the size of the radio
filaments. In that case, the radio filaments are expected to beof
the order of∆RX (see Cassam-Chenaı̈ et al. (2007)).

4.3. Numerical simulations

We have performed MHD-SDE simulations taking into account
all previous settings, namely the downstream magnetic fieldre-
laxation, the stochastic reacceleration and the radiativelosses for
the electrons. We discuss, in the following paragraphs, thephys-
ical agreement of assuming magnetic field relaxation to control
the X-ray filaments and the actual results coming from the com-
putation of relativistic electrons acceleration.

4.3.1. Downstream magnetic Kolmogorov damping

When non-linear Kolmogorov damping is occurring in the
downstream medium of the shock, we have seen in the previ-
ous sections that two conditions have to be fulfilled to repro-
duce both the appropriate energy cut-off and the correct size of
the observed X-ray filament. These two conditions can be trans-
posed as: having the correct downstream magnetic field givenby
Eq.(41) (in order to have the electron energy cut-off consistent
with the observations) and having the typical magnetic relax-
ation lengthxO−K (see Eq.31) of the same order than the size
of the X-ray filament. In the non-linear Kolmogorov regime, the
only diffusion regime able to provide an efficient particle accel-
eration is the Bohm diffusion regime, where the relaxation en-
ergy indexδd = 1. Inserting, for instance in the context of the
Kepler SNR, this value in Eq.(41) leads to a downstream mag-
netic field of the order ofBd ' 390µG and a relaxation of the
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Fig. 7. The unprojected and projected X-ray andγ-ray rims in the conditions of the Kepler SNR in the case of an exponential relaxation profile.
For clarity both X- andγ-ray rims have been normalised to one.

Fig. 6.Energy spectrum of relativistic electrons at the shock front given
by MHD-SDE simulations in the conditions of the Kepler SNR (see
Fig.2 for details). The magnetic field is damped in the downstream
medium following an exponential relaxation as in Alfvènic-fast mag-
netsonic modes damping. Bohm regime in downstream region has
been assumed. The dashed-line shows the stationary solution found in
Marcowith et al (2006) which includes particle reacceleration in the
Fermi cycle. In the upper right panel the acceleration (onlythe regular
Fermi acceleration), the diffusive and downstream residence timescales
are displayed using solid and dashed lines. Diamonds stand for our nu-
merical calculation of the acceleration timescale, which is in agreement
with the theoretical estimation. We also displayed in the two lower pan-
els the spatial dependence of the diffusion coefficient at the maximum
electron energy (lower left) and the magnetic profile in the downstream
medium att = 400 years (lower right).

order ofx0−K ' 0.39 pc. The relaxation size is clearly too large
to provide an X-ray filament whose thickness is inferred to be
of the order of 10−2 pc from X-ray observations. Applying the
same reasoning to the other SNRs leads to a similar conclusion:
having both the appropriate electron energy cut-off and X-ray

filament size is incompatible with a non-linear Kolmogorov oc-
curring in the downstream medium of the SNR shock. The only
way to overcome such conclusion would be to have the factor
σ = ln(kmax/kmin) to be much smaller than expected (see Eq.31).
Anyway, havingσ so small would mean that the range of par-
ticle energy able to resonate with turbulence mode would is so
narrow that it would not be able to provide any significant accel-
eration. This explains why our result differs from the conclusion
drawn by Pohl et al (2005). It seems then that it is very unlikely
that non-linear Kolmogorov damping, which is a slower process
compared to Alfvén/ fast magnetosonic cascade, is occurring in
downstream medium of SNRs shocks.

4.3.2. Alfvènic-Fast magnetosonic modes damping

In the context of Alfvénic/ fast magnetosonic turbulence relax-
ation, the typical relaxation lengthx0−A is smaller thanx0−K .
Indeed, compiling the aforementioned necessary conditions to
reproduce accurately X-ray filament in the SNR environment,
we get typicalx0−A of the order of 10−2 pc when using magnetic
field values provided by Tab.(2). This means that the Alfvénic /
fast magnetosonic modes damping is a plausible candidate toex-
plain the presence of SNRs X-ray filaments. In order to sustain
this conclusion, we have performed, in the context of the Kepler
SNR, MHD-SDE simulations aiming to reproduce the dynam-
ics of relativistic electrons and the associated X-ray andγ-ray
emission maps. In Fig.6 and Fig.7, we have displayed the parti-
cle distribution at the shock front and the X- andγ-ray filaments
respectively. All simulations have been performed in the Bohm
regime. In that case 2− δd − β = 1/2 > 0.

Several tricking differences appear in both Fig.6 and Fig.7
with respect to the simple advection case presented in Fig.2and
Fig.3. First as stated in section 4.2 the normalization of the dif-
fusion coefficientq(β) has to be close to one. Even in this case,
the maximum particle energy is limited to values close to ten
TeV (for parameters associated with the Kepler SNR). One of
the necessary condition to fit the observed size of the X-ray rim,
namelyx0−A ∼ ∆RX lead to an increase of the diffusion coef-
ficient by a factor of the order of a few tens over the typical
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Fig. 8. Same case as treated in Fig.6 but withβ = 2. Here, massive
diffusive losses are occurring since 2−δd−β < 0 and thus no significant
acceleration is observed.

diffusion length, implying low maximal energies for both elec-
trons and cosmic rays. The X- andγ-ray filaments also display
some different features in the case of an Alfvènic-like relaxed
turbulence. Indeed, the low energy particles producing thesyn-
chrotron photons in the interval 0.5-1 keV and theγ-ray photons
in the 10-30 GeV band respectively do extend over smaller dis-
tances behind the shock (electrons having energy∼ 1 TeV). This
can be understood by the effect of the resonant component of the
magnetic fieldb in Eq.(6). At a given downstream location, par-
ticles with energiesE < Emax do interact with a smaller number
of modes compared to the advected case. This effect is due to the
fact that large wave numbers modes relax over smaller distances
compared to smaller wave numbers modes within the same tur-
bulence spectrum. In other words, when comparing to the ad-
vected case, more low energy particles suffering diffusive losses
are lost compared to the highest energies (which also suffer from
diffusive losses). Particles having energy around a few tens to
hundred of GeV are then confined closer to the shock and do not
experience a strong magnetic field variation: the standard shock
solution is then recovered in this domain. We have checked that
the shock synchrotron spectrum cuts off at an energy near one
keV.

We also have tested the solution in the caseβ = 2; i.e.
2 − δd − β = −1/2 < 0. No significant particle acceleration
has been found as diffusive losses dominate at low energy (see
Fig.8). The numerical acceleration timescale is also foundto be
smaller to the theoretical estimation which is consistent with the
fact that only particles returning quickly to the upstream medium
once entering the downstream region are able to avoid mas-
sive diffusive losses. These simulations confirm the conclusions
drawn in section 4.2.3.

4.3.3. Solutions in case of turbulent dynamo amplification

The coherence length of the downstream turbulence enteringthe
evaluation of`ampl in section 4.1.4 cannot be larger than the
X-ray filament width otherwise the condition on the maximum
CR diffusion coefficient upstream given by the Eq.(22) would
not be satisfied. This means that if a magnetic dynamo oper-
ates downstream then the growth scale length is< ∆RX. The

growing modes are restricted mostly to large scales; i.e. towave
numbers close tokmin. They are considered by the particles as a
contribution to the mean magnetic field. The fast increase ofthe
magnetic field downstream up to values close to equipartition
produces enhanced radiative losses and thus much thinner fila-
ments. We have checked the effect by performing simulations
adding a mean magnetic field downstream with values close to a
few mGauss.

5. Discussion and summary

Young SNRs are strong particle accelerators as probed by the
presence of thin X-ray filaments. In these astrophysical objects,
the X-ray emission is produced by synchrotron radiation, involv-
ing particle whose maximal energy is beyond tens of TeV and
magnetic field strengths behind the shock of the order of a few
hundredµGauss (Parizot et al 2006). This work extends the ex-
amination undertaken by Parizot et al (2006) about the physical
properties of the turbulence and transport coefficients in the same
sample of five young SNR. We have further included the turbu-
lence compression at the shock front, the possibility of particle
reacceleration in the downstream region of the shock and finally
the relaxation of the magnetic fluctuations downstream (Pohl et
al 2005). We have also included a description of the generation
of the magnetic fluctuations in the shock precursor following the
two regimes of the streaming instability (Pelletier et al 2006).
This work has been developed in the same framework as Lagage
& Cesarsky (1983) but adapted to the case of amplified mag-
netic field around SNR, except that the maximum CR energy is
not fully investigated here. For that purpose we have developed a
numerical scheme based on the coupling between the equations
of the magnetohydrodynamicsand a kinetic scheme handling the
calculation of the electrons particle distribution function. The
scheme involves a set of stochastic differential equations (SDE)
already described elsewhere (Casse & Marcowith 2003, 2005).
The SDEs have been adapted to account for the discontinuity of
the diffusion coefficients properly using a skew brownian mo-
tion (see also Zhang (2000)). The following conclusions canbe
made:

1. The compression of turbulent scales at the shock front does
not deeply modify the efficiency of shock acceleration. The
conclusions addressed by Parizot et al (2006) are found to
be robust; in case of downstream advected magnetic field,
young SNRs exhibiting X-ray filaments do accelerate parti-
cles at most at PeV energies.

2. Considering the various regimes of the streaming instability
occurring in the shock precursor, the SNRs contained in our
sample are expected to generate magnetic fields up to a few
hundredµGauss. In a regime of shock velocity of a few hun-
dred thousand km/s the level of fluctuations tend to be shared
by the non-resonant and the resonant regimes. The resonant
modes may contribute to some particle reacceleration down-
stream. However the amount of reacceleration cannot be too
large otherwise the shock particle spectrum would be harder
and the X-ray filament width would be larger than observed.
This provides an observational constraint on the amount of
resonant modes present downstream of the shock front. The
fate of non-resonant modes generated upstream still requires
specific developments.

3. We provided calculations of the projected and deprojected
X- andγ-ray filaments, each one in two specific wavebands.
If the separation between the X andγ-ray peak emission is
found to be far below anyγ-ray mission resolution capacities
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in young SNR, some detailed observations could be under-
taken in the case of more extended objects like Vela Junior.

4. In the case of a relaxed turbulence occurring in the down-
stream region, our conclusions are the following:
– When the magnetic relaxation scale varies as`d(k) ∝

k−δd, a magnetic turbulence (whose power-law index is
β) is able to provide suitable conditions giving rise to an
efficient particle acceleration if 2− δd − β > 0.

– We have put to the test several relaxation processes
leading to various values ofδd. It appeared that the
Kolmogorov damping occurring in a Bohm diffusion
regime is unlikely to produce strong acceleration in the
framework of relaxation limited filaments when account-
ing for the whole dynamics of the turbulent spectrum. On
the other hand, the Alfvén and fast magneto-sonic cas-
cades provide suitable conditions giving birth to particle
acceleration while being able to match all observational
features of X-ray filaments. In that context, we found that
the maximum energy particle (both for electrons and cos-
mic rays) cannot be much larger than a few tens of TeV.

– The magnetic field strengths downstream of the shock
cannot be much larger than 200− 300µ Gauss otherwise
radiative losses would control the X-ray filament width.

– Regarding the supernova remnants SN1006 and RXJ
1713-3946.5, none of the various turbulence relaxation
processes considered in the present paper were able to
provide an efficient particle acceleration and to match
the corresponding observational features. In that context,
it seems that only the youngest SNRs (TSNR < 500 yr)
of our sample may exhibit X-ray filaments controlled by
downstream turbulence relaxation.

– The normalization (i.e. factorq(β)) of the spatial diffu-
sion coefficient have to remain close to unity in order to
avoid massive particle diffusive losses, leading to a drop
of the Fermi acceleration efficiency. A genuine Bohm
diffusion regime is then required if magnetic turbulence
relaxation is occurring in the downstream region of the
shock.
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Appendix A: Magnetic field profile produced by the
resonant instability

The amplification factor due to the resonant instability depends
on the amplification factor produced by the non-resonant insta-
bility (Pelletier et al (2006), Eq.34); it reads as:

A2
R(x) = α̃res× ANR(x) ×

∫ k∗`coh

1
d ln(k̄)

(

exp(−a(x)k̄2−β) − 1/e
)

,

(A.1)
andα̃res = π/φ × MA∞ξCR > 1 andk∗ is the maximum resonant
wave length at a distancex.
k̄ = k`coh varies betweenkmin(= 1/rL(ECR−max))`coh ' 1 and
k∗(x)`coh ≥ 1 9. We have:

a(x) =
π

βφ
× (Vsh/c) × (x/`coh) × ηtot(x) < 1 ,

9 As discussed in section 2.1.1 we assume the same coherence length
over the whole precursor.

The exact integration of Eq.(A.1) involved a difference between
two exponential integral: Ei(−a(x)k̄∗) − Ei(−a(x)). The second
term dominates as̄k∗ ≥ 1, we get:

AR(x) ∝
[

ANR(x) × (−Ei(−a(x))/(2− β) − ln(k∗(x))/ exp(1))
]1/2
.

(A.2)
The above equation is implicit as the total magnetic field is hid-
den ink∗ andηtot.
At distancesx � `diff(ECR−max), a(x) � 1, we approximate
−Ei(−a(x)) ' − ln(a(x)) − C; C ' 0.5772 is the Euler con-
stant. At a first approximation within the precursorAR(x) scales
asA(x)1/2

NR.

Appendix B: Derivation of the shock particle
distribution function

The steady-state general 1D Fokker-Planck equation reads:

u
∂ f
∂x
=
∂

∂x

(

D
∂ f
∂x

)

+ (ud − uu)δ(x)
∂ f
∂ ln p3

(B.1)

Here the upstream medium is defined by−`u(p) ≤ x < 0
and the downstream medium by 0< x ≤ `d(p). The shock
front is at x = 0. In this equation, we have neglected the syn-
chrotron/turbulence generation losses since we focus on the par-
ticle diffusive losses. The presence of finite extension for both
upstream and downstream media imposed boundary conditions
for f as f (−`u, p) = 0 = f (`d, p). In order to determine the spa-
tial behaviour of thef function, we integrate Eq.(B.1) from the
left boundary tox in the upstream medium and fromx to the
right boundary in the downstream medium; we obtain:

fu(x, p) = fS(p)

∫ x

−`u
exp(

∫ x′

−`u
θu(x′′, p)dx′′)dx′

∫ 0

−`u
exp(

∫ x

−`u
θu(x′, p)dx′)dx

fd(x, p) = fS(p)

∫ `d

x
exp(−

∫ `d

x′
d(x′′, p)dx′′)dx′

∫ `d

0
exp(−

∫ `d

x
θd(x′, p)dx′)dx

(B.2)

where fS is the distribution function evaluated at the shock front
and the functionsθu/d are to be interpreted as the inverse of ef-
fective diffusive lengths and are defined as

θu/d(x, p) =
uu/d − ∂Du/d

∂x

Du/d
. (B.3)

The energy flux carried by the relativistic particle has to becon-
served throughout the shock front, namely forυ→ 0

[

D
∂ f
∂x
+ u

∂ f
∂ ln p3

]υ

−υ
= 0 . (B.4)

The spatial derivatives off are known using Eq.(B.2); we obtain
a differential equation forfS:

d ln fS(p)
d ln p

= − 3
(uu − ud)

×



















Du(0, p) exp(
∫ 0

−`u
θu(x′, p)dx′)

∫ 0

−`u
exp(

∫ x

−`u
θu(x′, p)dx′)dx

+
Dd(0, p) exp(−

∫ `d

0
θd(x′, p)dx′)

∫ `d

0
exp(−

∫ `d

x
θd(x′, p)dx′)dx



















. (B.5)
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Appendix C: Particle acceleration and multi-scale
simulations

This section presents the numerical framework used to describe
both the supernova thermal plasma evolution and the relativistic
charged particles transport. As detailed in Casse & Marcowith
(2003) and Casse & Marcowith (2005), the background fluid
and large scale-magnetic field are calculated using the magne-
tohydrodynamics code VAC forVersatile Advection Code(Tóth
(1996)). The simulations are performed using a 1D spherical
symmetry where the evolution of the supra-thermal electrons
and nuclei are calculated using the stochastic differential
equations (SDE) formalism (Krülls & Achterberg 1994). The
numerical description of supra-thermal particles transport is cru-
cially dependent on the ability of the MHD code VAC to capture
the shock structure. In order to obtain the sharpest shock front
possible, we used the TVD-MUSCL scheme coupled with a
Roe-type approximate Riemann solver (Tóth & Odstrcil (1996)).

Section C.1 briefly reports on the MHD-SDE schemes used
to model a 1D spherical SN remnant expansion. In particular
sections C.2 and C.2.1 discussed in some details the stochastic
differential Euler schemes with spatially dependent diffusion co-
efficients and their application to the diffusive shock acceleration
problem. Section C.2.2 describes the shock capturing procedure
that efficiently couple the MHD and SDE schemes.

C.1. Supernova remnants modelling

The time evolution of the thermal magnetised plasma is fully
controlled by the MHD equations providing mass, momentum
and energy conservation as well as electromagnetic field induc-
tion, namely

∂ρ

∂t
+ ∇ · (ρV) = 0 ,

∂(ρV)
∂t

+ ∇ · [ρVV + ptotI − BB/µo] = 0 , (C.1)

∂e
∂t
+ ∇ ·

(

eV + ptotV − V · BB
µo

)

= 0 ,

e =
ρV2

2
+

B2

2µo
+

P
γ − 1

∂B
∂t
+ ∇ · (VB − BV) = 0

The densityρ, velocity V, total energye and magnetic fieldB
are set in the initial condition as a 1D spherically symetricSNR
blast-wave as described by Truelove & McKee (1999). We as-
sumed a uniform SNR and we have added a small contribution
of the magnetic field. The resulting SNR MHD simulation starts
as (Vθ,Vφ = 0)

ρ =

{

3MSNR/ρ∞4πV3
SNRT3

SNR ,R< VSNRTSNR
1 ,R> VSNRTSNR

VR =

{

R/VSNRTSNR ,R< VSNRTSNR
0 ,R> VSNRTSNR

For each run the physical quantities entering the problem are
normalised knowing the mass ejectedMSNR, the age of the SNR
TSNR, the mechanical energy of the explosionEinj and the ve-
locity of the blast waveVNR. We set the thermal pressure to a
small value compared to the kinetic energy of the SNR (typi-
cally 10−3 times) since its role in the wave propagation is mini-
mal. The magnetic field advected along the flow is also believed

to be very ineffective in the wave propagation but its role in the
supra-thermal particles transport process is important. The mag-
netic field is thus prescribed with an amplitude similar its warm
interstellar medium value e.g.Bθ ' 5µG.
In order to test the ability of our simulation to model the prop-
agation of SNR shock, we have ran a long-term evolution of
a SNR blast wave corresponding to the previous initial set-
up where we have set the SNR parameter toMSNR = 6M�,
TSNR = 200yr, Einj = 1051ergs andVSNR = 5000km/s. The
results have been found to reproduce the corresponding analyt-
ical solution in Truelove & McKee (1999) quite accurately. In
particular both free expansion and Sedov self-similar regime are
obtained, the transition regime occurs at the expected Sedov time
for this simulation,TSEDOV = 1.1kyr.

C.2. Kinetic approach

The transport of relativistic particles (with velocities much larger
than the fluid speed) near the shock front is governed by a
Fokker-Planck equation in the case where these particles res-
onate with the turbulence and enter a diffusion regime. The re-
lated kinetic equation is

∂F
∂t
= − ∂

∂R

(

F

{

VR +
∂DR

∂R
+

2DR

R

})

− ∂

∂p

(

F

{

− p
3
∇ · V + 1

p2

∂p2Dpp

∂p
− alossp

2

})

+
∂2

∂R2
(FDR) +

∂2

∂p2
(FDpp) (C.2)

with F = R2p2 f related to the distribution functionf via the
spherical radiusRand particle momentumpc= γmec2. The par-
ticle spatial diffusion regime is characterised by a diffusion coef-
ficientDR which depends on the turbulence spectrum. The factor
aloss stands for particle losses.
For electrons the losses are produced by synchrotron cooling.
The cooling timescaletsyn is:

asyn =
1

tsynp
=

6πm2
ec2

σTcB2
(C.3)

For protons (or ions) the losses are produced by the genera-
tion of magnetic fluctuations and are a priori limited to the up-
stream medium (in the downstream flow the particle distribution
is isotropic). The cooling timescale is obtained from (Marcowith
et al (2006), Eq.13):

aturb =
P(p)
p2
, (C.4)

whereP(p) is the rate of energy radiated by a relativistic particle:

P(p) ' 1
3

Vsc
∂ log( f (x))
∂x

p . (C.5)

The scattering center velocity is close to the local Alfvénveloc-
ity; i.e. Vsc ' VAu.
Stochastic particle acceleration is represented by the energy dif-
fusion coefficient Dpp = V2

A p2/9DR related to spatial diffusion
(VA is the local Alfvèn velocity).
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C.2.1. Stochastic differential equations

As shown by Krülls & Achterberg (1994), this Fokker-Planck
equation is equivalent to a set of two SDEs that can be writtenas

dR
dt
= VR +

∂DR

∂R
+

2DR

R
+

dWR

dt

√

2DR

dp
dt
= − p

3
(∇ · V) +

1
p2

∂p2Dpp

∂p
− alossp

2 +
dWP

dt

√

2Dpp

where theWi are Wiener processes such thatdWi ∝
√

dt. Using
Monte-Carlo methods, it is then possible to time-integratethe
trajectories of a sample of test particles in phase space andto
reconstruct the distribution function provided that the number of
test particles is sufficiently high.
The presence of a shock discontinuity may lead, according to
MHD Rankine-Hugoniot conservation laws, to a discontinuous
magnetic field at the shock front. Depending on the diffusion
regime affecting relativistic particles, this may lead to discon-
tinuous diffusion coefficients that can be writtenDR = DR,C +

∆DRsign(R− Rsh) where the first term is a continuous function.
In this case, the usual Euler schemes are no longer valid as in
Krülls & Achterberg (1994); Casse & Marcowith (2003); van
der Swaluw & Achterberg (2004); Casse & Marcowith (2005).
As shown by Zhang (2000), it is possible to overcome this prob-
lem by employing a skew brownian motion where an asymmet-
ric shock crossing probability is considered. In this framework,
the spatial stochastic equation becomes

dR̃= ξ(R̃)

{(

VR +
∂DR,C

∂R

)

dt+
√

2DRdWR

}

(C.6)

whereR̃ is related toR by

R̃= ξ(R)R with ξ(R) =



















ε , R< Rsh
1
2 , R= Rsh
(1− ε) , R> Rsh

and whereε is the ratio of diffusion coefficients taken at the
shock front, namely

ε =
Du(Rsh)

Du(Rsh) + Dd(Rsh)
. (C.7)

Eq. (C.6) can be solved using an Euler scheme where the
stochastic variableWR is computed with Monte-Carlo methods.
Conversely to the study of Zhang (2000), realistic diffusion co-
efficients are likely to depend on particle energy. In this case we
have to consider the amount of energy∆ε gained by particles
during the shock crossing. The transition probabilityε is then
calculated depending on the way the shock is crossed, namely

εup→down =
Du(Rsh, ε)

Du(Rsh, ε) + Dd(Rsh, ε + ∆ε)

εdown→up =
Du(Rsh, ε + ∆ε)

Du(Rsh, ε + ∆ε) + Dd(Rsh, ε)
. (C.8)

It is noteworthy that this skew brownian motion approach is valid
only if shock curvature terms are neligeable, i.e. 2DR/R� |VR+

∂DR/∂R|. Regarding the energy stochastic equation, the velocity
discontinuity can be numerically treated by an implicit Ricatti
scheme (Marcowith & Kirk 1999). Basically, once the stochas-
tic displacement∆R is calculated, we can calculate the energy

gained∆ε by a particle having originally an energyε = pc dur-
ing time step∆t following

ε + ∆ε

ε
=

exp
(

− ∆t
3∆R

∫ R+∆R

R
∇ · VdR

)

1+ ε exp
(

− ∆t
3∆R

∫ R+∆R

R
∇ · VdR

)

∆t
∆R

∫ R+∆R

R
alossdR

(C.9)
The previous implicit calculation is valid for any diffusion
regime provided that second order Fermi acceleration is neg-
ligeable. In the opposite case, we then have to step back intoan
explicit scheme taking into account the skew brownian motion.
Following Zhang (2000) the energy gained by a particle will be

∆ε =

√

2DppdWp −
∆V

3∆DR
ε{∆R− ∆R̃/ξ(R̃)} +

(

∂Dpp

∂p
− aloss

)

∆t

(C.10)
where∆V = Vup(Rsh)−Vdown(Rsh) and∆DR = Du(Rsh)−Dd(Rsh).
During the time integration of MHD equations, the SNR shock
front is propagating so that its surface is increasing with time. In
order to take into account the increase of the particle flux atthe
shock front, we continuously inject new particles having energy
εinj so that the number of new particles isNpart(t+∆t)−Npart(t) ∝
R2

sh(t)∆Rsh, where∆Rsh is the shock front displacement occur-
ring during∆t.

C.2.2. Kinetic description of MHD shock waves

The SDE formalism is useful to model the transport of relativis-
tic test particles in the context of a non-relativistic background
fluid since it provides both spatial and energetic distribution of
particles. Nevertheless one drawback of this method does exist:
the shock thickness. Indeed the SDE algorithm is based on the
use of fluid velocity divergence to mimic particle acceleration.
The MHD code is providing the velocity field at discrete loca-
tions on the grid so that∇ · V may be obtained through linear
interpolation. The best performant MHD code cannot display
shocks as sharp discontinuities but rather display velocity and
density variations over two or three cells. This is very important
for kinetic computations since particles having diffusion coeffi-
cients such that the diffusive step is small than the MHD shock
thickness will see the shock as an adiabatic compression, lead-
ing to softer energy spectrum.
In previous works (see e.g. Krülls & Achterberg (1994); Casse
& Marcowith (2003), it was shown that the SDE formalism was
able to describe accurately the transport of particles having dif-
fusion coefficients larger than∆XshV/2 where∆Xsh is typically
the cell size in the MHD code. This constraint greatly reduced
the range of applications of this method. In order to overcome
this problem, we have designed a SDE algorithm where the∇·V
is no longer calculated locally but instead we integrate theterm
∇ · VdR in Eq.(C.9) where the velocity is given asVu or Vd de-
pending on the shock position. In our new approach, the MHD
code is now only providing the shock position and the compres-
sion ratior so that we deduce the value of the fluid by consider-
ing the shock as infinitely thin.
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