
HAL Id: hal-00447404
https://hal.science/hal-00447404

Submitted on 14 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An EM algorithm for path delay and complex gain
estimation of slowly varying fading channel for CPM

signals
Habti Abeida, Jean-Marc Brossier, Laurent Ros, Jordi Vilà Valls

To cite this version:
Habti Abeida, Jean-Marc Brossier, Laurent Ros, Jordi Vilà Valls. An EM algorithm for path delay
and complex gain estimation of slowly varying fading channel for CPM signals. Globecom 2009 - IEEE
Global Communication Conference (Globecom’09), Nov 2009, Honolulu, Hawaii, United States. 6 p.
�hal-00447404�

https://hal.science/hal-00447404
https://hal.archives-ouvertes.fr


AN EM ALGORITHM FOR PATH DELAY AND COMPLEX GAIN ESTIMATION OF SLOWLY
VARYING FADING CHANNEL FOR CPM SIGNALS

H. Abeida, J.-M. Brossier, L. Ros and J. Vilà Valls

GIPSA-lab/DIS - BP 46 - 38402 Saint-Martin-d’Hères - France

ABSTRACT

This paper addresses the joint path delay and time-varying
complex gain estimation for continuous phase modulation (C-
PM) over a time-selective slowly varying flat Rayleigh fad-
ing channel. We propose an expectation-maximization (EM)
algorithm for path delay estimation in a Kalman smoother
framework. The time-varying complex gain is modeled by
a first order autoregressive (AR) process. Such a modeling
yields to the representation of the problem by a dynamic baye-
sian system in a state-space form that allows the application
of EM algorithm in the context of unobserved data for obtain-
ing an estimate of the path delay. This is used with Kalman
smoother for state estimation. We derive analytically a closed-
form expression of the modified hybrid Cramér-Rao bound
(MHCRB) for path delay and complex gain parameters. Fi-
nally, some numerical examples are presented to illustratethe
performance of the proposed algorithm compared to the con-
ventional generalized correlation method and to the MHCRB.

Index Terms— CPM signal, EM algorithm, hybrid Cram-
ér Rao bound, path delay estimation, maximum-likelihood
(ML) estimation, Kalman smoother filter, Kalman filter, fad-
ing channels.

1. INTRODUCTION

Continuous phase modulation (CPM) is preferred in numer-
ous wireless communications and mobile applications for its
constant envelope property and high spectral efficiency [1].
Binary CPM systems, such as minimum-shift keying (MSK)
and Gaussian MSK (GMSK), containing non-circular (or im-
proper) process [2, 3], have been widely employed in many
applications.

Due to the importance of CPM signals, many frequency
and timing synchronization algorithms have been developed
for such signals [4, 5]. These algorithms, typically catego-
rized in Data-Aided (DA) (see,e.g. [6]) and Non-Data-Aided
(NDA) (see,e.g. [7, 8, 9]) methods, have been designed un-
der the assumption of additive white Gaussian noise channel
(AWGN). However, few research works address CPM time
synchronization over a time-varying channel. We can cite
the recent works proposed in [13, 18] for flat-fading chan-
nels. A maximum likelihood (ML) approach was employed in
[13] for estimating time delay for CPM signals in the special

case of MSK signal. However, [13, 18] do not consider the
bayesian approach to take into account the prior distribution
of the unknown time-varying complex gains of the channel,
which need to be estimated in practice.

Assuming that the time-varying complex gains can be mod-
eled by a first order autoregressive (AR1) process (e.g. [22]),
the problem of time synchronization over Rayleigh flat-fading
channels can be formulated as a dynamic state-space bayesian
system with unknown (hidden) complex gains. So, we are
facing a problem of state estimation in a nonlinear dynami-
cal system with unknown parameters, which is a problem of
practical interest in numerous applications. In many cases,
the parameters of the dynamic model for a real system are not
known exactly and need to be estimated. In reference [14], an
EM algorithm [12] combined with a Kalman smoother [23]
was proposed to compute the ML estimates of the speech
recognition system parameters while also providing the state
estimates. Recently, the EM algorithm has been applied to
a lot of problems for parameter estimation and learning (see
e.g. [15, 17, 16]).

In order to evaluate the estimator performance, lower bou-
nds on the Mean Square Error (MSE) are needed. One of the
most used is the Craḿer-Rao Bound (CRB) [29]. Depend-
ing on the prior knowledge available on parameters, the CRB
has different expressions. Among which, the Hybrid CRB
(HCRB) is considered in the case of hybrid vector that con-
tains deterministic and random parameters (see e.g., [26, 27]).
We note that the HCRB generalizes the classical CRB (see
e.g., [29, 28]) and the bayesian CRB (BCRB) [24]. How-
ever, the true expression of CRB is sometimes difficult to de-
rive analytically. To overcome this difficulty, other CRB’s
have been considered in the literature such as the Modified
CRB (MCRB) (see, e.g., [4]), which is in general looser (i.e.,
lower) than the CRB.

In this paper, we describe the EM algorithm for jointly es-
timating path delay and complex gains over a slow Rayleigh
flat-fading channel in the general case of a CPM signal. We
first model the time-varying complex gains with a state space
model. Then, we estimate the path delay with an EM algo-
rithm. Once we have the estimate of the path delay, complex
gains estimates are computed with Kalman smoother. We also
derive an analytical closed-form expression of the modified
HCRB (MHCRB) for path delay and complex gains. This



bound is used to evaluate the performance of the proposed
EM algorithm.

The paper is organized as follows. Section 2 describes the
CPM signal model, the AR model and the state-space repre-
sentation of the problem. The EM algorithm is presented in
section 3. The MHCRB is derived in section 4 and finally
some simulations are presented in section 5.

The following notations are used throughout the paper.
Matrices and vectors are represented by bold upper case and
bold lower case characters, respectively.I is the identity ma-
trix. Vectors are by default in column orientation, whileT , H
and∗ stand for transpose, conjugate transpose and conjugate,
respectively.E(.), Tr(.) and‖.‖ are the expectation, trace and
norm operators respectively.

2. PROBLEM STATEMENT AND ESTIMATION
OBJECTIVES

Following [1], the complex envelopes(t,a) of a CPM signal
can be written ass(t,a) = eiφ(t,a) where the phaseφ(t,a) of
s(t,a) is given by

φ(t,a) = 2πh
∑

j∈Z

ajq(t − jT ), (1)

whereT is the symbol period anda
def
= (. . . , a−2, a−1, a0, a1-

, a2, . . .) is the independent identically distributed (i.i.d.) bi-
nary data sequence, with each element taking on values{±1}.
q(t) =

∫ t

0
g(u)du corresponds to the phase pulse shaping

function that describes how the underlying phase change±πh
evolves with time whereg(t), the frequency shaping filter, is
positive and non-zero on the interval[0, LT ], L is the cor-
relation length. The modulation indexh determines the rate
of change of frequency in the signalling interval. Finally,we
note that ifnT ≤ t ≤ (n+1)T the phaseφ(t,a) given by (1)
can be written as

φ(t,a) = πh
n−L
∑

j=−∞

aj +2πh
L−1
∑

j=0

an−jq(t− (n− j)T ). (2)

Transmittings(t,a) over a frequency-flat, slow fading Ra-
yleigh channel results in the following received waveform

y(t) = α(t)s(t − τ,a) + b(t), (3)

whereα(t) is a zero-mean Gaussian complex circular mul-
tiplicative gain of varianceσ2

α, introduced by the flat fading

channel with autocorrelation functionRα(∆t)
def
= σ2

αE(α(t)
α∗(t−∆t)), τ is the fixed unknown path delay, andb(t) is an
additive white Gaussian complex circular noise with bilateral
spectral power densityN0.

The equivalent discrete-time signal model observed dur-
ing N signaling intervals, after low-pass filtering and sam-
pling at rateTs = T/M is given by

y(kTs) = α(kTs)sk(τ,a) + b(kTs), k = 0, . . . ,MN − 1
(4)

wheresk(τ,a)
def
= s(kTs − τ,a) = eiφk(τ,a) andφk(τ,a)

def
=

φ(kTs − τ,a). Note that, after antialiasing filtering (with cut-
off frequencyM/T ) and sampling, the noise termb(k) is as-
sumed white with a known varianceσ2 = N0

Ts

.
From (2), we obtain after some easy manipulations of in-

dices that the phase termφk(τ,a) can be expressed as

φnM+m(τ,a)
def
= φ((nM + m)Ts − τ,a)

= πh
n−L
∑

j=−∞

aj + 2πh
L−1
∑

j=0

an−jqj,m(τ),(5)

for eachn ≥ 0 and for eachm such as0 ≤ m ≤ M − 1, the
τ -dependent coefficientsqj,m(τ) are defined byqj,m(τ)

def
=

q(mTs + jT − τ). The complex gain of the channelα(.)
does not change during symbol period but varies from sym-
bol to symbol because the gain is assumed to be slowly time-
varying. This implies that the coefficientsα((nM + m)Ts)
for m = 0, . . . ,M − 1, all equal to the same value denoted
by αn. Then the discrete-time version of (4) can be written as
follows:

y((nM +m)Ts) = αnsnM+m(τ,a)+b((nM +m)Ts). (6)

Collecting the samples of the received signal within one

slot to form a vectoryn
def
= (y((nM)Ts), . . . , y((nM +M −

1)Ts))
T yields the following model

yn = αngn(τ,a) + bn, (7)

wheregn(τ,a)
def
=

(

eiφnM (τ,a), . . . , eiφnM+M−1(τ,a)
)T

, and

bn
def
= (b((nM)Ts), . . . , b((nM + M − 1)Ts))

T is aM × 1
noise vector with covariance matrixσ2I.

Among various channel models, the information theoretic
results in [10] show that the first-order AR model provides a
sufficiently accurate model for time-selective fading channels
and therefore, will be adapted henceforth. Specifically,αn

varies according to

αn = γαn−1 + en (8)

where the noiseen is zero-mean Gaussian complex circular
with a known varianceσ2

e and is statistically independent of
αn−1. Using (8), simple manipulations lead to

σ2
e = σ2

α(1 − γ2) andγ = E(αnα∗
n−1) (9)

According to Jakes’ model [21], we haveγ = J0(2πfdT ),
whereJ0(.) is the first kind 0th-order Bessel function andfd

denotes the maximum Doppler shift.
Having the model for the variation of the channel, and

from eq. (7), we can obtain the following state space repre-
sentation of the problem

{

αn = γαn−1 + en

yn = αngn(τ,a) + bn.
(10)



The initial stateα0 is assumed to be Gaussian complex circu-
lar with a known varianceσ2

0 .
In general, the objective is to jointly estimate the path de-

lay parameterτ and the stateα
def
= (α1, . . . , αN−1) using the

set of received signalsy
def
= (yT

0 , . . . ,yT
N−1)

T . In this paper,
however, we will assume, except in section 4, that the trans-
mit symbol sequencea is known at the receiver, and in order

to simplify notation we usegn(τ)
def
= gn(τ,a) .

Note that ifτ is known, the state parametersαn can be
inferred using a Kalman smoother [11]. We note that, due
to the presence of unobserved dataα, the maximum likeli-
hood (ML) method can not be used because the computation
of the likelihood functionf(y|a; τ) = E(f(y|α,a; τ)) in a
closed-form and its maximization w.r.t.τ seems to be an in-
tractable problem. In the following section, we describe the
Expectation-Maximization (EM) algorithm to find the ML es-
timates.

3. THE EM ALGORITHM

The EM algorithm [12] is an iterative method to find the ML
estimates of parameters in the presence of unobserved data.
The idea behind the algorithm is to augment the observed data
with latent data, which can be either missing data or parame-
ter values. The algorithm can be broken down into two steps:
the E-step and the M-step. We now describe an EM algorithm
for our model. Following the procedure given in [14, Sec. B],
we consider the received datay as incomplete data, and de-

fine the complete data asz
def
= (yT ,αT )T . Since the state is

Markov, the likelihood function of the complete data is given
by

P (z|a; τ)=P (α0)

N−1
∏

n=1

P (αn|αn−1)

N−1
∏

n=0

P (yn|αn,a; τ) (11)

Due to the Gaussian noise assumption, we have

ln(P (z; τ)) = C −
1

σ2

N−1
∑

n=0

‖yn − αngn(τ)‖2 (12)

−
1

σ2
e

N−1
∑

n=1

|αn − γαn−1|
2 −

1

σ2
0

‖α0‖
2,

whereC is a constant that only depends on the state noise
variances. Each iterative processp = 0, 1, 2, . . ., in the EM
algorithm for estimatingτ from y consists of the following
two steps:

E-step. Given the measurementsy and an estimate of the
model parameter from the previous iterationτ (p), we
calculate:

Q(τ, τ (p))
def
= E(ln P (z; τ)|y,a; τ (p)),

where the expectation is taken with respect toα condi-
tioned ony and the latest estimate ofτ , τ (p).

M-step. This step findsτ (p+1), the value ofτ that maximizes
Q(τ, τ (p)) over all possible values ofτ :

τ
(p+1) = argmaxτQ(τ, τ (p))

This procedure is repeated until the sequencesτ (0), τ (1),
. . . converges.

The E-step uses a Kalman smoother to estimate the state
αn for which the functionQ can be expressed as (see Ap-
pendix A) :

Q(τ, τ (p)) = −
1

σ2

N
∑

n=1

(

Tr
(

S
(p)
n|Ngn(τ)gH

n (τ) (13)

+
(

yn − α̂
(p)
n|Ngn(τ)

) (

yn − α̂
(p)
n|Ngn(τ)

)H
))

where α̂
(p)
n|N

def
= E(αn|y,a; τ (p)) and S

(p)
n|N

def
= E((αn −

α̂
(p)
n|N ) (αn − α̂

(p)
n|N )H |y,a; τ (p)) can be computed for alln =

0, . . . , N − 1 from the fixed interval Kalman smoother [14,
23], using the parameter estimates obtained at iterationp. The
smoother consists of a Backward pass that follows the stan-
dard Kalman filter Forward recursions given as:
Forward recursion:

α̂
(p)
n+1|n = γα̂(p)

n

S
(p)
n+1|n = γ2S(p)

n + σ2
e

Kn+1 = S
(p)
n+1|ngH

n (τ (p))(σ2I + S
(p)
n+1|ngn(τ (p))gH

n (τ (p)))

α̂
(p)
n+1 = α̂

(p)
n+1|n + Kn+1(yn − gn(τ (p))α̂

(p)
n+1|n)

S
(p)
n+1 = S

(p)
n+1|n − S

(p)
n+1|nKn+1gn(τ (p)) (14)

Backward recursion:

Jn−1 = γS
(p)
n−1S

(p)−1
n|n−1 (15)

α̂
(p)
n−1|N = α̂

(p)
n−1Jn−1(α̂

(p)
n|N − γα̂

(p)
n−1)

S
(p)
n−1|N = S

(p)
n−1 + Jn−1(S

(p)
n|N − S

(p)
n|n−1)J

∗
n−1

S
(p)
n,n−1|N = S(p)

n JH
n−1 + Jn(S

(p)
n+1,n|N − γS(p)

n )J∗
n−1

Remark 1 We note that the steps of the EM algorithm can
be extended in the case where the parameters(σ2, σ2

e , σ2
0 , γ)

are assumed unknown. By adapting the same steps of the ap-
proach proposed in [15], the estimates of these parameters
can be obtained in E-step by maximizing the functionQ given
by (18).

4. HYBRID CRAM ÉR RAO BOUND

The CRB is an important criterion to evaluate how good any
unbiased estimator can be since it provides the MSE bound
among all unbiased estimators. In this section we assume that



the symbol{an} are i.i.d. and equiprobable with each ele-
ment taking on values{±1}. Since the parameters of interest
are the deterministic parameterτ and the random parameter
stateα, we have derived in [25] an analytical expression of
the MHCRB using well known properties of the gaussian dis-
tribution and Markov state evolution of AR parameters. In
Section 5, we will show the performance of the proposed EM
algorithm and compare it to the MHCRB.

Result 1 The state and delay parameters are decoupled in
the modified hybrid Fisher information matrix (MHFIM) in
the case of CPM signals as follows:

I =

(

I(τ,τ) 0

0 I(α,α) + B

)

whereI(τ,τ) = 8π2h2Nρξ(τ), I(α,α) = M
σ2 I and the matrix

B has the following non-zeros elementsB(1, 1) = 1+γ2

σ2
e

−

Eα0

(

∂2 ln P (α0)
∂α0∂α∗

0

)

, B(k, k) = 1+γ2

σ2
e

andB(k, k−1) = B(k−

1, k) = − γ
σ2

e

, for k = 2, . . . , N , and whereρ
def
=

σ2
α

σ2 is the

SNR andξ(τ)
def
=

∑M−1
m=0

∑L−1
j=0 g2(mTe + jT − τ).

Consequently

MHCRB(τ) =
1

8π2h2Nξ(τ)

1

ρ
(16)

MHCRB(α) =

(

M

σ2
+ B

)−1

(17)

We assume a classical non-informative prior onα0 (see, e.g.,

[19]). As a consequence,Eα0

(

∂2 ln P (α0)
∂α0∂α∗

0

)

= 0.

We remark that theMHCRB(τ) is inversely proportional
to ρ and depends on the modulation indexh, the shaping filter
g and the correlation length. (16) remains valid for all CPM
signal. This expression also is similar to the MCRB derived
in [4, rel. (2.4.54)]. Finally, we remark that theMHCRB(α)
does not depend on the parameterτ .

5. SIMULATION RESULTS

In this section, we present numerical examples to illustrate
the performance of the proposed algorithm to estimate jointly
the path delay and complex gains in the special case of binary
GMSK signal with a bandwidth-bit time productBT = 0.3, a
modulation indexh = 1

2 and a4T -wide approximation of the
Gaussian shaping filter,i.e. L = 4 (seee.g. [4, rel. (4.2.8)]).
These parameters are those of GSM systems. The channel is
simulated according to the Jakes model [21, 22] with doppler-
time product offdT = 0.000738, corresponding to a carrier
frequency of1.8 GHz, a mobile speed of120 km/h, and a
transmission rate of270 kb/s. First order AR process, with
a known coefficientγ = 0.99999 (which corresponds to a
slow fading channel) is chosen to model the time variation

of the complex gains of the channel. The symbols{an} are
assumed known at the receiver, the numberN of signaling
intervals is set toN = 200, the oversampling ratio is equal to
M = 8, and a fixed value(τ = 0.4) is used as the normalized
unknown delayτ/T . In the simulations, each value of the
MSE is obtained by averaging over1000 independent runs.

The initial estimate of the unknown parameterτ is given
by the correlation method or chosen in the vicinity of0.4T ,
and the channel is initialized to the known stateα0 assumed
to be a trial of a complex Gaussian random variable with a
known varianceσ2

0 = 1.
Fig. 1 shows one realization of the recursive estimates of

the normalized path delay obtained with the EM algorithm
versus the number of iterations for a SNR of30 dB. This
figure shows the estimated normalized path delay parameter
converges to the true value fairly quickly in the case of slow
flat-fading channel. We note that the EM algorithm still gives
a valid estimate ofτ whenfdT > 0.001; however, in this
case, the EM algorithm converges after about30 iterations as
shown in this figure withfdT = 0.02.
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Fig.1 An EM trajectory for two values offdT with SNR = 30 dB.
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Fig.2 NormalizedMHCRB(τ)/T 2, and estimated MSEE(τ̂ − τ)2/T 2

given by the EM algorithm (ten iterations) and by the correlation method for
fdT = 0.000738, versus SNR.

Fig. 2 compares theMHCRB(τ) normalized toT 2 (given
by (16)) to the MSE of the normalized path delay (i.e. E(τ̂ −
τ)2/T 2) given by the EM algorithm initialized by the esti-
mate given by the correlation method (see,e.g. [20]), and the



correlation method, as a function of the SNR. For compari-
son purpose, we have computed the MSE associated to the
ML method with a perfect knowledge of the complex gains.
As seen from the shown simulation results, performance of
the EM algorithm is very close to the ML method in the case
of perfect knowledge of the complex gains. We observe also
that the EM algorithm significantly outperforms the correla-
tion method based on the maximum of the delay-Doppler am-
biguity function. On the other hand, the performance of the
EM algorithm is close to the MHCRB contrarily to those of
the correlation method.

Fig. 3 compares the MSE for the complex gainsE(‖α̂ −
α‖2) given by the EM algorithm, the Kalman smoother with
a perfect knowledge of the delay path to theMHCRB(α)
given by (17), as a function of SNR. We see that the per-
formance of the EM algorithm and the Kalman smoother are
very close, and the associated estimates reach the MHCRB
when the SNR increases. At low SNR, We recall that the
Modified CRB is, in general, looser than the true CRB.
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α‖2) given by the EM algorithm (ten iterations) forfdT = 0.000738, ver-
sus SNR.
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Fig.4 The normalized MSEE(τ̂ −τ)2/T 2 given by the EM algorithm (ten
iterations) and by the correlation method forSNR = 30 dB, versusfdT .

Fig 4 compares the normalized MSEE(τ̂ − τ)2/T 2 given
by the EM algorithm and the correlation method (see,e.g.
[20]), as a function offdT with SNR = 30 dB. We observe
from this figure that asfdT increases, the MSE of the delay

given by the EM algorithm remains almost constant contrarily
to the MSE given by the correlation method which increases
whenfdT increases.

6. CONCLUSION

We have presented an EM algorithm for joint path delay and
time-varying complex gains estimation for CPM signals over
a time-selective slowly varying flat Rayleigh fading channel.
We have modeled the flat fading channel as a first order au-
toregressive process. The EM algorithm has been combined
with Kalman smoother to yield time-varying complex gains
estimation and ML estimate of the path delay. The proposed
algorithm was reduced to a single-parameter search over the
path delay only. We have also derived a closed-form expres-
sion of the MHCRB for path delay and time-varying complex
gains parameters. The performance of the proposed algorithm
have been evaluated in terms of the MSE and the MHCRB.
Finally, the simulation results have shown that the proposed
algorithm provides better estimation of the delay and com-
plex gains parameters compared to the conventional corre-
lation method. Moreover, the performance of the proposed
algorithm in term of delay estimation is very close to the per-
formance of the ML method in the case of perfect knowledge
of complex gains.
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A. APPENDIX: PROOF OF REL. (13)

Taking the expectation with respect toα conditioned ony,
given the current parameter estimateτ (p), we obtain from (12)
the expectation of the log-likelihood function of the complete
data which can be expressed as

Q(τ, τ (p)) = E(ln(P (z; τ)|y,a; τ (p)) (18)

= c(σ2, σ2
e , σ2

0) −
1

σ2

N−1
∑

n=0

Tr
(

ynyH
n

+ P
(p)
n|Ngn(τ)gH

n (τ) − α̂
(p)∗
n|NyngH

n (τ) − α̂
(p)
n|Ngn(τ)yH

n

)

−
1

σ2
e

N−1
∑

n=0

(

P
(p)
n|N +γ2P

(p)
n−1|N−γ(P

(p)
n,n−1|N+ P

(p)
n−1,n|N )

)

(19)

−
1

σ2
0

|P
(p)
0|N |2, (20)

with P
(p)
n|N

def
= E(αnα∗

n|y,a; τ (p)), P (p)
n,n−1|N

def
= E(αnα∗

n−1|y,

a; τ (p)), P
(p)
n−1,n|N

def
= E(αn−1α

∗
n|y,a; τ (p)) and α̂

(p)
n|N

def
=



E(αn| y,a; τ (p)). We remark that the terms given by (20),
(19) and the variance-dependent constantC do not depend on
τ , then these terms can be removed from (18).
Since

S
(p)
n|N

def
= E

(

|α(n) − α̂
(p)
n|N |2|y,a; τ (p)

)

= P
(p)
n|N − α̂

(p)
n|N α̂

(p)∗
n|N (21)

By deducing the value of̂P (p)
n|N from the relation (21) and

replacing it into (18), we obtain (13).
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[29] H. Craḿer,mathematical methods of statistics, Princeton, NJ:
Prinston Univetisty press, 1946.


