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Conformally invariant trilinear forms on the sphere

Jean-Louis Clerc and Bent Orsted
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Abstract

To each complex number A is associated a representation m) of
the conformal group SOg(1,n) on C>°(S™~!) (spherical principal se-
ries). For three values A\, A2, A3, we construct a trilinear form on
C®(S"1) x (8" ~1) x €°°(S™~1), which is invariant by 7y, ® Ty, ®
Tas- The trilinear form, first defined for (A1, A2, A3) in an open set of
C? is extended meromorphically, with simple poles located in an ex-
plicit family of hyperplanes. For generic values of the parameters, we
prove uniqueness of trilinear invariant forms.

02000 Mathematics Subject Classification : 22E45, 43A85

Introduction

The motivation for this article came from the paper [l by J. Bernstein and
A. Reznikov. In order to estimate automorphic coefficients, they use trilinear
invariant forms for G = PGL9(R). Their paper shows the importance of
three related questions of harmonic analysis on PGLy(R) :

given three representations (my,Hi), (w2, He), (73, H3) in the principal
sphericalf] series of the group G,

i) construct a trilinear invariant functional on H; x Ha X Hs

i1) prove uniqueness (up to a scalar) of such a trilinear invariant func-
tional

ii1) compute the value of the trilinear functional on the K fixed vectors
of Hy,Ha, Hg respectively.

The representations are realized on the unit circle, on which the group
G acts projectively, and indexed by a complex number. One possible gener-
alization consists in replacing the unit circle by the n — 1 dimensional sphere
S, under the action of the conformal group G = SOq(1,n). For this case,

Lwith respect to the maximal compact subgroup K = PO(2) of G



we present here a construction of an invariant trilinear form (item ¢)), which
uses an analytic continuation over three complex parameters and discuss the
uniqueness statement (item 7)) for generic values of the parameters. The
computation of the normalization factor (item ii7)), even for more geometric
situations, will be published elsewhere, (cf [{]).

In section 1, we recall elementary facts about conformal geometry of the
sphere (in particular we give a description of the orbits of G in S x S x S),
and introduce the representations which the paper is concerned with. In
section 2, we define formally the trilinear invariant form, study the domain
of convergence of the corresponding integral and determine the analytic
continuation in the three complex parameters corresponding to the three
representations. In section 3, we prove the uniqueness statement. The proof
relies on Bruhat’s theory, which we recall in an appendix at the end of the
paper. In section 4, we give an alternative approach to the construction of
an invariant trilinear form, using a realization of the tensor product of two
of the representations involved, thus making connection with [[L1]].

The present paper only deals with regular values of the parameters.
The residues at poles will yield new conformally invariant trilinear forms,
supported by the singular orbits of G in S x § x S and involving differential
operators akin the Yamabe operator on the sphere, worth of a further study.
Other geometric situations are potential domains for similar results. Let
Py, P>, P; be three parabolic subgroups of a semi-simple Lie group, such
that G acts on G/P, x G/P> x G/Ps with a finite number of orbits (see
[B, [1d]). Take three representations induced by characters of Py, P, Ps.
Invariant trilinear forms for these three representations can plausibly be
studied along the same lines as in the present paper. The case of three
copies of the Shilov boundary S of a bounded symmetric domain of tube
type is specially appealing (see [[] for a description of the orbits of G in
S x 8 x09).

Let us mention the paper by A. Deitmar [[jf], which has some overlap
with our results. Previous work on the subject also includes [[J] and [J].

The first author thanks D. Barlet and L. Bérard Bergery for conversa-
tions on various aspects of this paper and the Mathematics Department of
Aarhus University for welcoming him during the preparation of the present
work.



1 Conformal geometry of the sphere

Let
S=S"'={2=(21,22,...,2), |2 =2]+23+ - +ai=1}

be the unit sphere in R”. We usually (and tacitly) assume n > 3, as the
case n = 2 needs a few minor changes, which are occasionally mentioned in
the text. The group K = SO(n) operates on S. Let

1t =(1,0,...,0), 1~ =(-1,0,...,0).

The stabilizer of 17 in K is the subgroup

M:SO(n—l):{(é 2),u€50(n—1)}.

With this notation, S ~ K/M is a compact Riemannian symmetric space.
Another realization of the sphere is useful. Let RY™ be the real vector
space R"*! with the quadratic form

q(w) = [1,2] = 2§ — (2] + a5+ +17) . (1)

To x = (x1,22,...,7,) in S associate 7 = (1,21, x2,...,2,) in RY™. The
correspondance
zr — Rz

associates to a point in S an isotropic line in RY™. The correspondance is
easily seen to be bijective. The group G = SOy(1,n) acts naturally on the
set of isotropic lines, and hence on S. Explicitly, for x in S and ¢ in G, g(z)
is the unique point in S such that

For z in S and ¢ in G, set
k(g,7) = (gZ)o " - (2)
Let x,y be in S. The following identity holds
~ 1 2
so that for g in G,

9(x) — 9(y)| = Klg,2)? |& —y| K(g,y)? . (4)



The infinitesimal version of ([l) is

|Dg(z) | = r(g, z)[¢] (5)

for £ any tangent vector to S at x, where g is in G and Dg(x) stands for
the differential at x of the map = — g(x). Hence the action of G on S is
conformal, and k(g,z) is interpreted as the conformal factor of g at .

We look at K as a subgroup of GG. It is a maximal compact subgroup of
G. The stabilizer in G of the point 17 is the parabolic subgroup P = M AN,
where

cosht sinht 0 ... O
sinht cosht 0 ... O
A=< a; = 0 0 1 , teR
0 0 1
and
[4& l¢]2 )
R T
o 1= £
N={ ng= 1 , EeRM
3 —£
1

sinh t+x1 cosh ¢

ol cosh t+x1 sinh ¢
x2
€T cosh t+x1 sinh ¢t
Gy = .
Tn

Tn
cosh t+x1 sinh t

Let N be the subgroup image of N by the standard Cartan involution
-1
of G (g+— (g") )

=

I

3|
7ax%

|

—




The map e
1+[€]?

c:&— ﬁg(lJr) = Lg
1+¢]?

is a diffeomorphism from R"~! onto S\ {17}. Its inverse is the classical
stereographic projection from the source 1~ onto the tangent space T+ S to
S at 1T. When using this chart on S, we refer to the noncompact picture.

Proposition 1.1. The conformal factor k(g,x) is a smooth function of both
g and x, which satisfies the following properties :

Z) vglaQQ € G,.’E € 57

K(9192, %) = K(91, 92(2)) K(g2, T) (6)
i) Vge Gee S k(g9 (2) =r(g™",2)"
iti) Ve € S,k € K k(k,z) =1
iv) Vo € S,t € R, k(az,x) = (cosht + xqsinht)~L.

Let g in G. As the dimension of the tangent space T,S is n — 1, the
Jacobian of g at x is given by

jlg,x) = k(g, )" . (7)

The map ¢ : R"™1 — §\ {~1} is also conformal. In fact, one has the
following relation, valid for any &, € R*~! :

2|1& — |

1 T (8)
(14 1€12)2 (1 + [nf*)>

|e(§) = c(n)] =

and its infinitesimal version

2
14 [¢]?

(¢ € R™1). The corresponding integration formula reads

2n—1
[ f@det@) = [ ) g e (10)

Later, we will need a description of the orbits of G in S x S x S (for the
diagonal action of GG). Recall first that the group G in its diagonal action
on S x S has two orbits :

|de(€) ¢| = [q (9)



S2 = {(z,y) € Sx S,z #y}, Ag ={(z,x),z € S}.

As base-point in S%, choose (17,17). The stabilizer of (17,17) in G is
the subgroup M A.

Proposition 1.2. Let n > 3. There are 5 orbits of G in S x § x S, namely

O = {(x1, 2, 23),x; # x;j for i # j}
O1 ={(z1,z,2),x # 1}

Oy ={(z,z9,2),x # x2}

O3 = {(z,2,23), 2 # 23}

O4 ={(z,z,2)}

Proof. The five subsets of S x § x S are invariant under the diagonal action
of G. So it suffices to show that G is transitive on each of these sets.

e (G is transitive on S, hence on O4. Choose (17,1%,17") as base-point.
The stabilizer of the base-point in G is the subgroup P = M AN.

e The stabilizer P of 17 is transitive on S\ {1*} (the action of N is
already transitive on S\ {17}), so that G is transitive on O;, for j = 1,2, 3.
As base-point in O3 (similar choices can be made for O; and Oz) choose
(11,17,17). The stabilizer of (1*,17,17) is the subgroup M A.

e Let 21,72, 23 be in Op. We may assume w.l.o.g. that 21 = 17,29 = 1~
and z3 # 1F. The stabilizer of (1*,17) in G is MA. The orthogonal
projection of z3 on the hyperplane orthogonal to (1*,17) is not 0 and can
be mapped by M to ces, with 0 < ¢ < 1, so that there exists ¢ € R such

1
that x3 is conjugate under M to the point (tanht, . 0,...,0) = ai(ea).
Ccos

Hence any triplet in Oy is conjugate under G to the triplet (117,17, e). Its
stabilizer in G is the compact subgroup {k € M, key = ea} ~ SO(n—2). O

When n = 2 (S is the unit circle), then there are two open orbits in
S x S x S unde the action of SOy(1,2), each characterized by the value
of the orientation index of the three points in S. It is possible to remedy
to this fact by using the slightly larger (no longer connected) group O(1,2)
instead of SOy(1,2).

Let do be the Lebesgue measure on S and let wy,_1 = [¢do(x). Also set
p= "Tfl Under the action of GG, the measure is do is transformed according

’ / F(o7 (@) do(a / £ ()(g, 9)*do(y) (1)



Let A be in C. For f in C*°(5), the formula

() f(x) = r(g™ )™ flg~ ' (x)) (12)

defines a representation of the group G, which will be denoted by 7). It is a

continous representation when the space C*°(.S) is equipped with its natural

Fréchet topology (see [[4] for a systematic study of these representations).
The representations m) and w_) are dual in the sense that, for all ¢,y €

c=(8)
/S T malg)vls)ds = [ pls)uls)ds (13)

S
as can be deduced from the change of variable formula ([[]). For \ pure
imaginary, the representation 7 can be extended continuously to L?(S) to
yield a unitary representation of G (this is the reason for using p+ A in the
definition of 7). Observe that the action of K is independant of A and the

constant fonction Ig (equal to 1 evereywhere) is fixed by the action of K.
For a in C, let k, be the kernel on S x S defined by

ka(z,y) = |z —y| 77"

It satisfies the following transformation property under the action of an
element g of G:

ka(g9(),9(y)) = k(g, )~

N

T3 ka(z,y) #(g,y) 52 (14)

for all x,y in S.

2 Construction of an invariant trilinear form

2.1 Formal construction

Let A1, A2, A3 be three complex numbers. Let 7 be a continuous trilinear
form from C*°(S) x C*>(S) x C*(S) into C. The functional 7 is said to be
invariant w.r.t. T, , Ty, Tas if, for every fi, fo, f3 in C*°(S), and every g in
G,

T (7 (9)f1, 730 (9) f2, s (9) f3) = T (f1, f2, f3) - (15)

By Schwartz’s kernel theorem, there exists a unique distribution 7" on
S x S x S, such that

T(frsfos f3) =T(f1® fa® f3) (16)



where, as usual, f1 ® fo ® f3 is the function on S x S x S defined by
(f1 ® fo® f3)(@1, 22, 23) = f1(21) fo(2) f3(23).

Let o, g, a3 be complex numbers, and set o = (o, a2, a3). Let K be
the kernel on S x S x S defined by

Ka(x1,22,13) = kay (2, 23) kay (73, 21) Koy (21, 22) (17)

For f1, fa, f3 three functions in C*°(S), define the trilinear functional Ky
by

Kalf1, fo, f3) = g SK?(%9027xs)fl(xl)fz(xz)f?,(xs)da(xl)dU(xz)dU(xs)
(18)

whenever it makes sense.
Theorem 2.1. Let A = (A1, A2, \3) € C3. Define a = (a1, a2, a3) by the
relations
a] = —A1+ A2+ A3
ay ==X+ A3+ X\ (19)
as = —A3+ A+ Ao .
Then
Ka(m (9) /1.7, (9) f2, 735 (9) f3) = Kalf1: f2, f3) (20)
whenever the integral on the right handside is defined.
The proof is obtained by the change of variables y; = g7 !(z;) (j = 1,2, 3)
in the integral defining the left hand-side, using ([[4)) and ([]). Observe that

the right-handside integral converges if, for 7 # j, the supports of f; and f;
are disjoint, or if [q. o, ¢ |[Ka(®1,22,23)| do(x1)do(x2)do(x3) < 400.

The version of the trilinear functional in the noncompact picture will be
useful. Let a = (a1, a2, a3) € C3 and set for yy, 92,73 € R*!

Ja(yry2,ys) = ly1 — y2| 77" y2 — ys| 7T ys — g 77T (21)

and, whenever it makes sense, let J, be the associated distribution on
R 1 x R*1 x R*! given by

Jal(p) = /Ja(y17y27y3) ©(y1,Y2,y3) dy1 dy2 dys , (22)

(p € C® (R x R*~! x R"~1)). Moreover, let ¥,, be the function defined
on R*"~ 1 x R*~1 x R*~! by

_, 92 a3 _, ea_ @ N
Valyr,y2,93) = (L+|yn?) 7077 77 (L|yal ) 7072 72 (Lt fys[?) P72 77



Proposition 2.1. Let f € C®(S x S x S). Then
Ka(f) = 22" Ta((f 0 €)¥a) (23)
whenever the left hand side is defined.
This is merely the change of variable ([[() in the integral ([[§).

2.2 Integrability of the kernel K,

Theorem 2.2. The kernel Ky is integrable on S x S x S if and only if
Ra; > —p, j=1,2,3 (24)
Raq + Rag + Rag > —p (25)

Proof. Tt is enough to study the integral when the a’s are real, in which case
the kernel K, is positive. Let U be a (small) neighborhood of (11,11 1%)
in SxSxS. Let g bein G. As x varies in S, j(g,z) remains bounded
from below and from above. Thanks to the transformation property of the
kernel k, ([[4), the integrals of K, over U and over g(U) are of the same
nature. As U meets all G-orbits, a partition of unity argument shows that
the integrability over S of the kernel K is equivalent to its integrability
over U. Now use the stereographic projection to see that the integrability
of K4 over U is equivalent to the integrability of J, over ¢~ (i), which is a
(small) neighborhood of (0,0,0) in R*~1 x R*~! x R*~1,
Hence, we are reduced to study the convergence of the integral

L— /§1|<6 €1 — 62|y — &3] Pl — €117 dEy dEy des
|&2]<d
|£3] <0

where 0 is a small positive number. Set

y1=%8, y2=8&—&, ys=—-§+& .

Then, after integrating with respect to y;, the integral I; is seen to be of
the same nature as the integral

b= /y2<5 Y2l P |ys|** 7P ly2 — 3| 7P dya dys
lys|<d

Let ¥ be the unit ball in R x R and let do be the Lebesgue
measure on X. Use polar coordinates (r, (o2, 03)) defined by

Y2 =T102, Y3 =103, r2:!y2!2+\y3\2, \01\2"“03’2:1



to obtain that Iy is of the same nature as
J
I35 = / portostas=3p+2(n—1)—1 g, o / |oa|*3 7P |og|*? P |og — o3| T Pdo .
0 b

The first factor converges if and only if condition (R5) is satisfied. It remains
to discuss the convergence of

I = [ o2l Ploa]** oy — oy
%
Let 0 > 0 and consider the following open subsets of 3 :

Yo = {(02,03), |o2| < 8}, X3 = {(02,03),|03| <}, 1 = {(02,03), |02—03]| < d}.

For § small enough, these sets are disjoint (recall that |og|? + |o3|? = 1).
On X\ (¥; UX2UZX3) the function to be integrated is bounded from below.
Hence the integral I, is convergent if and only the integrals

K; :/ (021|732 7| — 5] P dr
2j

are convergent for j = 1,2,3. Let j = 2. On g, both |o3| and |03 — o3| are
bounded from below, so that it is equivalent to study the convergence of the

integral
/ |oa|** Pdo .
P3P

We are reduced to a classical situation and Ky converges if and only if
ag —p > —(n—1). A similar study applies to K7 and K3. This completes
the proof of Theorem P.2. O

Corollary 2.1. Let A1, Aa, A3 be three complex numbers satisfying the con-
dition

0< %()\]) <p.
Define a by the relations ([[9). Then the kernel Ko, is integrable, and the
corresponding trilinear form is invariant for wy,, Tx,, Txs-

Proof. The conditions on A = (A1, A2, A3) imply that R(c;) > —p for j =
1,2,3 and R(ay + a3 + a3) > 0. Hence « is in the domain of integrability
of Kg. O

The corollary covers all interesting cases for spherical unitary series,
provided one excludes the trivial representation. In fact, the parameter A
for such a representation can be chosen either as pure imaginary (principal
series) or satisfying 0 < A < p (complementary series, excluding the trivial
representation).

10



2.3 Analytic continuation of K,

The main result of this section concerns the analytic continuation of g
beyond its domain of integrability.

Theorem 2.3. The map a« —— Kq, originally defined for o in in the
domain described by the conditions (4) and (R), valued in D'(S x S x S)
can be extended meromorphically with at most simple poles along the family
of hyperplanes in C x C x C defined by the equations

aj=—p—2k, j=123, keN (26)
ar+as+a3=—p—2k, keN (27)

Proof. Let f bein C*®(S x S x S) and consider the integral

/ Ka (1‘1, 9, xg)f(ml, 9, .%'3)d0’(.%’1)d0’(1‘2)d0’(1‘3) .
SxSxS

to be meromorphically continued. Repeating the argument given supra dur-
ing the discussion of the integrability of the kernel K, we may assume that
f has its support contained in a small neighorhood of the point (11,17, 17).
Further, transfer the integral to the noncompact picture (cf (RJ)), and study
the analytic continuation of

a— Ta((foc)Us)

Now ¢ = focisin CC(R* ! x R"! x R*!) and both o — ¥, and
o — U, 7! are entire fonctions on C3, so that it is equivalent to study the
meromorphic continuation of 7, as a distribution on R 1 x R—1 « R—1,

The kernel J,, is invariant by translations by ”diagonal vectors”. To take
advantage of this remark, make the change of variables

21 =Y, Z2=Y1—Y3, 2Z3=Y1 Y2

in the integral

Ta(p) =/|y1—yzl_”+°‘3|y2—y3|_”+°‘1Iys—y1|_”+°‘2@0(y1,y2,y3)dy1 dya dys
to obtain

ja((P) = / ) ) ’22‘—04—&2’23‘—04—@3’22 _ 23’—P+a1w(22723) sz d23
Rr=1xR"—

11



where we have set
V(z9,23) = / 1 o(z1,21 — 23,21 — 22)dz1 .
Rn—

Now observe that ¢ is in C°(R*! x R*!). Hence we are reduced to
studying the analytic continuation of the distribution Z, on R?~! x R*~1
defined by

Ia(¢) = /]Rn_1 - Ia(ZQ, 23)¢(22, 23) dZQ ng (28)

for ¢ in C°(R™"! x R 1), where we set
La(z2, 23) = |2a| 77792 23| 7PT93 |29 — 23 7FF1 (29)
For 6 > 0, consider the following open subsets of R?~! x R?~1

UQ = {(2’272’3), ’22‘ < (5, ’23’ < (5, ’22 — 2’3‘ < (5}
1) 1) 1)

Uy = {(22, 23), | 22| > 2 |23 > 2 |20 — 23] < 5}
1) 1) 1)

Uz = {(22, 23), |22] < 2 |23 > 3 |23 — 29| > 5}

) 0 0
Us = {(22, 23), |22] > 2 |23] < =, |20 — 23] > 5}

55
1) 1) 1)
Uso = {(22, 23), | 22| > 3 |z3] > 3 |22 — 23] > 5} :

The family of these five open sets form a covering of R» ™! x R?~1. Let study
the restriction of the distribution Z, to each of these five open subsets.

If Supp(v)) C Uso, there the Zy, (1) extends as an entire function, because
I, has no singularity on Us,. Next assume that Supp(¢) C Us. Set

alea) = [ Tl = (e )
-

so that
L) = [ [l 0a(ea)ds (30)
Rn—
As |z3| and |z2 — 23] are bounded from below on Us, the function ¢4 is

in C°(R" 1) and o — ¢4 is an entire function on C* . On R"7! the
distribution-valued function s — |23]° extends meromorphically on C, with

12



simple poles at s = —(n — 1) — 2k, k € N (see [fi]), so that the integral (B()
extends meromorphically to C? with simple poles along the hyperplanes
a9 = —p — 2k. A similar analysis can be done over U; and Us.

To sum up what we have already proved, introduce the family M of
meromorphic functions on C3 having at most simple poles along the hy-
perplanes {o; = —p — 2k}, j = 1,2,3,k € N. Notice that they are the
hyperplanes corresponding to the conditions (P6]).

Proposition 2.2. Let ) be in C°(R" 1 xR 1) and assume that Supp(z))
(0,0) . Then the function a — Zn()) belongs to the class M.

Proof. In fact, choose § small enough so that Supp(y)) NUy = 0. Use a
partition of unity to write ¢ as

Y =1+ Po + Y3 + Yo

where ¢; € C(R"! x R" 1) and Supp(y;) C U;,j = 1,2,3,00. The
previous analysis shows that o — Z (7)) extends meromorphically on C3
with at most simple poles along the hyperplanes o; = —p — 2k, k € N for
j =1,2,3, whereas Z (1)) is an entire function of a. O

Now we use a priori the existence of the meromorphic continuation of
such integrals (see [[L3]). Moreover, the poles are located on a locally finite
family of affine hyperplanes (of a rather specific type, but we won’t need this
result). Let H be such an hyperplane (to be determined), but not included
in the family of hyperplanes given by conditions (£§). Let a® = (a9, a3, a9)
be a regular point in H, (i.e. not contained in any other hyperplane of poles).
The Laurent coefficients at a® are distributions on R*~! x R”~1 and, by
Lemma P.3, their supports have to be contained in {0,0}, hence they are
derivatives of the Dirac measure 6 ). So, if Zo does have a pole at al,
there exists a smooth function p on R~ x R"~! with compact support and
identically equal to 1 in a neigbourhood of (0,0), and a polynomial P on
R™~1 x R"~! homogeneous of degree k such that Z,(pP) does not extend
holomorphically at a®. For ¢t € R*, let p;(z2,23) = p(tze,tz3). Use the
change of variables (zy > tz9, 23 — tz3) to get ﬁ , for a # ay

Za(ptP) = / ]22\_p+a3]23\_p+a2\z2—23]_p+°‘1 p(tzo,tzs)P (22, 23) dzo dzg

Rn—1yxRn—1

— [t~ R T (pP)

2Following a traditional way, we write Zo () as an integral. What is really used here
is merely the homogeneity of Z.

13



Hence
(1 — [t 2= YT (oP) = Ta ((p — p1)P) - (31)

Now observe that the support of (p— p;) P does not contain (0, 0), and hence,
o — o ((p— pt) P) belongs to M. The assumption that Zo(pP) does have
a pole at «y forces the condition

VteR*  1—|tTe8esmet k0
In turn, this condition amounts to

k € 2N, a?—l—ag—l—ag:—p—k.

Moreover, (Bll) shows that Z, has at most a simple pole along the corre-
sponding hyperplane. This achieves the proof of Theorem P.3. O

As the invariance condition remains true by analytic continuation, The-
orem can be reformulated for trilinear invariant functionals (cf Theorem

1.

Theorem 2.4. Let A = (A1, Mo, A3) in C3. Assume that

Mt de A3 é —p—2N
M= do+ A3 ¢ —p— 2N
M+ A=Az ¢ —p—2N
A4+ do A3 ¢ —p— 2N

Set a = (o1, g, a3) where (cf (L9))

ap =—A1+ A+ A3
g ==X+ A3+ A\;
as = —A3+ A+ Ao .

(32)

Then (f1, f2, f3) — Ta(f1, f2, f3) = Ka(f1 ® f2 ® f3) is a well defined non
trivial trilinear invariant functional w.r.t. the representations (mx,, Tx,, Trg)-

The next result was obtained some time ago by the present authors, and
has been generalized to other geometric situations in a collaboration with
T. Kobayashi and M. Pevzner (see []). To state the result, consider the
evaluation of the functional I, against the function Ig ® Ig ® Ig, where Ig
is the function which is identically 1 on S. Let
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I()\):K(a):/S/S/Skal(xg,xg)k:aQ(:Ug,:cl)k:ag(xl,xg)da(xl)da(:cg)da(xg)

where o and X are related by the relations ([L9).

Proposition 2.3. Let A = (A1, A2, A3) in C3 and assume that the conditions
(B2) are satisfied. Then

3(n—1)
I(A) = <\/7E> oMAetds

P(>\1+>\22+>\3+p)r(*A1+>\§+>\3+p)r(Al*)\22+)\3+p)r()\1+>\22*)\3+p)
L(p+A)L(p + A2)L(p + A3)

(33)

Remark Both sides of the formula are meromorphic functions on C?, and
they are equal where defined. Notice that I(A) = K(a) has simple poles
ezactly as prescribed by Theorem B.3.

This result allows to strengthen the previous theorem. Define

~ Kea
Ko = .
A A2+ —A1+d2+A A1 =2+ A1 +da—)
F( 1+ 22+ 3+p)r( 1+ ;-l— 3+p)r( 1 22+ 3+p)r( 1+ 22 3+p)

Theorem 2.5. The distribution-valued function o Ko extends as an
entire holomorphic function on C3. The trilinear functional Ty defined by

Ta(f1, f25 [3) = Ka(f1 ® fo ® f3)

on C®(S)xC®(S)xC>(S)) is invariant with respect to (Tx,, Tx,, Txs ), where
(A1, A2, A3) are related to (aq,an,a3) by the relations ([9). The trilinear
form 7~3\ is not identically 0 provided the two following conditions are not
stmultaneously realized

©3j,1<j<3 XeE—p—N

e (at least) one of the conditions (B) is satisfied .

Proof. The function o — Ko extends holomorphically near any regular
point of the hyperplanes defined by conditions (B§) and (R7), so is holmo-
morphic outside of the set where ar least two hyperplanes of poles meet. But
this set is of codimension 2 and hence o — K extends as a holomorphic
function to all of C3. If none of the conditions (B2) is satisfied, then K, is
a multiple (# 0) of Kq which is different from 0 on Q. If A\; ¢ —p + N for

j=1,2,3, then I(X\) # 0 and hence K is not identically 0. O
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3 Uniqueness of the invariant trilinear form

3.1 Induced representations and line bundles

For this part, it is useful to realize the representation 7 as acting on smooth
sections of a line bundle over S.

Recall that the stabilizer of 17 in G is the parabolic subgroup P =
MAN. The left invariant Haar measure on P is

/P F(p)dp = /M /A /N F(man)dmdadn . (34)

For A € C, denot by x) the character of P defined by

xa(magn) = e

The modular function of P is given by dp(man) = e 27189 = x5 (p) (see
e.g. [[q Lemma 5.5.1.1), so that, for any g in P

/ F(0a) dp = x20(4 / 1 (35)

Let £ be the space of functions f in C*°(G) which, for all g in G, p in
P satisfy

flgp) = X (o1 (P) f(9) (36)
Then G acts on £\ by
A(9)f(7) = f(g7") (37)

To any function f in &\, associate the function f defined on S by the
formula -

f(s) = f(k) (38)
where k is any element in K satisfying k1T = s. As f(km) = f(m) for any
m in M, the right handside of (B§) does not depend on m, but merely on
k1T = s.

Now, let g bein G, let s bein S, and let k be in K such that k1T =s € S.
Let
17 _ (1 -1
9 k=k(g  k)alg” k)n

be the Iwasawa decomposition of g~'k. Then
kg™ k)1 = (g7 k) (A7) = g7'(s)

and

k(g™ s) = k(g 'k, 17) = x_1(a(g k) .
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Hence,

(a(9)f) (s) = f(g~'k) = f(k(g k) alg ' k)n) = k(g™ ", s)" ™ f (g7'(s))

so that f — f is an intertwining operator for IT, and 7.
Let x be a character of A. Denote by C, the representation of P on C
given by
man.z = x(a)z .

Form the line bundle L = L, = G xp Cy over S, and let £ = L be the
space of C* sections of L. Then G acts naturally on £ by left translations.
As sections of L can be identified with functions on G transforming by x~*
under the right action of P, the representation of G on L is equivalent to
T X = Xp+a-

Now take three characters X1 = Xp4+A;, X2 = Xp4+22» X3 = Xp+2; Of A, set
A = (A1, A2, A3) and form the ”exterior” product bundle Ly = L,, X L, X
L,, as a line bundle over S x S x S. Let L) be the space of C* sections
of this bundle. Let the group G acts naturally on this space by diagonal
action. Then a trilinear invariant functional on C*°(S) x C*°(S) x C*°(S) for
Tays Tags g COITesponds to an invariant linear form on Ly.

In turn, such an invariant linear functional on £y can be viewed as an
invariant distribution density for the dual bundle L3 (see Appendix).

The main tool to study these invariant distributions is Bruhat’s theory,
which is presented in the Appendix. We use heavily the description of orbits
of Gin S x S x S (cf Proposition [L.2).

Theorem 3.1. Let A = (A1, A2, A3) be three complex numbers, let o =
(a1, a9, a3) be defined as in ([9) and assume that they satisfy the following
generic conditions

i) aj ¢ —p—2N for j =1,2,3

i1) a1 + ag +ag ¢ —p — 2N.

Then any trilinear invariant form for wx,, Tx,, T, S proportional to the

form Ty.

Proof. Denote by T' = T the distribution density on S x S x S for the
bundle L} corresponding to an invariant trilinear form for my,, my,, 7y,.
Step 1 : contribution of O,

We use freely of the notation presented in the appendix. Consider the re-
striction T" of T to the open orbit @y. Then O is a homogeneous space
under G, the stabilizer H of the base point (17,17, e3) is compact. There is

17



an invariant measure on G'/H, the group H acts trivially on the fiber of L3,
so there exists exactly one (up to constant) invariant distribution given by a
smooth density. But we already know that K has the right transformation
property. Hence on Og, after multiplication by a constant, we may assume
that 7" coincides with the restriction of Ko to Oy. But the assumptions
on A guarantee that K, can be extended (by analytic continuation) as an
invariant distribution on S x S x S. Hence, in order to prove that T is a
multiple of Kq, (i.e. to prove the uniqueness statement) we need only to
prove that an invariant distribution which vanishes on Oy is identically 0.
In other words, we may (and hence do) assume that

Supp(T) C U1<;j<40;.

and proceed further to prove that T = 0.

Let us mention that the argument given here should be modified for the
case of the circle (i.e. as n = 2), because there are two orbits for SOy(1,2)
in S xS x.S. To restore uniqueness, one can also consider the full group
0O(1,2) instead. The rest of the proof is unchanged.

Step 2 : contribution of O, O, O3

We now show that
Supp(T)N O3 =0 .

Observe that for 1 < j <3
0;=0;U0,
so that (07 U Oy U Oy) is a closed subset of S x S x S. Let
X=5x8xS\(O1UO,UOy) .

Then X is an open submanifold of S x S x S, acted by G, and Os is a closed
orbit of G in X. Let T"” be the restriction of T to X, so that Supp(T”) C Os.
Now apply Bruhat’s theory.

The normal space at the base point (17,1%,17) is identified (via the
Riemannian metric on S x S x S) with

N, ={(&,-¢€,0),£ € 1S} ~ R

The stabilizer of of the base point is H = AM, and there is an invariant
measure on Oz, so that xg = 1. The group M acts on Ny by its natural
action. As M modules, Ny and its dual are equivalent, so that the spaces
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S¥(Np) and Py(Np) are equivalent M-modules. The space of M-invariants
in Px(Np) is 0 if k is odd (and one-dimensional, generated by |£|* if & is
even, but we won’t need this fact). On the other hand, an element a; of A
acts on Ny by dilation by e~*, so that it acts on S¥(Ny) by multiplication
by e~*. The element a; acts on the fiber Ly of Ly, y,.xs at (17,17,17) by
elptAitptd2=p=X3)t Hence the element a; acts on S¥(Np) ® L by multipli-
cation by
o(—h=p—(A1+A2—2s))t.

The assumptions on A (more precisely as = A; + Ao — A3 ¢ —p — 2N)

guarantee that

(Sk(No) ® L ® (ngl)H =0

for any k € N. Hence, by Corollary Afl, there is no non-trivial invariant
distribution supported in Os.
Repeating the argument for Oy and O;, we may (and hence do) assume
now that
Supp(T) C Oy.

Third step : contribution of O,

Here we take X = S x.5 x5, as Oy is closed. The stabilizer of the base-point
(17,17,17) is P = MAN. The character xq is given by

xo(magn) = e 2t

The normal space at (17,17, 1%) can be identified with
No={(£1,62,63),§ € TAS, 1+ &+ & =0} ~ R T @R

The group M acts on Ny by its natural action on each factor. Again, as
M modules, the space S*(Np) is isomorphic to Py(Ng). The algebra of
SO(n—1) invariant polynomials on R*“*@R"~! is generated (as an algebra)
by €2, 0|2, (€,n). Hence S*(Ng)™ = {0} if k is odd. On the other hand,
an element a; of A acts on Ny by multiplication by e, hence on Sj(Ny) by
multiplication by e~*t. It acts on the fiber Ly by e(PtA1trtra+o+23)t Hence
a; acts on S¥(Np) ® L} ® C -1 by
e(—E=p=(MA2+X3))t
The assumptions on A (namely A; + A2 + A3 ¢ —p — 2N) guarantee that
(Sk(No) ® L ® @X(Tl)H = {0}

for any k € N. Hence, by Corollary Afl, there is no non-trivial invariant
distribution supported in Q4. The uniqueness statement follows. U
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4 Another construction of a trilinear invariant form

In this section we present a different construction of the invariant trilinear
form 7. Trilinear forms are connected with tensor products of representa-
tions. Roughly speaking, a trilinear form on H; x Ha X Hs can be realized as
an invariant bilinear pairing between H; ® Ho and Hs. Although this point
of view breaks the (sort of) symmetry between the three factors, it produces
interesting relations with questions about tensor products of representations
(cf [], which was the main source of inspiration for this section). Our pre-
sentation of the construction is formal and we don’t work out the estimates
and analytical aspects of the construction, which would follow along similar
lines as in previous sections.

4.1 The space S% as a symmetric space

Recall that S2 = {(z,y) € S x S,z # y} is the orbit of (17,17) under G.
The stabilizer in G of (17,17 is the subgroup H = M A.

-1 0 0 ... 0
0O -1 0 ... 0
LetJ=|0 0 1 0. Then Jt = J~! = J. The map
0O 0 0 ... 1
g+— JgJ

is an involutive automorphism of G. The set of fixed points of this involution
is the subgroup H = H U H ™,

cosht —sinht O
H:{h: sinht —cosht 0], tGR,kEO(n—l),detk:—l}.
0 0 k

So H is the neutral component of the fixed points of an involutive auto-
morphism of G. In other words, S% can be realized as the symmetric space
G/H via

G/H > g+ (9(17),9(17)) .

There exists a unique (up to a positive real number) G-invariant measure

ds dt
t) . 39
1) = [ [ 10007 2
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Another description of G/H is as follows. Let X be the set of all 2-
dimensional oriented subspaces II in RY™ such that the restriction of ¢ to
IT is of signature (1,1). The space X is an open set in the Grassmannian
G(2,n +1) of oriented 2-dimensional subspaces in RY™. The group G oper-
ates transitively on X. To the couple (s,t) in S%, associate the 2-dimensional
space II(s,t) = R3®RE, with the orientation for which (3, ) is a direct basis.

Proposition 4.1. The mapping 11 is a diffeomorphism from S% onto X.

Proof. Let s,t be in S%. Then II(s,t) cannot be totally isotropic for g,
because the maximally isotropic subspaces are of dimension 1. As Il(s,t)

contains two independant isotropic vectors (s and t), the signature of ¢ on
II(s,t) has to be (1,1). Hence II(s,t) belongs to X. On the other hand,
let II be in X. Then the isotropic cone in II decomposes as the union of
two distinct isotropic lines, say D U A. The line D (resp. A) intersects the

hyperplane {xg = 1} at a point s (resp. ¢) with s (resp. t) in S. Permuting

D and A if needed, we may assume that the basis (5, t) corresponds to the
orientation of II. Then clearly II(s,¢) = II. ThusIIis a 1—1 correspondance.
The fact that it is a diffeomorphism is standard and left to the reader. [

4.2 An equivariant realization of 7, ® 7.

The group H is connected, isomorphic to R x SO(n—1). For ¢ any complex
number, the function v on H defined by

cosht sinht 0
ve | sinht cosht 0| = elc
0 0 k

(t e R,k € M) is a character of H.
Form the line bundle Ly = G xg C¢ over G/H. A section of Ls can be
viewed as a C* function F': G — C which satisfies

F(gh) = v(h)"'F(g) . (40)

Denote by L the space of smooth sections of L over G/H. The natural
action of G acts on L¢ by left translation is denoted by I :

(Ic(F)(9) = F(v'g) .

When ( is pure imaginary, the character v¢ is unitary. If F'is in L., then
|F(gh)| = |F(g)| for any h in H. Hence the expression

IF|2 = /G @) (41)

21



is well-defined (maybe +o0) and is finite if (say) F' has compact support
modulo H. The representation I extends as a unitary representation for
this inner product.

Let 0,7 be two complex numbers, and consider the representations 7,
and 7. As C*°(95) is a Fréchet space, the projective and inductive topologies
on the tensor product C(S) ® C(S) coincide, and the (completed) tensor
product is realized as C*°(S x S). Hence the tensor product 7, ® 7, is
naturally realized on C*°(S x S). Explicitly,

o @ 7 (9) f (1, m2) = (g™, 21) 7k (g  2)?t T fg™ (1), 97 (22)) (42)

for g € G, f € C®(S x 5),x1,29 € S.
For fin C>(S x 5), let P, f be the function on G defined by

(Porf)(9) = £(g,17)" " r(g, 17 )" f(9(17),9(17)) (43)
Proposition 4.2. P, . f satisfies the relation
(Po,rf)(gh) = Vo—r(R) ™ (Por ) (9), (44)

for g in G and h in H.
Proof. Recall that the elements of H fix both 1" and 1~. Moreover,

k(a, 15) =Tt teR. (45)
Now ([4) follows (). O

The map P, will be regarded as a map from C*°(S x S) into L,_.
Let o and 7 be pure imaginary. Observe that

=

9(17) = g(17)] = 2k(g,17)7R(g,17)7 ,

so that

|y f]1? = 272D / s — LD f(s, 1) 2

SxS

ds dt

ey =2 P

and P, , extends as an isometry (up to a constant) from L?(S x S) onto the
space of square-integrable elements of L£,_, for the inner product associated

to (TI).

Proposition 4.3. P, intertwines the representation 7, @ 7. and the rep-
resentation I,_,, i.e. for any g in G

PO',T © (770 ® 777)(9) = IO'—’T(g) o PO',T (46)
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Proof. Let f be in C*(S x S). For v in G,
Por((me @ mr)(1)f)(9) =

k(9. 17) k(. 17) (v, g(1))P T R(Y T, g(17))PTT

L F( (1), 9(17))
On the other hand,
Lo (V) Por f(g) =

k(Y tg, 1P k(y g, 1) F (v (g(1 ), g7 (1))

The two expressions are easily seen to be equal by using ([). O

4.3 Construction of a (H,v;) covariant function for )

The next step consists in finding in the representation space for m) an ele-
ment Oy ¢ which transforms under the action of H by the character v¢. In
general, it will be a distribution on S (a commun fact in harmonic analy-
sis on semisimple symmetric space (cf [L§]). We use a geometric approach
through the realization of G/H as X (see Proposition [L.]).

Let II be an element of X and s be in S. Observe that II* is a an
(n — 1)-dimensional space, complementary to II, and the restriction of ¢ to
I+ is negative-definite. Define

N

U(IL s) = 2( — g(projy 3)) (47)
Proposition 4.4. Let (s1,s3) be in S%. Then, for any s3 in S,
\I/(H(Sl,SQ),Sg) :2’31_33"32_33’ (48)

|s1 — 52|

Proof. Let 03 = projpL s3. Then there exist real numbers oy and g such
that o3 = 3 — @151 — a282. The numbers «; and as are determined by the
conditions

[03,81] = [03,82] =0 .
Hence,
1-— §3.892 — 041(1 — 81.82) = [gg,gg] — a1[§1,§2] = [0'3 + a2§2,§2] =0
so that

1 — s9.53 (|52 - 83|)2
o] = ==

N 1—51.82 N |51—82|
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and similarly

1—83.51 (|81—S3|)2
a9 = = .
1—81.52 |51 —82|
Now
—q(03) = —[83 — @151 — 252,83 — @151 — Q232

= 2a1[51, 53] + 20[S2, 53] — 2a100[S7, S2])

_ (|51 — s3||s2 — S3|)2

|51 — 52
O
Proposition 4.5. Let g be in G. Then, for any Il in X and s in S,
W(g(M), g(s)) = r(g,s)¥(m, s) (49)

Proof. As g preserves the form ¢ and hence the orthogonality relative to g,
for any II in X

g © projpt = projynt ©g -

Hence

q(proj,anL9(s)) = (95) *a(proj,anLgs) = (95)0) *q(projy )

so that
W (g(ID), g(s)) = (95) " WL, s) = k(g, s)¥(m, 5)
O
Let Tlp =II(1%,17) = {5 = (x9,21,0,...,0),z0,21 € R}, and let
_ _ |1+ - _ 2 2,1
Uo(s) = W(Ip,s) =17 —s|[17 —s| =2(x5+ -+ 2,)2 . (50)

As a consequence of the previous proposition, the function ¥y has a nice
transformation law under the action of H.

cosht sinht 0
Lemma 4.1. Let h = | sinht cosht 0|, where t is in R, and k is in
0 0 k
SO(n —1). For any s in S

Uo(h(s)) = k(h,s)Ty(s) . (51)
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Let A and ¢ be two complex numbers. For s in .S define

1T —5s¢

[ = L =M s (52)
— S

Oxrc(s) = To(s) ‘

Proposition 4.6. The function ©) ¢ satisfies

mA(h)Ox¢ = ve(h)Ox¢ (53)
for all h in H.
Proof. Let h be in H. Then

TA(R)O¢(s) = k(A7 5)7 A O (A7H(s))

)

T
=l w6 A [
(b=l 1) (S 1+ — s
= k(B )P (R, )P A Wy (5) P ‘KEZI 1; | 17 — ‘
+ S
= \I’o(s)fp*A (e2t)% ‘% ‘ = v¢(h) Oy (s) .
by using ([i5). O

4.4 The duality between I and 7,

Now define the corresponding Fourier transform Fy¢ : for ' a smooth
section of L with compact support modulo H, define F¢ \F' by

FrcFls) = /G PO mON(S) (o) (54)

Observe that, thanks to (B3) the integrand is a function on G/H, so that
the integral makes sense, the result being in general a distribution on S.

Proposition 4.7. For any g in G

Facle(g) = ma(g)Fag, - (55)
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Proof. Set © = ©, ¢, F = Fy¢, let F bein L, with compact support modulo
H and let v be in G. Then

Folc(F(s) == /G/H F(y'g) (g™, 8)""* ©(g7"(s))du(gH) -
Set y~'¢g = [ and use the invariance of the measure dyu to obtain

Fol(v)F(s) = o F)e(™t ™ s)P 20 (v (s))du(iH)

=r(y L) [ PO ) PO (v () du(LH)
G/H

—x L™ [ POme6 (9)du(iH)
G/H

= k(v 1) PAFF(y T (s)) = (ma(3)FF)(s) -

4.5 Application to trilinear forms

Theorem 4.1. Let A1, Ao, A3 be three complex numbers. For f1, fa, f3 three
functions in C*°(S), let T(f1, fa, f3) be defined by

T(f17f27f3) = <-7:7>\3,>\17>\2P>\1,>\2(f1 ® f2)7f3> . (56)
Then, for any g € G,

(7, (9)f1, T2 (9) f2: mrg(9) f3) = T(f1, fas f3)
whenever the right hand side is well defined.

Proof. Let g be in G and let f1, fo, f3 be three functions in C°°(.S). Then
T(mx, (9)f1,7x2(9) f2, a3 (9) f3) = <]'1A3,A27A1,PA1,A2(7TA1(9)f1®m2(g)f2)7Wxs(g)f?))

= (]:—)\3,)\1—>\QI)\1—>\2 (g)PAl,)\g (fl ® f2)a T3 (g)f?))

(use (HG))
= (77 s (D (Fors -2 Prne (fi @ f2)),ma (9)f3>
(use (BA))
=T(f1, f2, f3) -
(use ([L3)). O
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Making explicit the right handside of (B@) shows that it coincides (up

to a constant) with the former expression of Ty where A = (A1, A2, A3) (see
Theorem P.1)).

Appendix : Invariant distributions supported by a
submanifold

Here is a presentation of the main results in Bruhat’s theory [B], but written
in terms of vector bundles and distribution densities (in the sense of [ff] ch.
VI). We sketch the main steps of the proof, following [[L7].

A.1 Distribution densities for a vector bundle over a manifold

First recall the composition of a distribution with a diffeomorphism. Let X4
and X5 be two open sets of RV and let ® : X; — X be a C* diffeomorphism.
Then there is a unique continous linear map ®* : D'(X3) — D'(X;) which
extends the composition of functions, i.e. such that ®*f = fo ® for f €
C(X2).

A distribution density on a manifold X is by definition a continuous
linear form on C2°(X). Let u be a distribution density on X. Let (X, k)
be a local chart, i.e. x is a diffeomorphism of an open set X, of X onto an
open set X,, of RV, Then the formula

ux(p) = u(p oK) (57)

for ¢ € C°(X,,) defines a distribution u, on X,, called the local expression of
u in the chart (X, ) . Further, let (X,, k) and (X,/, k") be two overlapping
charts, and let u, and u, the corresponding local expressions of u. Let

O k(XN X)) = 6(Xe N Xyr)
be the change of coordinates (equal to ko £'~1). Then
U = |det d®| D u, in  K(X, N Xuw) . (58)

Conversely, suppose we have an atlas F of charts (X, ) covering the
manifold M and suppose that for each x we are given a distribution u, €
D'(X,). Assume further that for any two overlapping charts (X, ) and
(X, ), the condition (B§) is satisfied. Then the system ((uy),kx € F)
defines a unique distribution density u on X such that, for x in F and

¢ € C>(X,;) condition (F7) is satisfied.
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The space of distribution densities on X is denoted by D'(X). A smooth
density is a density the local expressions of which are C* functions. The
smooth densities are C* sections of a line bundle called the density bundle
Q(X). It is very similar to the bundle of differential forms of maximal degree
on X, in the sense that their transition functions just differ by an absolute
value.

This definition can be extended to the case of vector bundles. Let 7 :
L — X be a C* vector bundle over M, with model fiber Ey. Let (X;) be
a family of open subsets of X such that over each X; the bundle can be
trivialized. Let ¥; : 77 1(X;) — X; x Ep and ¥ : 77 1(X;) — X; x Ey be
two trivializations of the bundle over two overlapping subsets X; and Xj.
Then the map ¥, o\I';1 over (X;NX;) x Lo — (X;NX;) x Ly is of the form

(@, 0) = (z,9ij(x) v)
where g;;(x) is in GL(Lg) and the map (transition functions of the bundle)
Gij * X; N Xj €T gij(x) € GL(E())

is C*°. A distribution density for the bundle L is a system (u;) of distribution
densities on X; with values in Ly such that

U; = GijU;j in X; ﬂXj .

Denote by D’(X, L) the space of distribution densities for the bundle L.

Let L£2° be the space of C*° sections with compact support of the bundle
L. Then the dual of £ is identified with the space D’(X, L*). The smooth
elements in the dual (those given locally by integration against a smooth
function) are the C* sections of the bundle Q(X) ® L*.

A.2 Invariant distribution : the case of a homogeneous vector
bundle

Let G be a Lie group acting transitively on a manifold X. Let o be a
base-point in X, and H = G° be its stabilizer in G, so that X ~ G/H. An
element h of H acts on X and fixes o, so that by differentiation, it acts on its
tangent plane by (say) 79(h). The tangent space TpX can be identified with
g/h. The element h acts on g by the adjoint action Adg(h), and preserves
the subalgebra h on which it acts by Ady h. Hence its acts on g/h, and this
action coincides with 7o(h). This action satisfies

_ det(Adyh)

det 7o(h) = det(Ady h)

(59)
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The modular function dg of a Lie group G is defined by
dc(g) = |det Ad(g™")] .

so that 51(h)
H

\det To(h)’ : Xo(h) (5G(h) . (60)
A homogeneous vector bundle L over X is a vector bundle L together
with an action of the group G on L by bundle isomorphisms. If g is in G
and z in X, then g maps the fiber L, into Ly, by a linear isomorphism.
In particular, H acts on L, by a representation (say) 7. Conversely, given a
representation 7 of H in a vector space F, then one constructs the bundle
G x; F as G x E/ ~, where ~ is the equivalence relation defined by the

right action of H on G x E
(g,v) ~ (ght,7(h)v) for some h € H ,

g in G and v € E. Any homogeneous vector bundle over X is of that sort,
in the sense that the bundle L is isomorphic to G x; Lo (see [LG]).

A section s : X — L can be realized as a Lg-valued function fs; on G
which satisfies

fs(gh) = Tﬁl(h)fs(g) (61)
and, conversely, such a function f gives raise to a section of L. Let £ be
the space of smooth sections of L with compact support. The space £2° is
G-equivariantly isomorphic to C°(G, H, ), the space of C* functions on G
which satisfy (f1]) and have compact support modulo H. The group G acts
by left translations on £2°, and this action is equivariant with the left action
of G on C*(G,H, ).

The tangent bundle T'X of X is an example of such a homogeneous bun-
dle. The action of H on the fiber Ty.X is 7. Another important homogenous
bundle is the bundle Q(X) of densities over X. It is a line bundle, corre-
sponding to the character of H given by |det ((7(h)™1))| = xo(h)™"  (cf
(60)), so that, in this context, we denote the fiber at o of the bundle Q(X)
by (ngl.

Theorem A1l. There exists a non trivial invariant continous linear forms
on LY if and only if there exists a non trivial linear form & on E such that,

forallhe H
T(h™1)'€ = xo(h)§ . (62)
More precisely,

cox\G * *
(£=)” =D'(X, L)% = (Lg® C 1) (63)
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Proof. (Sketch of) An element of the dual of £ is a distribution density for
the bundle L*. If it is invariant by G, then the corresponding distribution
density turns out to be smooth. Hence we are looking for a G-invariant
smooth section of the bundle L* ® Q(X). But this is equivalent to an H
invariant element in the fiber at o. O

A.3 Invariant distribution supported in a submanifold

Let X be a manifold and G a Lie group acting on X. Let Q be an orbit
of G in X and assume that @ is closed. Let L be a homogeneous vector
bundle over X. Let N be the normal bundle of @ (i.e. the quotient bundle
TX,p/TQ). Fix a base-point o in @, let G, = H be the stabilizer of 0. Then
H acts on the tangent space T,X, preserving the subspace T,(Q, and hence
acts on the normal space N, = T,X/T,Q at o.

Let T be a distribution on ). Then the map

C(X) 29— (T, 910)

defines a distribution on X, which we still denote by T'.

Let £° be the space of smooth sections of L with compact support.
Let T' be a continuous linear form on £2° supported in ). Choose a local
coordinate system on X

(Upy. oy Usy VT, e e, Uy)

such that v; = 0,1 < j < r are local equations for Q. The (u;)i<i<s form
a coordinate system of ) near o. On the other hand let N be the normal
bundle of ). The family (%)199 gives a local trivialization of the normal
bundle N. Choose a local trivialization of the bundle L, and denote by
el,...,e the corresponding coordinates on the fiber.

By Schwarz’s local structure theorem for distributions supported in a
vector subspace, there exists an integer k € N (the local transversal order
of the distribution), and for each j,1 < j <[ and each multidiindex o« =
(a1,..., o) with |a| = oy + - - + @ < k uniquely determined distributions
Ts on (some open subset of) R® C R® x R” such that

T=)Y > (-nllpetyer

1<5<l || <k

Let us consider the ”top terms” subcollection (T%, || = k,1 < j < 1). This
collection can be interpreted as the local expression of a distribution density
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for the bundle S*(N) ® L‘*Q on . This is obtained by checking the way the
collection transforms under

e change of local trivialization of the bundle L (change the €]’s)

e change of local trivialization of the normal bundle (change the v;’s)

e change of the local coordinate system on @) (change the u;’s).

Denote by ¢®)(T) the section of the bundle S*(N) ® L, associated to
T.

Denote by D} (Q, L) the space of continuous linear forms on £3° which
are supported on ) and of transversal order < k on any local chart of X .

Theorem A2. The map T — o™)(T) is a linear map from D,(Q, L) in

D'(Q,S*(N) ® L‘*Q), with kernel D;_,(Q,L). Moreover, if ® is a bundle

diffeomorphism of the bundle L, which maps Q into Q, then
o®(®*T) = o*c™(T) |

where ®* denotes the action naturally induced by ® on D'(Q,L) or of the
restriction of @1, on D'(Q, SkE(N) ® L‘*Q).

Assume now that T is invariant by G. Obersve that invariance insures
that the local transversal degree of T is the same for all charts of Q.

Denote by D,;(Q,L)G the space of G-invariant elements of Dj(Q,L).
The conjonction of Theorem Af] and Theorem Af gives some estimate of its
dimension.

Theorem A3. For any k € N,
dim (D}(Q, )¢ /D1 (Q, 1)) < dim (Sy(No) @ L © C, 1)"!

The theorem is mostly used in through the following corollary.

Corollary Al. Assume that for any k € N
X H
(Sk(No) ® L ® ngl) = {0} .

Then there exists no non trivial continuous G-invariant linear form on L2°
such that Supp(T) C Q.
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