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ABSTRACT: This paper deals with a formal method for the study of the backward reachability analysis applied
on Colored Petri Nets (CPN). The proposed method proceeds in two steps : 1) it translates CPN to terms of
the Multiplicative Intuitionistic Linear Logic (MILL); 2) it proves sequents by constructing proof trees. The
translation from CPN to MILL must respect some properties such as the semantic associated to tokens. That
is why, the First-Order MILL (MILL1) is used for translation. The reachability between two markings, the
initial marking and the final marking, is expressed by a sequent which can be proven (if the initial marking is
backward-reachable from the final one) using first-order terms unification and/or marking enhancement.

1 Introduction

System dependability is an important research issue
especially if applied to critical domains. Systems are
verified through tools that check the compliance of
their properties with the design specifications. Formal
methods provide an interesting way to study and de-
velop verification tools thanks to their precise charac-
terization of the modelled system. It is in this context
that the presented work applies a formal method ap-
proach to system modelling and analysis.

Petri Nets (PN) (Petri 1962), and especially, Col-
ored Petri Nets(CPN) (Jensen and Rozenberg 1991),
are a powerful and recognized modelling tool. They
are endowed with a big expressiveness and allow to
represent the two aspects of a system : static thanks to
the PN structure and dynamic thanks to the token evo-
lution. The PN analysis can be done in several man-
ners like exhaustive reachable state space enumera-
tion or Monte Carlo simulation (Metropolis and Ulam
1949). These methods allow to study request/action
effects on the model behavior, but they suffer from
drawbacks such as combinatorial explosion and re-
sults correctness (some results are bound with a po-
tentially known error range). To avoid these draw-
backs, we propose to use the structural analysis us-
ing directly the model itself. In addition, this work is
particularly interested in the diagnosis and the fault
driven analysis. That means, by knowing a particu-

lar final state (which represents a failure state), the
sources of this state can be found. In such analysis, all
possible initial configurations must be studied to find
those leading to the considered failure state. This is
why, it is interesting to study the reachability between
two markings studied under two dual manners (Khal-
faoui 2003): the forward reachability and the back-
ward reachability. The first case consists in building
state successors one by one, starting with the initial
marking M, and ending with the final marking M.
Thus, considering M, as the present state, My is con-
sidered as the future state. In the backward reacha-
bility, M constitutes the present state and M, is re-
garded as the past state. The general idea is to build,
from the present state, the predecessor states until the
reach of the past state which is logically the source of
the present marking.

To perform the backward reachability analysis
over CPN, (M.Bouali, P.Barger, and W.Schon 2009a;
M.Bouali, P.Barger, and W.Schon 2009b) developed
a method based on inverse Colored Petri Net (inverse
CPN) which results from transformations applied on
the original CPN. Knowing that, in the case of ordi-
nary Petri Nets, the linear logic offers another more
formal method to study reachability between to states,
the idea is to generalize this method to CPN and es-
pecially for inverse CPN. The equivalence between
structural analysis and linear logic (applied to CPN)



can be obtained by performing appropriate transla-
tion from CPN to linear logic. The linear logic for-
malism is very interesting because it can constitute a
formal proof for the structural backward reachability.

CPNs model the system structure and its dynamic
behavior in the same model. The dynamic behavior is
modelled thanks to token evolution. After each transi-
tion firing, some tokens are consumed and some other
are produced. This notion of production/consumption
cannot be expressed in classical logic, that is why the
MILL was preferred. On the other hand, unlike Or-
dinary Petri Nets, token in CPN is of a certain type
(color) and belongs to a set of this type (color set)
and is transformed by arc expressions. So the trans-
lation from CPN to MILL must respect these prop-
erties. That is why, the First-Order MILL (MILL1) is
used for the translation. CPN Places are expressed in
MILL1 by unary relation symbols (Propositional vari-
ables) which allow to deal with arc expressions and
token values. CPN transitions are expressed in MILL1
by implicative formulas allowing introduction of uni-
versal quantifiers. The reachability between the two
markings M, (initial marking) and M (final mark-
ing) is expressed by a sequent which can be proven (if
M, is backward-reachable from M) using first-order
terms unification and/or marking enhancement.

This paper is organized as follows : The section 2
gives definitions of Petri Nets and Colored Petri Nets.
It also introduces the structural backward reachabil-
ity in CPN. The section 3 presents the Linear Logic
and its relation with Petri Nets. It is followed, in the
section 4, by the details of translation from CPN to
MILL1 and the reachability analysis using sequents in
linear Logic. The section 5 contains a presentation of
the case study. The paper ends by the conclusion and
an outline of future perspectives.

2 Structural Backward Reachability for Colored
Petri Nets

2.1 Petri Net and Colored Petri Net

A Petri Net (Petri 1962), called also Place/Transition
Net, is a directed bipartite graph defined by the 4-
tuple (P, T, Pre, Post), where: P is a finite set of
places, T is a finite set of transitions (P N7T = (),
Pre is the backward incidence application, Post is
the forward incidence application.

The notation of Colored Petri Net (CPN) (Jensen
and Rozenberg 1991) introduces the notion of to-
ken types, namely tokens are differentiated by colors,
which may contain arbitrary data values. Each place
has an associated type determining the kind of data
that the place may contain. A non-hierarchical CPN
is defined by the 9-tuple (X, P, T,A,N,C,G,E,I)
where :

e ). is a finite set on non-empty types,

e P is a finite set of places,
e T is a finite set of transitions,

e A is a finite set of arcs such that: PNT = PN
A=TNA=0,

e N is a node function. It is defined from A into
PxTuUT x P,

e (' is a color function. It is defined from P into
2,

e (7 is a guard function. It is defined from 7" into
expressions such that:

Vte T : [Type(G(t)) = BAType(Var(G(t))) C X,

e [Jisan arc expression function. It is defined from
A into expressions such that:

Va € A: [Type(E(a)) =C(p(a))msN
Type(Var(E(a))) C ¥
Where p(a) is the place of N(a),

e [ is an initialization function. It is defined from
P into closed expressions such that:

Vp € P : [Type(I(p)) = C(p)ms)

2.2 Colored Petri Net inversion

Backward reachability in CPNs is a dual concept of
the forward reachability. That is, if a marking M is
reachable from M,, M, is said backward reachable
from M. Backward-reachability means that M is a
cause or a source of M;. To perform the backward
reachability analysis, an inverse CPN is used. It is ob-
tained by application of a set of structural transfor-
mations on the original CPN. These transformations
are directly dependent on the CPN structure. Conse-
quently, we have to define a transformation rule for
each structure case studied. Nevertheless, the most
common transformations in representative cases are
presented bellow.

Basic transformation rule :  Tab.1.a shows a triv-
ial case of a CPN inversion: input and output arcs
are marked with constants a,b. Tab.1.b shows a case
where the input arc is marked with variable x, the out-
put arc is marked with function f(z) and a guard G(z)
is associated to the transition .



Mixed transformation rule : Tab.l.c shows a
mixed case where some input arcs are marked with
variables {x,y} and other arcs by constants {a,b}.
Output arcs are marked with constants {c} and re-
versible functions {f,g}. This CPN inversion is a
mix (generalization) of the basic transformation. Each
variable is used by one and only one function. In the
opposite case, see the Parametric transformation be-
low.

Parametric transformation rule : Some CPN
structures can’t be reversed to get deterministic mark-
ings in the backward reachability. The reason is that
the inversion process could be assimilated to math-
ematic operations whose solutions may be intervals.
The CPN inversion, in these cases, is parametric.
That means, some additional information, like color
sets, are needed. Two cases follow : the first concerns
arc expressions which are multivariable equations
(Tab.1.d), the second treats input variables which are
not associated with output functions (Tab.1.e).

Parallel transformation rule :  The term ’parallel’
means existence of a shared variable. Tab.1.f shows
the case where the same variable is used by more than
one function (two functions in this case).

3 Linear Logic

Linear logic was introduced by Girard (Girard 1987).
Its expressive power is demonstrated by some very
natural encodings of computational models such as
Petri Nets, counter machines, Turing machines, and
others (Lincoln 1992). Linear logic differs from clas-
sical logic by introducing the notion of a ressource.
Classical logic deals with static propositions where
each proposition is either true or false. Because of the
static nature of propositions in classical logic, there
may be duplicated [P = (P A P)] and/or discarded
[(P A Q) = P]. Both of these propositions are valid
in classical logic for any P and (). In linear logic,
these propositions are not valid because no informa-
tion is available about how the second P is produced
(in the first proposition) or where () is consumed (in
the second proposition). The rules of linear logic im-
ply that linear propositions stand for dynamic proper-
ties or finite resources.

For example, consider the propositions E, C, and
T, conceived as resources: 1)E: one Euro, 2)C: cup
of Coffee, 3)T: cup of Tea. Consider the following ax-
iomatization of a vending machine: 1)E = C,2)F =
T. Then in classical logic, the proposition F = (C' A
T') can be deduced. Which may be read as ”With one
Euro, I may buy both a cup of coffee and a cup of tea”.
Although this deduction is valid in classical logic, it
is nonsense in the intended interpretation of propo-
sitions as resources: two cups of hot drinks cannot be
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Table 1: CPN transformations for inversion




bought with one Euro from the described vending ma-
chine.

In this work, we only use a fragment of the
linear logic related to Petri Nets which is MILL
fragment (Multiplicative Intuitionistic Linear Logic).
This fragment contains the multiplicative connector
TIMES (®) and linear implication connector (—o).
The TIMES connector traduces the accumulation of
resources. The proposition A ® A means that two
resources A are available. The Linear implication
(—o) expresses the causality between production and
consumption of resources. The proposition A — B
means that when the proposition A is consumed, the
proposition B is produced. The meta-connector ”,”
(comma) is cumulative (Girard 1987).

The sequent calculus notation, due to Gentzen
(G.Gentzen 1969), is composed of two sequences of
formulas separated by a turnstile symbol (-). The for-
mula I',T” - A, A’ means that the conjonction of I"
and I allows to deduce the disjonction A or A’. A
sequent calculus proof rule consists of a set of hy-
pothesis sequents, written above a horizontal line, and
a single conclusion sequent, written below the line, as
follow:

Hypothesis, Hypothesisy
Conclusion

Ruzeattribute

The goal is to construct a proof tree. Starting from
the sequent, and applying step by step some adapted
rule, the proof consists on eliminating the connectors.
These rules are shown in Fig. 1 where : A is an atom
; F', G and H are formulas ; I" and A are blocs of for-
mulas separated by commas. The attribute indicates
whether the rule is applied at left (L), at right (R) or
to the whole sequent (empty attribute).

TFF  AFFH

TAFH Cut

AF A

I,F,G,AFH
TG, F,AF H

Exchange

I'F  AGHH

TAFwGFH F
T AFFG

TAFF -G

I FGFH

o JLTEF __AFG
ILFoGFH “F

TAFF®G

QR

Figure 1: Sequent calculus rules of the MILL frag-
ment

The interest of linear logic is that it provides, for
example, a natural and simple coding of Petri Net

reachability (Lincoln 1992). Based on the sequent cal-
culus, linear logic helps to get a necessary and suffi-
cient condition of reachability from one marking to
another, thanks to the equivalence between the reach-
ability in a Petri Net and the provability of the cor-
responding sequent (F.Girault 1997). Moreover lin-
ear logic gives the partial firing order of the differ-
ent transitions to reach a final marking M, from an
initial one M, (H.Demmou, S.Khalfaoui, E.Guilhem,
and R.Valette 2004).

To translate a Petri Net to linear logic, a logical for-
mula is associated to each marking and each transi-
tion. The left hand of the initial sequent must hold the
list of all the transitions that can be fired to obtain a
marking M from an initial marking M. The building
of the proof generates a proof tree beginning by a se-
quent and finishing by the identity axiom. For a given
Petri Net, the translation is performed as follows:

e An atomic proposition P is associated with each
place p of the Petri Net,

e A single sequent using the multiplicative con-
junction TIMES (®), is associated with each
marking, pre-condition and post-condition of
transition,

e To each transition ¢ of the net an implicative for-
mula is defined as follows:
X F

t: ®
o€ Post(po,t)

i€ Pre(pi,t)

P, —o

To show reachability between two markings M,
and My, the proof of the sequent My, 1y,...,t, = My
is performed as follows: first, the initial marking M,
is replaced in separate atoms by applying the ®, rule
as many times as necessary. Then, by applying —o;,
causality relation of atoms (from M to M) can be
extracted. Each time —o, rule is applied, @, rule is
applied if necessary to separate atoms relied by .
The proof continues essentially at the right side of the
tree because after each application of —oy, rule, the left
member is proven by using, if necessary, the @ rule.
The sequent proof ends when all implicative formulae
(expressing transitions) are eliminated.

4 Linear logic and Colored Petri Nets

The application of linear logic to CPN reachability
analysis requiers translation between the two mod-
els (from CPN to linear logic). This translation have
to respect characteristics of CPN, particularly tokens
types and arc expressions which not exist in ordinary
PN. To express tokens differentiation and their val-
ues evolution in CPNs, the predicative linear logic is
very limited ; this is why, in this work, the first order
linear logic was preferred. This section presents the



linear logic fragment used to translate CPNs wich is
First Order Multiplicative Intuitionistic Linear Logic
(noted MILL1) and then it presents the translation al-
gorithm.

4.1 First Order Multiplicative Intuitionistic Linear
Logic
MILL1 language is defined as follow:

Alphabet: The alphabet consists on disjoint sets: a
set of variable symbols (e.g. x, y), a set of function
symbols (e.g. f, g, h), a set of relation symbols (e.g.
R, S, T), the binary connectives (®, —) and quanti-
fier V. Each language £ is equipped with a map from
L to the set of natural integers ar : £ — N. This map
ar stands for symbol arity.

Terms: Given a language L, the first-order terms
over L are defined by the syntactic category below:

T = X

| f(m,. )

where z ranges over the variables and f belongs to
the function symbols of £ such that ar(f) = n.

Formulas: First-order formulas (or formulae) of
MILL are defined by the inductive syntactic category
below:

o, = R(m,...,7)
| e®e
| e
| Va-p
where R belongs to the relation symbols of £ such
that ar(R) = n and where the variable = occurrences
in formula ¢ are bound in formula Vz - ¢ by the uni-
versal quantifier. Variables that are not bound by a
quantifier are called free.

Sequents: If ' is a multiset of formulas separated
by ”,” and ¢ is a formula then I' - ¢ is a sequent. By
taking I' as a multiset we will implicitly assume that
the sequent comma ”,” is associative and commuta-
tive. [' is called the antecedent of the sequent and ¢
the succedent.

Proofs in MILL1 are given in terms of proof trees
that are inference rule composition over judgments.
Judgments are pairs of a set of formulas I' and a for-
mula ¢ that are written I' = . This means that the
formula ¢ is a logical consequence of the conjunction
of those of I'. Inference rules (n-ary) are relations be-
tween n + 1 judgments that are noted as follows:

I Eer | S oS

'y

which means that it is sufficient to establish the
below-rule judgment I' - ¢ if the above-rule ones
hold; in other words, to establish the below-rule judg-
ment it is necessary to prove the above-rule judgments
['; F ¢; (1 <i < n). Inference rules of MILL are given
in figure 2.

d Tpko |
oFo ThFp—og¢ '
Phy  ¢AFY
Tp—odAFy
A Loty o
IAFe®e ' To®pFiy
_TI'Fe _LpFd
rve o 7 ) Tz or g "

The constraint () requires that the variable x isn’t
free in formulas of I'.
Figure 2: First-Order Multiplicative Intuitionistic Lin-
ear Logic

4.2 Translation of a Colored Petri Net to MILL1

For a given CPN, the translation is performed as fol-
lows:

e A unary atomic predicate R is associated with
each place p of the CPN,

e A single sequent using the multiplicative con-
junction TIMES (®), is associated with each
marking, pre-condition and post-condition of
transition,

e To each transition ¢ of the net an implicative for-
mula is defined as follows:

t:Vaoy... Vo, ( ® Ri(x;) — ®
i€ Pre(pi,t)

o€ Post(po,t)

Ro(fo(Xo)))

Where z; are variables marking the input arcs of ¢.
fo are functions associated to the output arcs of t. X,
are vectors composed of different associations of z;.

The following example translates the CPN illus-
trated in Fig. 3 to its equivalent in MILLI.

e places p; are translated by unary atomic predi-
cates © — R;(x) where (1 <7 <5);

e the transition ¢; is translated by the formula:

1=V - <R1($) — Ry(f(z)) ® R4(g(33))>

e transition ¢, is translated by the formula: ¢y =
vy -z (Raly) © Balz) — Ry (h(y,2)) )



Figure 3: Colored Petri Net Example

e the initial state is translated by the formula: ¢y =
Ry (i) ® Rs(j)

e the final state is translated by the formula: ¢ =
Rg(a) ® R4(b)

The remaining of the example treats a case of
reachability between two markings M, and M;
where: My = (i).pl + (j).p5 and M; = (a).p3 +
(b).p4. The reachability between M, and My is ob-
tained by the means of the judgment ¢g, ©1, 02 F ¢
following proof in MILL1 (see proof tree in Fig.4):
first, the initial state formula ¢, is treated by ®;, then
the transition o is treated by V; and —o;. The result of
the first transition is treated by ®;. The second tran-
sition o5 is treated twice by V; and —o;. The results
of the second transition is treated by ®,.. In a parallel
direction, we treat the final state formula ¢ by ®, as
well. We finally apply ¢d rules and unify the remain-
ing equations by this substitution g:

<(a) = h(f(),])
<(b) = g(1)

5 Case study
This example is inspired from (Cho, Hing, and Cha
1996). It describes a shutdown system (SDS2) for a
Korean nuclear power plant. SDS2 monitors the state
of a nuclear reactor such as its pressure and power
and generates a trip signal (shutdown) if the nuclear
reactor becomes unsafe (means the pressure is too
high or too low). There are several trip parameters in
SDS2. Here, is described only PDL trip parameter.
Fig.5 shows a CPN for PDL trip parameter of SDS2.
To control the PDL trip parameter, SDS2 monitors
the status of the nuclear reactor such as core differ-
ential pressure, AP and log power signal, ¢;og. In
Fig.5, the places Pressure and Power represent the
current value of AP and ¢ro¢, respectively. P1, P2,
and P3 represent the states of SDS2, respectively.
PDLTrip represents the PDL trip parameter whose
value is determined as follows:

e Determine the trip conditioning status: If
droc < 2739mV , disable the trip. Otherwise en-
able the trip.
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Figure 4: example of proof tree calculating reachability conditions in CPN
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color MV = Int with 0.5000; (* Pressure and power )
eolor PL = low | normal | high; (* Fressure level ®)
eolor CL = enable | disable; {* Conditioning state *)
color SW = product PL * C5;  (* Software state ®)
ealor TRIP = open | close; {* PDL trip *)
war m, prevam @ MV
wvar p, prev.p : PL;
war ¢, preve  OF;
wvar ¢, prevd @ TRIP:
{(* Determine pressure level *)
fun Fl{m) = if p < 1287 then low

else if p > 4810 then high
else normal;
(* Determine conditioning state *)
fun F2{m)] = if m < 2739 then disable
else enable;
(* Determine PDL trip parameter *)
fun Fa{p, ¢} = if (p = low or p = high} and ¢ = enable
then open
else close;

Figure 5: CPN for PDL trip parameter

e Determine the PDL trip parameter: If the trip
conditioning is enabled and (AP < 1287mV or
AP > 4810mV’), open PDL trip parameter. Oth-
erwise, close PDL trip parameter.

Let’s consider the state vector
(Pressure, Power, P1, P2, P3, PD Ltrip). The
state (z,y,7,7,7,2)! is a failure state if = < 1287 or
x > 4810,y > 2739 and z = close

The CPN inversion can be performed by applying
a parallel transformation for transitions ¢1, t2 and a
parameterized parallel one for ¢3, t4 (see Fig.6)

Transitions ¢1 and ?2: The firing of these tran-
sitions corresponds to an update of Pressure and
Power tokens values. Old values are deleted and re-
placed by those of the variable m. New token values
in P1 and P2 are calculated using functions £'1 and
F2 respectively. The inversion of these transitions ex-
ploits values produced by F'1 and F2 to find back-
ward those in Pressure and Power using the func-
tions F'linverse(p) and F2inverse(c).

Transitions 3 and t4: These transitions are in the
same time parallel and parametric. Parallel because
the output arcs expressions are functions of same
input variables. Parametric cause of the multi vari-
able function F'3. The inversion displays guards [t =

Ithe character »?” stands for a missing information

{pc) (p.c)

(o le

TRIP

Figure 6: inverse CPN for PDL trip parameter
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Figure 7: First inverse reachability tree for PDL trip
parameter

F3(p,c)]. The inversion of the function F'3 is differ-
ent in ¢t3 and ¢4. Around t3, the variable c is constant,
on the other hand, around ¢4 the variable p is constant.

Backward analysis: In this paragraph, same results
are obtained using both structural backward reacha-
bility analysis (inverse CPN) and linear logic (sequent
proofs). The structure of the inverse CPN is translated
in MILL1 as described in the section 4. Then proof
trees are calculated.

Let’s consider, in the inverse CPN, the
same state vector as the original CPN:
(Pressure, Power, P1, P2, P3, PD Ltrip). The
failure marking is (z,y,7,7,7,2) where = < 1287 or
x > 4810, y > 2739 and z = close.

The marking enhancement consists in definition of
possible values of unknown tokens (in P1, P2, P3)
starting by conditioning state represented by the to-
ken value in P2 which corresponds also to the value
of the variable ¢ in the schema. The set of possible
colors in this case (in P2) is limited, by definition,
to two values: Enable and Disable (noted E and D
respectively). Corresponding values for the variable
p are calculated toward the parameterized inverse of
the function F'3 which inputs are z and c. Results are
shown in the tree Fig.7.

Another manner to enhance the marking is to de-
fine possible values of unknown tokens (in P1, P2,
P3) starting by Pressure level represented by the to-
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Figure 8: Second inverse reachability tree for PDL
trip parameter

ken value in P1 which corresponds also to the value
of the variable p in the schema. The set of possible
colors in this case (in P1) is limited, by definition,
to three values: Low, Normal and High (noted L,
N and H respectively). Corresponding values for the
variable c are calculated toward the parameterized in-
verse of the function F'3 which inputs are z and p.
Results are shown in the tree Fig.8.

6 Conclusion

This paper presents the application of the linear logic
(LL) to express reachability, and especially, backward
reachability in Colored Petri Nets. To do, the equiv-
alence between LL and Petri Nets is exploited. The
LL fragment used is the Multiplicative Intuitionistic
Linear Logic (MILL). This equivalence is extended to
CPN. The conversion between CPN and MILL must
respect properties of CPN, i.e. tokens are from of a
certain type and they are transformed using arcs ex-
pressions. The LL fragment in which these constraints
can be expressed is the MILL1. The reachability in
CPN is expressed in LL by sequents which can be
proven and proof trees can be constructed.

The main application field for this work is the for-
mal model diagnostics during the conception. The
system initial state is usually well determined and so
is the final state which in this case represents an unde-
sired state. The proposed method can provide answers
to the possibility of undesired event occurrence, the
earliest failure time, the system evolution vector, etc.

The perspectives start with the development of an
automated tool for a verification of the CPN structure
in order to be acceptable for the backward reachabil-
ity analysis. The theory advances include the gener-
alization of transformation rules to composed func-
tions. The second path to explore is the possible of
presence of non deterministic time constraints for the
transition firing. The study of stochastic firing vectors
is also considered as a potential subject of interest.
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