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Oversampled phase tracking in digital communications

with large excess bandwidth✩

Jordi Vilà-Valls, Jean-Marc Brossier, Laurent Ros

GIPSA-Lab, Department Image Signal, BP 46 - 38402 Saint Martin d’Hères - FRANCE

Abstract

This paper deals with the on-line carrier phase estimation in a digital re-
ceiver. We consider a Brownian phase evolution in a Data Aided scenario.
The proposed study uses an oversampled signal model after matched filtering,
leading to a coloured reception noise and a non-stationary power signal. The
contribution of this paper is twofold. First, we derive the Bayesian Cramér-
Rao Bound for this estimation problem. Then, based on a state-space model
formulation of the problem, we propose an Extended Kalman Filter to ap-
proach this lower bound for a BOC shaping pulse. Our numerical results
illustrate the gain resulting from the use of an oversampled version of the
received signal to estimate the phase offset, obtaining better performances
than using a classical synchronizer.

Key words: Phase estimation, BCRB, Extended Kalman Filter,
oversampling, carrier synchronization, GALILEO, BOC

1. Introduction

Synchronization is a fundamental part in modern digital receivers. A
synchronizer has to estimate parameters such as carrier frequency, carrier
phase and timing epoch. This knowledge is required to recover the signal
of interest correctly. In this paper, we focus our attention on the phase
estimation problem. Many methods for estimating the phase introduced by
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an unknown channel have been proposed over the past decades, from Phase
Locked Loops (PLL) to the most sophisticated signal processing techniques.
Among lower bounds on the estimation performance than can be used as a
benchmark, the family of Cramér-Rao Bounds (CRBs) has been shown to
give accurate results in many scenarios [1]. Several Cramér-Rao lower bounds
are given in the literature.

For constant phase-offset estimation in the so-called Data-Aided (DA)
scenario, Rife et al. [20] derive CRB closed-form expressions; Cowley [21]
does so in the Non-Data-Aided (NDA) scenario. Since these bounds are
frequently analytically untractable, the looser modified CRB (MCRB) [18,
19] is widely used to reduce the complexity.

For time-varying parameter estimation, an analytical expression of a gen-
eral on-line recursive Bayesian CRB (BCRB) is given by Tichavský [17].
Bay et al. [15] introduce an Asymptotic BCRB (ABCRB) and provide an
analytical expression of the off-line CRB and BCRB.

Several algorithms attempt to approach optimal performance given by
lower bounds. The Kalman Filter (KF) [5],[6], presented in early 1960s is
optimal for parameter estimation in linear Gaussian problems [7, 8].

When dealing with nonlinear filtering problems, the Extended Kalman
Filter (EKF) approximates the problem to apply the KF solution. The EKF
has been proved to be a powerful low-complexity solution for slightly non-
linear problems. Some contributions show the use of EKF for carrier phase
recovery and frequency tracking [22, 23, 24, 25]. Other solutions to cope with
nonlinear filtering problems include the well-known Particle Filter (PF). Al-
though this technique has been largely applied during the last ten years [9],
its performance gain is usually not worth its high implementation complex-
ity for slightly nonlinear problems with slowly varying parameters like phase
estimation [14].

Most of the lower bounds assume a white observation noise and a sta-
tionary signal.

In [12], we calculate a lower bound for an oversampled (regarding the sym-
bol time interval) signal model after matched filtering, this implies dealing
with a coloured reception noise and taking into account the non-stationarity
of the digital signal power (cyclostationarity when transmitting a random
sequence). Although this scenario is standard in satellite radio-localization
based on a Binary Offset Carrier (BOC) time-limited shaping pulse modula-
tion, there is no theoretical study concerning the performance of oversampled
phase offset estimation in this context (to the best of our knowledge).
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In this contribution, we first derive a closed-form expression of the on-
line Bayesian Cramér-Rao Bound (BCRB) for phase estimation in the Data
Aided (DA) scenario, assuming a Brownian phase evolution. The BCRB we
present here is simpler than the one we have presented in [12].

Secondly, we investigate the use of an EKF based algorithm to approach
this bound. We have thus to jointly estimate the coloured noise and the phase
offset. The study allows to measure the potential gain for phase estimation
provided by the use of the fractionally-spaced processing after matched fil-
tering, instead of the symbol time-spaced signal.

This paper is organized as follows. Section II sets the signal model. Sec-
tion III recalls the BCRB expressions and derives the BCRB for this estima-
tion problem. Section IV presents the EKF and derives the expressions of
the filter in the oversampled phase estimation scenario. Finally, in Section
V, the numerical results for the EKF for a BPSK transmission are presented
and interpreted together with the BCRB.We also compare the EKF perfor-
mance with a Particle Filter algorithm and we do the analysis of real world
conditions. The conclusion is given in Section VI.

Notations: italic indicates a scalar quantity, as in a; boldface indicates
a vector quantity, as in a and capital boldface indicates a matrix quantity
as in A. The (k, l)th entry of a matrix A is denoted [A]k,l. The matrix

transpose and self-adjoint operators are denoted by the superscripts T and
H respectively as in AT and AH . ℜ(·), ℑ(·) and (·)∗ are the real part, the
imaginary part and conjugate of a complex number or matrix, respectively.

Ex denotes the expectation over x. ∇θ and ∆θ
ψ

represent the first and

second-order partial derivatives operator i.e., ∇θ =
[

∂
∂θ1

· · · ∂
∂θK

]T

and ∆θ
ψ

=

∇ψ∇T

θ
. 1 stands for the all-ones matrix.

2. Signal Model

We propose a signal model for the transmission of a known complex-
valued sequence {am}m∈Z

over an Additive White Gaussian Noise (AWGN)
channel affected by a carrier phase offset θ(t).

2.1. Oversampled Signal Model

2.1.1. Discrete-time general formulation

The received complex baseband signal after matched filtering is
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y(t) =

[{
T

∑

m

amΠ(t − mT )

}
eiθ(t) + n(t)

]
∗ Π∗(−t)

where T, Π(t) and n(t) stands for the symbol period, shaping pulse and
circular Gaussian noise with a known bilateral power spectral density (psd)
N0.

We define the filtered coloured noise

b(t) = [n(t)] ∗ Π∗(−t)

and the shaping function g̃m(t) as

g̃m(t) = T

∫ +∞

−∞
Π∗(−α)eiθ(t−α+mT )Π(t − α)dα

Then the received signal can be written as

y(t) =
∑

m

amg̃m (t − mT ) + b(t)

Hereafter, we suppose a shaping pulse Π with support in [0, T ) and a slow
varying phase during a period T . This last assumption is usual in satellite
communications because the phase variation (due to oscillators phase noise,
Doppler effects, . . .) in one symbol period is weak. Phase noise introduced
by oscillators is usually lower than phase variation due to Doppler shifts
[3]. Concerning the Doppler effects, it is easy to verify the assumption in a
real world scenario such as Galileo systems: in the worst cases, the maximum
Doppler shift is about 20 kHz. If we assume a chip rate 1

T
= 1 Mchip/sec, the

maximal phase variation in one period is about ∆θ = 0.1 rad, corresponding
to a weak jitter amplitude (0.1/2π = 1.6%) or to a variation of 0.01 rad2.
In this paper we consider a maximal phase noise variance σ2

w = 0.1 rad2, to
take into account possible stronger phase noise effects while still verifying
the assumption of weak variation into one period T .

In this case we can approximate g̃m(t) by

g̃m(t) ≈ g(t)eiθ(t+(m+ 1

2
)T ) (1)

where

g(t) = T

∫ 0

−T

Π∗(−α)Π(t − α)dα
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If the received signal is fractionally-spaced at tk = k T
S

+ τ , where S is an
integer oversampling factor and τ a known offset from the optimum sampling
instants (we suppose 0 ≤ τ < T

S
), we have that

y

(
k
T

S
+ τ

)
=

∑

m

amg̃m

(
k
T

S
+ τ − mT

)
+ b

(
k
T

S
+ τ

)

and from (eq. 1) we have that

y

(
k
T

S
+ τ

)
= eiθ(k T

S
+τ+T

2
)Ak + b

(
k
T

S
+ τ

)

where

Ak =
∑

m

amg

(
k
T

S
+ τ − mT

)
. (2)

We can finally write the received oversampled signal as

yk = Ake
iθk + b′k

where k refers to tk instants. Note that the noise b′k is coloured with variance

σ2
n, where σ2

n = N0 ×
g(0)
T

is the variance of the AWGN n(t) measured in the
noise equivalent bandwidth of the receiver filter Π∗(−t).

We can define the symbol index p = ⌊ k
S
⌋, or equivalently, k = pS + s

with s (s = 0, · · · , S − 1) the sub-symbol index (i.e. the position inside the
symbol interval). {Ak}k∈Z

is a non-stationary power sequence for S > 1,
even if {am}m∈Z

is a stationary power symbol sequence (a2
m = 1).

In fig.1, we show, as an example, the transmission of a symbol sequence a

of length 7 symbols, using the BOC shaping pulse (see fig.2), over a perfect
channel (without phase shift, without noise,and for τ = 0), and the corre-
sponding received signal after match filtering. From this figure, we can see,
marked with circles, the samples corresponding to S = 1 (symbol reference
points). Marked with big squares (symbol mid-points) we have the sam-
ples that we add when using S = 2 instead of S = 1. And finally, marked
with little squares we have the samples obtained when using an oversampling
S = 4.

In this case, we can see that some of the intermediate samples are null,
so these samples do not contribute to the measurement, and so they do not
give us information to improve the estimation.
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Figure 1: Symbol sequence and received signal over a perfect channel. Set of samples for
S = 1, 2 and 4.

2.1.2. Discrete-time re-formulation for the noise

The T
S
-spaced sequence of noise {b′k}k∈Z

is defined in the previous section
from an analog noise n(t). Our motivation now is to replace this time series by
another sequence {bk}k∈Z

with the same statistical properties, but obtained
using a discrete-time formulation. This will be useful for the final state-space
model formulation. We can write that

b′k =

∫ T

0

n

(
α + k

T

S
+ τ

)
Π∗ (α) dα

=
S−1∑

j=0

∫ (j+1)T
S

j T
S

n

(
α + k

T

S
+ τ

)
Π∗ (α) dα

For N measurements, the N ×N covariance matrix Γ of the observation
noise depends on the oversampling factor S. As an example, for S = 2, we
have a tridiagonal matrix

Γ =
N0

T




g(0) g(−T
2 )

g(T
2 )

. . .
. . .

. . . g(−T
2 )

g(T
2 ) g(0)




(3)

The random variables

Zk,j =

∫ (j+1)T
S

j T
S

n

(
α + k

T

S
+ τ

)
Π∗ (α) dα
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are zero-mean Gaussian. For a fixed k, Zk,j are independent in j. Their
variance is equal to

E
(
|Zk,j|

2) = N0

∫ (j+1)T
S

j T
S

|Π (α)|2 dα

We define a zero-mean, unit variance, stationary Gaussian i.i.d sequence
{nk}k∈Z

and

Πj =

{
N0

∫ (j+1)T
S

j T
S

|Π (α)|2 dα

} 1

2

Hence, the noise samples b′k have the same statistical properties than
samples bk, and are obtained by a T

S
-spaced filtering of the time serie nk:

bk =
S−1∑

j=0

Πjnk−j−1

2.2. Phase-offset Evolution Model

In practice, we have to consider jitters introduced by oscillators imperfec-
tions and also Doppler shifts . To take it into account, we assume a Brownian
phase offset evolution [14]:

θk = θk−1 + wk k ≥ 2 (4)

where wk is an i.i.d. zero-mean Gaussian noise sequence with known variance
σ2

w

S
where σ2

w stands for the variance of the phase increment in one symbol
interval. We note that the variance of the Gaussian noise is directly related
to the rapidity of evolution of the phase. The N × N covariance matrix of
the phase offset θ = [θ1 · · · θN ]T is

Σ =
σ2

w

S




1 1 1 · · · 1
1 2 2 · · · 2
1 2 3 · · · 3
...

...
...

. . .

1 2 3 N




+ σ2
θ1

1 (5)

with an inverse that takes a tridiagonal form.
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2.3. State-Space Model

When using an optimal filtering approach, a state-space model formula-
tion is needed. Moreover, as we want to take into account that the observa-
tion noise on the output of the matched filter is not white, we must include
it into the state evolution.

First of all we consider a sliding vector
[

νk νk−1 · · · νk−S+1

]T
over

an i.i.d. noise nk, the evolution of this vector can be written as




νk

νk−1
...

νk−S+1


 =




0 · · · · · · 0
1 0 · · · 0

0
. . .

...
1 0







νk−1

νk−2
...

νk−S


 +




nk

0
...
0




The coloured noise bk is

bk = [Π0 · · ·ΠS−1]




νk−1

νk−2
...

νk−S




The state includes the phase offset and the coloured noise:

xk =
[

θk bk νk · · · νk−S+1

]T

We define

MK =




1 0 0 · · · 0
0 0 Π0 Π1 · · · ΠS−1

0 0 0 0 · · · 0
... 0 1 0 · · · 0

... 0 1
...

. . .
. . .

. . .

0 1 0




and wk =
[

wk 0 nk 0 · · · 0
]T

. From this, the state evolution is

xk = MKxk−1 + wk (6)
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and the observation equation can be written as

yk = Ak exp
(
i
[

1 0 · · · 0
]
xk

)

+
[

0 1 0 · · · 0
]
xk

= Ak exp (iθk) + bk

(7)

We note that the state equation is linear whereas the observation equa-
tion depends non-linearly on the state. With this formulation, there is no
observation noise because we have included it in the state.

3. Bayesian Cramér-Rao Bound

In estimation problems, we aim to know the ultimate accuracy that can be
achieved by the estimator. Cramér-Rao Bounds (CRB) provide lower bounds
on the Mean Square Error (MSE) achievable by any unbiased estimator.
Depending on the nature of the parameters, several CR bounds exist. If the
vector of parameters is deterministic, we use the standard CRB whereas, if
the vector of parameters is random and an a priori information is available,
we use the so-called Bayesian CRB [15]. When dealing with both random and
deterministic parameters, an Hybrid CRB (HCRB) is used [16]. The CRB
suited to our problem is the BCRB as we want to estimate the phase offset
evolution vector θ which is a random vector with an a priori probability
density function (pdf) p(θ).

In the on-line synchronization mode, at time k the receiver updates the
observation vector y = [y1 · · · yk−1]

T including the new observation yk to
obtain the updated vector y = [y1 · · · yk]

T in order to estimate θk : only the
past and the current observations are available. In this section, we recall the
expression of the Bayesian CRB and we present the closed-form expression
of the BCRB for an oversampled phase offset estimation problem in a Data
Aided scenario, which is a simpler closed-form expression of the bound than
the one we presented in [12].

3.1. BCRB: background

We have a set of N measurements y that depends on the N -dimensional
vector of parameters to be estimated, θ. The joint probability density func-
tion of the pair (y,θ) is py,θ(y,θ) and the a priori pdf is p(θ). If θ̂(y) is

our estimate of θ, the BCRB satisfies the following inequality on the MSE:
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Ey,θ

{
[θ̂(y) − θ][θ̂(y) − θ]T

}
≥ B−1

where B is the so-called Bayesian Information Matrix (BIM) defined as [1]

B = Ey,θ

[
−∆θθ log p(y,θ)

]

Expanding the log-likelihood, the BIM can be rewritten as

B = BD + BP (8)

with
BD = Ey,θ

[
−∆θθ log p(y | θ)

]

BP = Eθ

[
−∆θθ log p(θ)

]

where the first term represents the average information about θ brought by
the observations y and the second term represents the information available
from the prior knowledge on θ, i.e., p(θ).

The N × N BCRB matrix is

BCRB = B−1 =
{
BD + BP

}−1
(9)

where the kth element of the diagonal, [BCRB]k,k, represents the lower bound

on the estimation of [θ]k from observations y = [y1 · · · yN ]T .

3.2. BCRB: Application to Dynamical Phase Offset Estimation

In this paragraph, a closed-form expression for the BCRB for an on-line
fractionally-spaced phase-offset estimation problem is presented.

We use the model presented in Section II (eqs.4,7):

θk = θk−1 + wk

yk = Ak exp (iθk) + bk

where, as stated before, bk is a non-white noise with covariance matrix Γ.
The index k refers to tk instants and Ak are the coefficients specified in (eq.2).

To compute the BIM, the likelihood function and the a priori pdf are
needed. From the model, the log-likelihood is

log p(y | θ) = log 1
πN |det(Γ)| − [y − m]H Γ−1 [y − m] (10)
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where y is the N -dimensional received signal array and m is the mean vector
of y, where the kth component is [m]k = Ake

iθk . The logarithm of the a priori

pdf is

log p(θ) = log p(θ1) + (N − 1) log
(

1√
2πσw

)

−
∑N

k=2
(θk−θk−1)2

2σ2
w

(11)

The first term of eq.(8) can be computed from eq.(10). We note Λ(θ) =
log p(y | θ). Computing the derivative with respect to the lth and kth

elements of θ we have that

∂2Λ(θ)

∂θk∂θl

= 2ℜ

{
∂2mH

∂θk∂θl

Γ−1[y − m] −
∂mH

∂θl

Γ−1 ∂m

∂θk

}

The (k, l)th element of the matrix BD is

[
BD

]
k,l

= Eθ

{
Ey|θ

{
−∂2Λ(θ)

∂θk∂θl

}}

= Eθ

{
2ℜ

{
∂mH

∂θl
Γ−1 ∂m

∂θk

}}

= 2ℜ
{

A∗
l Ak ·

[
Γ−1

]
k,l

Eθ
{
ej(θk−θl)

}}

We can write that

Eθ
{
ei(θk−θl)

}
= Eθ

{
ei(uT

kl
θ)

}

= φ (ukl)

where uT
kl = [0, · · · , 0, (+1), 0, · · · , 0, (−1), 0, · · · , 0], +1 in the kth position

and −1 in the lth position of the array, φ(·) is the characteristic function of
a Gaussian random variable θ:

φ (ukl) = exp
{
−1

2u
T
klΣ

−1 ukl

}

= exp
{
−1

2

([
Σ−1

]
k,k

+
[
Σ−1

]
l,l
− 2

[
Σ−1

]
k,l

)}

with Σ the covariance matrix of the phase evolution θ (eq.(5)). Finally

[
BD

]
k,l

= 2ℜ
{

A∗
l Ak

[
Γ−1

]
k,l

eΨk,l

}

where

Ψk,l =

{
−

1

2

([
Σ−1

]
k,k

+
[
Σ−1

]
l,l
− 2

[
Σ−1

]
k,l

)}
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We note that
[
Σ−1

]
takes a tridiagonal form, so the elements

[
Σ−1

]
k,l

are

only non-null if | k − l |≤ 1. If we consider σ2
θ1

= 0, they take the following
values:

•
[
Σ−1

]
|k−l|=1

= −S/σ2
w

•
[
Σ−1

]
k,k

= 2 S
σ2

w
, for 2 < k < N − 1

•
[
Σ−1

]
1,1

=
[
Σ−1

]
N,N

= S/σ2
w

So we have to consider two cases:

• Ψk,k = 0 for k = l

• Ψk,l = −β S
σ2

w
for | k − l |≥ 1

with 1 ≤ β ≤ 3 if σ2
θ1

= 0
We can finally conclude that eΨk,l ∼ 0 for small values of σ2

w when k 6= l.
The worst case is when σ2

θ1
= 0, k = 1, l = N and S = 1; in this case,

we have Ψ1,N = − 1
σ2

w
, and so eΨk,l = e

− 1

σ2
w can be neglected for σ2

w ≤ 0.1
compared to the main diagonal elements.

As we assume the phase variation is small over the symbol interval (for the
approximation in eq.(1) to be valid), we can consider that BD is a diagonal
matrix with [

BD
]
k,k

= 2 | Ak |2
[
Γ−1

]
k,k

(12)

In the sequel, we compute the second term of eq.(8). From the state
evolution eq.(4) we have that

∆θθ ln p(θ) = ∆θθ ln p(θ1) +

N∑

k=1

∆θθ ln p(θk | θk−1) (13)

The first term in eq.(13) is a matrix with only one non-zero element,
namely, the entry (1, 1), which is equal to

[
∆θθ ln p(θ1)

]
1,1

=
∂2 ln p(θ1)

∂θ2
1

12



The other terms are matrices with only four non-zero elements, namely,
the entries (k−1, k−1), (k−1, k), (k, k−1) and (k, k). Due to the Gaussian
nature of the noise, one finds

[
∆θ
θ

ln p(θk | θk−1)
]

k,k
=

[
∆θ
θ

ln p(θk | θk−1)
]

k−1,k−1

= −S
σ2

w

[
∆θ
θ

ln p(θk | θk−1)
]

k,k−1
=

[
∆θ
θ

ln p(θk | θk−1)
]

k−1,k

= S
σ2

w

Assuming that Eθ1

[
∆θ
θ

ln p(θ1)
]

= 0 (non-informative prior about θ1,

see [2]), we obtain that

BP =
1

σ2
w/S




1 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . . . . . . . . 0

... −1 2 −1
0 · · · 0 −1 1




(14)

From eqs.(12,14) we have that the BIM has a tridiagonal form

B = β




(C1 + 1) 1
1 C2 1

. . .
. . .

. . .

1 CN−1 1
1 (CN + 1)




with β = −S/σ2
w and Ck = (1/β)

[
BD

]
k,k

− 2.

The on-line bound for the estimation of θN is equal to entry (N, N) of
the inverse of the BIM,

[
B−1

]
N,N

. From [26] we have that the elements of

the diagonal of the inverse of a tridiagonal matrix are

[
B−1

]
k,k

=
dk−1hk+1

dk

with
dk = βCkdk−1 − β2dk−2 for k = 2, · · · , N − 1
hk = βCkhk+1 − β2hk+2 for k = 2, · · · , N − 1

(15)
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and
d0 = 1, d1 = β (C1 + 1)
dN = β (CN + 1) dN−1 − β2dN−2

h1 = β (C1 + 1) h2 − β2h3

hN = β (CN + 1) , hN+1 = 1

Finally, the on-line BCRB is

BCRB =
[
B−1

]
N,N

=
dN−1

dN

(16)

We note that this is directly the cofactor of the element [B]N,N over the
determinant of B.

3.2.1. Remarks

As we analyse the estimation problem in a DA scenario the bound depends
on the transmitted sequence a. In this paper, we suppose the transmission
of a known sequence to analyse the performance of the proposed algorithm
and the bound. We note that, contrary to [12] where the proposed bound
was the minimum over a set of sequences, the BCRB is now computed for a
specific transmitted sequence.

However, for S = 1, s = 0 (symbol reference point) and τ = 0, eq.(12)
shows that the bound is independent of the transmitted sequence a since
| Ak |= 1 ∀ k. In other cases, the bound depends on the sequence, the over-
sampling factor S and the position s inside the current transmitted symbol
(index M):

BCRB(a, S, s) =
[
B−1(a)

]
N,N

(17)

with N = (M − 1) ∗ S + 1 + s.

3.2.2. User’s manual

Here we give a short user’s manual for the derivation of the Bayesian
CRB for the phase estimation problem. As symbols are known and since we
suppose that we know the statistics of the observation and phase noises, we
can easily obtain the bound by two different ways: computing the matrix [B]
and then his inverse, or computing the elements Ck and recursively compute
the bound.

1. Direct derivation of the BCRB:

• Compute the matrix [BD] from eq.(12).
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• Compute the matrix [BP ] from eq.(14).

• Compute the inverse of the BIM (eq.(9)) and take the last element
to have the on-line BCRB (eq.(17)).

2. Alternative derivation using recursion formulas:

• Compute the coefficients Ck, from the elements [BD]k,k (eq.(12)).

• Use the recursion formula eq.(15) to obtain eq.(16).

4. Extended Kalman Filter

In the sequel, we derive the EKF [7] for oversampled carrier phase es-
timation. The system is described by the following state-space equations
pair

xk+1 = fk (xk) + wk

yk = gk (xk) + vk

where xk is the state vector, wk is a zero-mean white noise with covariance
matrix Qk, yk is the observation vector at time k which is a partial and noisy
observation of the state xk and vk is the observation noise with covariance
matrix Rk. Noises wk and vk are supposed to be uncorrelated. The functions
fk (·) and gk (·) can be non-linear in a general case.

We note x̂k|m, the estimation of xk from observations up to time m, x̃k|m =

xk − x̂k|m, the estimation error and Pk|m = E
(
x̃k|mx̃

T
k|m

)
its covariance

matrix.
For Gaussian, linear state models, the KF gives the best Mean Square

Error (MSE) estimation of the state xk from observations up to time k.
For non linear problems, the EKF gives a sub-optimal estimator x̂k|k in a

recursive way: the main idea is to linearize the state-space equations at each
iteration in order to transform the filtering problem into a usual Kalman one.

4.1. EKF for Dynamical Phase-Offset Estimation

To derive the EKF, we need to compute ∂fk (xk) /∂xk and ∂gk (xk) /∂xk.
In the state-space model for oversampled phase estimation presented in Sec-
tion II (eqs.(6,7)), the state equation is linear, hence ∂fk (xk) /∂xk = MK .
The state noise covariance Q is independent from k and has only two non-
zero elements : [Q]1,1 = σ2

w/S and [Q]3,3 = σ2
n. Because we introduced the
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coloured noise bk into the state, there is no observation noise and the covari-
ance matrix R is null. Since the observation equation is non-linear versus
the state, we have to apply a linearization:

g =
∂gk

(
x̂k|k−1

)

∂xk

=
[

iAke
ibθk|k−1 0 1 0 · · · 0

]T

(18)

Finally, the EKF-based algorithm is:




Pk|k−1 = MKPk−1|k−1M
H
K + Q

x̂k|k−1 = MK x̂k−1|k−1

Kk = Pk|k−1g
H

{
gPk|k−1g

H
}−1

Pk|k = [I − Kkg]Pk|k−1

x̂k|k = x̂k|k−1 + Kk

[
yk − Ake

ibθk|k−1 − b̂k|k−1

]

where I is the identity matrix with appropriate dimension. We note x̂0|0 and
P0|0, the initial state and covariance matrix, which are set to an arbitrary
value in the range of convenience (i.e., for the phase offset we take as initial
value an uniformly distributed random number in [0, 2π)).

We explicit the dependence of the EKF MSE on S and s with the notation
MSEEKF(S, s) for the MSE of an EKF working on the sth point of each symbol
of a S-time oversampled signal.

5. Discussion

In this section we show the behaviour of the BCRB and the EKF by con-
sidering different scenarios.We also compare the results obtained with well-
known bayesian estimation methods (Particle Filter and Unscented Kalman
Filter) to justify the use of the EKF, and we analyse the performance loss
when using a real world shaping function . We assume the transmission over
an AWGN channel of a M-sequence of length 511 bits, generated using a Lin-
ear Feedback Shift Register (LFSR) with characteristic polynomial [1021]8
(octal representation). We consider three oversampling factors (S = 1, 2 and
4) and a BOC shaping pulse (see figure 2). BOC shaping pulse is used in
Galileo positioning system [4].

16



−1 0 1 2

−1

−0.5

0

0.5

1

× T

BOC Shaping Pulse

×
 1

/T

−1 0 1
−1

−0.5

0

0.5

1

BOC autocorrelation

× T

×
 1

/T

Figure 2: BOC shaping function Π(t) and its autocorrelation g(t)

In the figures, we plot the MSE obtained by Monte Carlo simulations
versus the Signal to Noise Ratio (SNR). The SNR corresponds to the Carrier
to Noise Ratio ( C

N
) at the input of the receiver. In our case, as shaping pulse

and symbols ak are normalised (i.e. σ2
a = 1; g(0) = 1) this ratio is simply

C
N

= 1
σ2

n
. For the MSE we consider two cases:

1. We compute BCRB(a, S, 0) and MSEEKF(S, 0) for the T -spaced symbol
reference point estimation for S = 1, 2, 4.

2. We compute the MSE for the mid-point estimation (s = S/2). This
scenario is also interesting because the intermediate points can be use-
ful when using fractionally-spaced algorithms (i.e. half symbol spaced
equalizer or Gardner’s timing recovery algorithm).

5.1. T -spaced symbol reference point estimation MSE

Figures 3 and 4 superimpose, versus the SNR, the on-line BCRB (see
eq.(16)) and the EKF MSE. For figure 3, we have a slow varying phase with
variance σ2

w = 0.001 rad2 and for figure 4, a phase with a faster evolution,
σ2

w = 0.01 rad2. In both scenarios there is no offset from the optimal sampling
instants, τ = 0.

For S = 1, the performance of the EKF fits the BCRB. For S = 2, the
EKF performance is slightly looser than the bound. For S = 4, EKF MSE
is only slightly better than for S = 2 at high SNR; furthermore, the EKF no
longer fits the bound.

The gain increases with the oversampling factor S and the interest of over-
sampling becomes clear at low SNR. The gain due to oversampling decreases
as the SNR increases.
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Figure 3: EKF MSE and BCRB versus the SNR for three different oversampling factors
S = 1, 2 and 4, with a phase-noise variance σ2

w
= 0.001 rad2.
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Figure 4: EKF MSE and BCRB versus the SNR for three different oversampling factors
S = 1, 2 and 4, with a phase-noise variance σ2

w
= 0.01 rad2.

In figure 5, we analyse the EKF behaviour for a fixed SNR versus phase-
noise variance for a low SNR value (0 dB). Here, we can still measure the
gain given by the oversampling and the good performance of the algorithm.
The gain obtained with the oversampling is greater at weak σ2

w. We also
note that the performance of the algorithm at weak phase noise variance is
really close to the bound. At very high σ2

w the performances become poorer
compared to the bound. This is probably because, for high σ2

w, the modeling
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Figure 5: EKF MSE and BCRB versus the phase noise variance for three different over-
sampling factors S = 1, 2 and 4, SNR = 0dB.

error in the EKF linear approximation (see eq.(18)) is not negligible with
respect to the noise level.

Figure 6 superimposes versus the SNR, the on-line BCRB, BCRB(S, 0),
and the EKF for a slow varying phase evolution, σ2

w = 0.001, and a non-null
offset τ = T

8
for S = 1, 2. As a reference, we plot the performance of the

EKF for a null offset τ = 0. For τ 6= 0, the bound and the algorithm are
looser. The gain between different oversampling factors is greater at high
SNR when having a non-null offset.

To show that performances decrease when τ increases, we plot in figure
7, the on-line BCRB and the EKF versus τ . We consider 0 ≤ τ < T

4
, a fixed

SNR=0dB and a slow varying phase evolution, σ2
w = 0.001. We note that

the performance for S = 4 is symmetric with τ each T
8
, for S = 2 each T

4
and

for S = 1 each T
2
.

5.2. T -spaced symbol mid-points estimation MSE

We now take the S = 4 case as the reference. For S = 1, there is only 1
estimate per symbol, so, to compare with S = 2, 4, missing mid-points are
generated by blocking the estimated value (s = 0) over the symbol period.
We will note it MSEEKF(1, 1/2))

The BCRB for the blocked case S = 1 can be easily obtained as

BCRBb(a, 1, 1/2) = BCRB(a, 1, 0) + σ2
w/2.
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Figure 7: EKF MSE and BCRB versus τ for SNR=0dB and σ2

w
= 0.001.

For S > 1, the bound strongly depends on the last observed value AN

because of the non-stationary power. In this case, we rename the bound as
BCRB(AN , S, s). For τ = 0, | AN | can be equal to 0 or 1 (see fig.1), so
there are two possible bounds. We can define an average bound as follows:

BCRB(S, s) = p0 · BCRB(| AN |= 0, S, s)
+(1 − p0) · BCRB(| AN |= 1, S, s)

(19)

where p0 is the proportion of Ak = 0. This average bound is completely
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suited to compare with the MSE performance of the EKF computed with
the same proportion p0. In our simulation p0 = 0.5.

5.2.1. Results

For the mid-points case, figure 8 superimposes, versus the SNR, the on-
line BCRBs (BCRBb(1, 1/2), BCRB(2, 1), BCRB(4, 2)) and the EKF MSE
for a fast varying phase with variance σ2

w = 0.01 rad2 and a null offset τ = 0.
For S = 1 and 2, the variance of the EKF is close to the BCRB. For S = 4,
at low SNR, the MSE of the EKF is almost the same than for S = 2 and
tends to the bound at high SNR.

The gain increases with the oversampling factor S, the interest of over-
sampling becomes clear at low SNR. At high SNR, MSE → σ2

w/2S, this
is due to the blocking process for S = 1 and to the non-stationary power
sequence Ak for S = 2 and 4. We can also see this saturation from eq.(19)
which for p0 = 0.5 at high SNR becomes

BCRB(S, s) ∼
1

2
BCRB(0, S, s)

and so BCRB(0, S, s) = σ2
w/S. If we compare the performance of the

algorithm in this case with the performance at s = 0 (see fig.4) we can see
that we obtain the same result at low SNR and looser performance at high
SNR because of the saturation.
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Figure 9: EKF, PF and BCRB versus the SNR for two different oversampling factors
S = 1, 2, with a phase-noise variance σ2

w
= 0.01 rad2.

5.3. Comparison with Bayesian methods and real world analysis

The goal of this paragraph is twofold. First, we want to compare the
performance of the EKF with a Bayesian method, a Sequential Importance
Sampling with Resampling Particle Filter (PF) which uses a residual re-
sampling algorithm. This method represent the most important family of
Bayesian estimators: Sequential Monte Carlo methods [9, 10, 11].

Secondly, we show the performances obtained with the EKF when us-
ing a limited bandwidth real world shaping pulse. In this case we take a
band limited BOC function, which is a BOC function convoluted with a sinc
function. So the shaping function is no longer rectangular.

Both analysis are done on the T-spaced symbol reference point case. The
parameters not specified, are the same that we stated at the beginning of
the section. In the second case, the signal is bandlimited but the algorithm
is the same as for the ideal BOC function.

5.3.1. Comparison

Figures 9 superimposes, versus the SNR, the on-line BCRB and the MSE
obtained with two different algorithms: the EKF and the PF. We use 50
particles in the PF. We have a moderate varying phase with variance σ2

w =
0.01 rad2 and τ = 0.

For S = 1, the results obtained with the PF are the same that using the
EKF, except for high SNR, where the PF performance is looser. For S = 2,
the performance of the PF is slightly better between 5dB and 25dB, but
looser at really low and high SNR.
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W = 4/T .

The complexity and computational load of the PF is much higher than
the EKF, which is the simplest nonlinear filtering method. The PF is difficult
to tune, and the fact that we have to evaluate the functions for each particle,
makes it computationally really expensive. Moreover, the results are mostly
the same or a bit looser. For these reasons, in this kind of problems, only
slightly nonlinear and with low state dimension, the EKF is still the best
option.

5.3.2. Real world analysis

We present in figure 10, the comparison between the results obtained with
the BOC shaping function from fig.2 and using a real life limited bandwidth
BOC shaping function.

This limited bandwidth BOC is obtained by filtering the ideal BOC shap-
ing function with a sinc(πWt). We note that for Galileo, we have a chip rate
1/T = 10 Mchip/sec, and the frequency carrier receiver bandwidth is W = 20
MHz (i.e 2/T ) or W = 40 MHz (i.e 4/T ), which allows us to take advantage
of an oversampling of, respectively, S = 2 and S = 4, samples/symbol, which
is usual in satellite receivers.

We present the results obtained with a phase noise variance σ2
w = 0.001

rad2, τ = 0 and a bandwidth W = 4/T .
The results using the limited bandwidth BOC shaping does not change
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from the results obtained with the ideal BOC function. The receiver’s band-
width is large enough when computing the performance with the EKF for
S = 1, 2 and 4.

In figure 11, we present the results obtained in the same scenario, but
using a sinc function with three different bandwidths, W = 4/T, 2/T and
1/T . We can see that in the first case, W = 4/T the results are the same
as using the ideal BOC function. Using W = 2/T and W = 1/T , it is clear
that the bandwidth is not large enough and the performance are much looser
(loss of 2.5dB for W = 2/T and up to 8dB for W = 1/T and S = 2). As it
is usual in satellite receivers to have S = 4 samples/symbol, we can conclude
that the results obtained with the ideal BOC shaping function are valid in
the real world scenario.

We note that, if slow-rate data bits superimpose the training sequence,
the algorithm does not work correctly when the modulating value is −1.
We can easily overcome this problem by starting in parallel the algorithm for
both values, +1 and −1, and rapidly detecting the proper value, for example,
from the Kalman filter estimation covariance. Then we only go on running
the algorithm with the decided value .

6. Conclusion

In usual transmission systems, the roll-off is between 0 and 100%; hence,
one or two samples per symbol are enough to recover the whole information
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about the analog received signal. However, in the context of satellite po-
sitioning systems, like GPS and GALILEO, time limited shaping pulse are
used and the Nyquist-Shannon sampling theorem does not apply. These spe-
cial conditions let us hope a significant receiver synchronization performance
improvement when the received signal is oversampled.

In this paper, we study the gain due to an oversampling of the received
signal for the problem of dynamical carrier phase tracking. Assuming the
data are known at the receiver, we derive the Bayesian Cramér-Rao Bound
and a Kalman-based DA algorithm for carrier phase estimation in such an
oversampled scenario.

This study shows several improvements when a fractionally-spaced method
for phase estimation is used. The estimation MSE decreases as the oversam-
pling factor S increases, the interest of oversampling is more important at
low SNR.

For S = 1 or 2 samples per symbol, the results obtained with the EKF
are close to the theoretical bound for slow and moderate phase evolutions.
For S = 4, the BCRB is lower than for S = 2 but the EKF performance does
not show the same improvement.

When using a limited bandwidth BOC or the ideal BOC shaping funtion,
we obtain the same performance in standard satellite communications sce-
narios if the bandwidth is large enough. But we have also seen the limitations
of the algorithm when having an extremely rapidly varying phase evolution
with respect to the symbol interval.

We have shown that the use of most sophisticated techniques, (i.e. Bayesian
filters), computationally heavier and more difficult to tune, are not necessary
in this case. We obtain mostly the same performances, or slightly looser, than
using the EKF.
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