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AN EM ALGORITHM FOR PATH DELAY AND COMPLEX GAIN ESTIMATION OF SLOWLY
VARYING FADING CHANNEL FOR CPM SIGNALS

H. Abeida, J.-M. Brossier, L. Ros and J.aWNalls

GIPSA-lab/DIS - BP 46 - 38402 Saint-Martin-ddtes - France

ABSTRACT case of MSK signal. However, [13, 18] do not consider the

This paper addresses the joint path delay and time-varyingayesian approach to take into account the prior distobuti
complex gain estimation for continuous phase modulation (Cof the unknown time-varying complex gains of the channel,
PM) over a time-selective slowly varying flat Rayleigh fad- Which need to be estimated in practice.
ing channel. We propose an expectation-maximization (EM) Assuming that the time-varying complex gains can be mod-
algorithm for path delay estimation in a Kalman smoothereled by a first order autoregressive (AR1) procesg.(22]),
framework. The time-varying complex gain is modeled bythe problem of time synchronization over Rayleigh flat-fagli
a first order autoregressive (AR) process. Such a modelinghannels can be formulated as a dynamic state-space bayesia
yields to the representation of the problem by a dynamicbayesystem with unknown (hidden) complex gains. So, we are
sian system in a state-space form that allows the applitatiofacing a problem of state estimation in a nonlinear dynami-
of EM algorithm in the context of unobserved data for obtain-cal system with unknown parameters, which is a problem of
ing an estimate of the path delay. This is used with Kalmarpractical interest in numerous applications. In many cases
smoother for state estimation. We derive analytically aetb  the parameters of the dynamic model for a real system are not
form expression of the modified hybrid CramRao bound known exactly and need to be estimated. In reference [14], an
(MHCRB) for path delay and complex gain parameters. Fi-EM algorithm [12] combined with a Kalman smoother [23]
nally, some numerical examples are presented to illusthate Wwas proposed to compute the ML estimates of the speech
performance of the proposed algorithm compared to the corecognition system parameters while also providing theesta
ventional generalized correlation method and to the MHCRBestimates. Recently, the EM algorithm has been applied to
a lot of problems for parameter estimation and learning (see
.0.[15, 17, 16]).

In order to evaluate the estimator performance, lower bou-
nds on the Mean Square Error (MSE) are needed. One of the
most used is the Cragn-Rao Bound (CRB) [29]. Depend-

1. INTRODUCTION ing on the prior knowledge available on parameters, the CRB
has different expressions. Among which, the Hybrid CRB
Continuous phase modulation (CPM) is preferred in numer¢(HCRB) is considered in the case of hybrid vector that con-
ous wireless communications and mobile applications or ittains deterministic and random parameters (see e.qg., T36, 2
constant envelope property and high spectral efficiency [1]We note that the HCRB generalizes the classical CRB (see
Binary CPM systems, such as minimum-shift keying (MSK)e.gd., [29, 28]) and the bayesian CRB (BCRB) [24]. How-
and Gaussian MSK (GMSK), containing non-circular (or im-ever, the true expression of CRB is sometimes difficult to de-
proper) process [2, 3], have been widely employed in manyive analytically. To overcome this difficulty, other CRB’s
applications. have been considered in the literature such as the Modified

Due to the importance of CPM signals, many frequencyCRB (MCRB) (see, e.g., [4]), which is in general looser (i.e.
and timing synchronization algorithms have been developetpwer) than the CRB.
for such signals [4, 5]. These algorithms, typically catego  In this paper, we describe the EM algorithm for jointly es-
rized in Data-Aided (DA) (see.g.[6]) and Non-Data-Aided timating path delay and complex gains over a slow Rayleigh
(NDA) (see,e.g. [7, 8, 9]) methods, have been designed un-flat-fading channel in the general case of a CPM signal. We
der the assumption of additive white Gaussian noise channétst model the time-varying complex gains with a state space
(AWGN). However, few research works address CPM timanodel. Then, we estimate the path delay with an EM algo-
synchronization over a time-varying channel. We can citgithm. Once we have the estimate of the path delay, complex
the recent works proposed in [13, 18] for flat-fading chan-gains estimates are computed with Kalman smoother. We also
nels. A maximum likelihood (ML) approach was employed inderive an analytical closed-form expression of the modified
[13] for estimating time delay for CPM signals in the specialHCRB (MHCRB) for path delay and complex gains. This

Index Terms— CPM signal, EM algorithm, hybrid Cram-
ér Rao bound, path delay estimation, maximum-likelihoo
(ML) estimation, Kalman smoother filter, Kalman filter, fad-
ing channels.



bound is used to evaluate the performance of the proposegheresy(r,a) < s(kT, — 7, a) = e+ andg;(r,a)

EM algorithm. #(kT, — 7,a). Note that, after antialiasing filtering (with cut-
The paper is organized as follows. Section 2 describes thgff frequencyM /T) and sampling, the noise terbik) is as-
CPM signal model, the AR model and the state-space reprgumed white with a known variane@ =
sentation of the problem. The EM algorithm is presented in  From (2), we obtain after some easy mampulatlons of in-
section 3. The MHCRB is derived in section 4 and flna||yd|ces that the phase term(q—, a) can be expressed as
some simulations are presented in section 5.
The following notations are used throughout the paper. Gnrim (T, ) def ¢((nM +m)T, — T, a)
Matrices and vectors are represented by bold upper case and eI
bold lower case characters, respectivélis the identity ma- = 7h Z a; + 27h Z n—qj.m(7),(5)
trix. Vectors are by default in column orientation, while H
andx stand for transpose, conjugate transpose and conjugate,

respectivelyE(.), Tr(.) and||.|| are the expectation, trace and for eachn > 0 and for eachn such ad) <m < M —1, tdh?

j=—o00

norm operators respectively. T-dependent coefficients; ,,,(17) are defined by, .. (1) =
q(mTs + jT — 7). The complex gain of the channel..)
2. PROBLEM STATEMENT AND ESTIMATION does not change during symbol period but varies from sym-
OBJECTIVES bol to symbol because the gain is assumed to be slowly time-

_ ) varying. This implies that the coefficient§ (nM + m)Ty)
Following [1], the complex envelop€(t, a) of a CPM signal - ¢4, — (.. A7 — 1, all equal to the same value denoted

can be written as(t, a) = () where the phase(t,a) of ., Then the discrete-time version of (4) can be written as
s(t,a) is given by follows:

o(t,a) = 27thajq(t —4T), (1) y((nM+m)Ts) = anSnpr+m (7T, a) +b(RM +m)Ts). (6)
JEL
Collecting the samples of the received signal within one

whereT is the symbol period anal def (...,a_a,a_1,a0,a1- def B
“as,...) is the independent identically distributed (i.i.d.) bi- i')‘;f t)‘;}c’;{glgs"terfg}gﬁov_virfgmﬁgm’ o y((nM+ M

nary data sequence with each element taking on vélttié$.

fo u)du corresponds to the phase pulse shaping Vi = Qngn(T,a) + by, )
funct|on that descrlbes how the underlying phase change
evolves with time wherg(t), the frequency shaping filter, is whereg,, (,a) % (eidna(ra) _’eiasnMJrM_l(r,a))T, and
positive and non-zero on the intervill LT, L is the cor- def

b, < (b((nM)Ty), ..., b((nM + M — 1)T,))" isaM x 1

relation length. The modulation indéxdetermines the rate noise vector with covariance matrieL.

of change of frequency in the signalling interval. Finallyg

; . Among various channel models, the information theoretic
22;6;235;{3;25 < (n+1)T'the phase(t, a) given by (1) results in [10] show that the first-order AR model provides a

neIL L1 sufficiently accurate model for time-selective fading ahels

o(t,a) = h Z aj+2mh Z an_jq(t—(n—§)T). (2) and therefore, will be adapted henceforth. Specifically,

j=—o00 =0 varies according to

Transmittings(¢, a) over a frequency-flat, slow fading Ra- Oy = Y1+ € (8

yleigh channel results in the following received waveform _ _ _ _
where the noise,, is zero-mean Gaussian complex circular

y(t) = a(t)s(t — 7,a) + b(1), (3)  with a known variancer? and is statistically independent of

wherea(t) is a zero-mean Gaussian complex circular mul-®»—1- Using (8), simple manipulations lead to
tiplicative gain of variance 2, introduced by the flat fading

02—0 1 —~?) andy = E(apo_ 9
channel with autocorrelation functiaR, (At) = o o2E(a(t) al ands (@n0-1) ©)
o*(t— At)), 7 is the fixed unknown path delay, ab@) is an According to Jakes’ model [21], we haye= Jy (27 f4T),
additive white Gaussian complex circular noise with bilakte whereJy(.) is the first kind Oth-order Bessel function afig
spectral power densit. denotes the maximum Doppler shift.

The equivalent discrete-time signal model observed dur- Having the model for the variation of the channel, and
ing N signaling intervals, after low-pass filtering and sam-from eq. (7), we can obtain the following state space repre-
pling at rateT, = T'/M is given by sentation of the problem

y(kTs) = a(kTs)sg(1,a) + b(kTs), k=0,..., MN — 1 { Qn = Y0n_1 +e€n

(@) Vi = ngn(r,a) + by (10)



The initial staten is assumed to be Gaussian complex circuM-step. This step finds-®*1) the value of- that maximizes

lar with a known variance?. Q(r,7®)) over all possible values of;
In general, the objective is to jointly estimate the path de-
def : 7P+ — argmax_Q(r, 7))
lay parameter and the statex = (ay,...,an_1) using the TR
. . def H
set of received signalg = (y( ,...,yy_;)" In this paper, This procedure is repeated until the sequen¢®s (1),
however, we will assume, except in section 4, that the trans- ... converges.
mit symbol sequence is known at the receiver, and in order
to simplify notation we usg, (7) < g, (r,a) . The E-step uses a Kalman smoother to estimate the state

Note that if 7 is known, the state parameters can be n fqr which the functionQ can be expressed as (see Ap-

inferred using a Kalman smoother [11]. We note that, dud€ndix A): N
to the presence of unobserved datathe maximum likeli- (») 1 ( ( (») H

. ) =—= Tr (S n - 13
hood (ML) method can not be used because the computatlo(%(T ™) o? — F\"nin8 ()& (7) (13)
of the likelihood f.unctlon.f(y|a;.7-) = E(f(y|la,a;7)) in a » » I
closed-form and its maximization w.r.t. seems to be an in- + (yn - dTﬁNgn(TD (yn — dﬂﬁNgn(TD ))
tractable problem. In the following section, we describe th

Expectation-Maximization (EM) algorithm to find the ML es-

def def

timates. whereal\ = E(auly,a;7®) and S\ = E((an —
~ (p) _ A~ \H . ~(p) _
a'y) (am —éain )y, a; 7\P)) can be computed for all =
n|N n|N ° :
3. THE EMALGORITHM 0,1. o =1 erom the fixed interval Kalman smoother [14,

The EM algorithm [12] is an iterative method to find the ML 23], using the parameter estimates obtained at iteratigine
estimates of parameters in the presence of unobserved da%g]oother con§|sts of a Backward. pass_that follows the stan-
The idea behind the algorithm is to augment the observed dag'frd Kalman f|IFer Forward recursions given as:
with latent data, which can be either missing data or paraméEorWard recursion:

ter values. The algorithm can be broken down into two steps: ()

5(P)
the E-step and the M-step. We now describe an EM algorithn%ﬂ\" T
for our model. Following the procedure given in [14, Sec. B],Sfﬁun - 7257(11)) + 02
we consider the received dagaas incomplete data, and de-
! _ (p) H 2 (p) H
fine the complete data as™ (y”,a”)7. Since the state is Koy = S84 (1) (02 + Snp_t,.1|ngn(T(P))gn (r®)))
g/lyarkov, the likelihood function of the complete data is give @Eﬂ1 - d;p-i)-l\n + K1 (yn — gn(T(p))dglplun)
N-1 N-1 (»  _ (p) (p) (»)
S, = S -5 Kni18n 14
P(zla; 7)=P(ao)] [ Planlan-1)[ [P(ynlan, a;7) (11) ntl nttn = Sntij o180 (T) (14)
n=1 n=0 Backward recursion:
Due to the Gaussian noise assumption, we have ®) op)—1
1 = A1 (15)
N-1
1 A (P) N ~(p) ~(p)
I(P(z;7) = C——= Y llyn—anga(D* (12 iy = @ Ty @)
g
X N_ln_o . S’I(Lpf)llN = 57(31)1 + Jnfl(sgfgv - S’ELI|)7)L71) n-1
- = > Jam =y * = ?3”%”2’ SP = ST ISP N =S
€ n=1

. . Remark 1 We note that the steps of the EM algorithm can
whereC' is a constant that only depends on the state NOISE ovtended in the case where the parameietso?, o2, )
e’ Y0

variances. Each iterative procgss= 0,1,2,..., in the EM .

. L : . are assumed unknown. By adapting the same steps of the ap-
algorithm for estimating- from y consists of the following : .
two steps: proach proposed in [15], the estimates of these parameters

can be obtained in E-step by maximizing the func@pgiven
E-step. Given the measuremengs and an estimate of the by (18).

model parameter from the previous iteratiof), we

calculate:

Q(r, T(p))
The CRB is an important criterion to evaluate how good any
where the expectation is taken with respeatttoondi-  unbiased estimator can be since it provides the MSE bound
tioned ony and the latest estimate of (). among all unbiased estimators. In this section we assurnhe tha

4. HYBRID CRAM ER RAO BOUND

C B (In P(z; 1)y, a3 7®),



the symbol{a,,} are i.i.d. and equiprobable with each ele- of the complex gains of the channel. The symbjls} are
ment taking on value$§+1}. Since the parameters of interest assumed known at the receiver, the numbepf signaling
are the deterministic parameterand the random parameter intervals is set taV = 200, the oversampling ratio is equal to
statea, we have derived in [25] an analytical expression of M = 8, and a fixed valuér = 0.4) is used as the normalized
the MHCRB using well known properties of the gaussian disunknown delayr/T'. In the simulations, each value of the
tribution and Markov state evolution of AR parameters. INMSE is obtained by averaging oved00 independent runs.
Section 5, we will show the performance of the proposed EM  The initial estimate of the unknown parameteis given
algorithm and compare it to the MHCRB. by the correlation method or chosen in the vicinity0ofT",
and the channel is initialized to the known stateassumed

Result 1 The state and delay parameters are decoupled ifg pe a trial of a complex Gaussian random variable with a
the modified hybrid Fisher information matrix (MHFIM) in known variancer2 = 1.

the case of CPM signals as follows: Fig. 1 shows one realization of the recursive estimates of

I 0 the normalized path delay obtained with the EM algorithm
I= ( (87) L . +B ) versus the number of iterations for a SNR 3#f dB. This
(@) figure shows the estimated normalized path delay parameter
here] — R2W2N I _ My h i converges to the true value fairly quickly in thg case_of _slow
wherel () = 8m*h*Npg(7), Lia.a) = pzlandt ‘f+Tf‘tr'X flat-fading channel. We note that the EM algorithm still give
B has the following non-zeros elemel¢1, 1) = ~5- — 3 valid estimate of when f,7 > 0.001; however, in this
Eq, (%),B(k, k) = iif andB(k,k—1) = B(k—  case, the EM algorithm converges after abgfuiterations as
oo e shown in this figure withf; 7' = 0.02.

1,k) = =2, fork = 2,..., N, and wherep def ‘Z_—% is the

def - . : ]
SNR aﬂ(f(T) = Z%:Ol f:()l 92 (mTe + 97T — T)' o4r ,T=0.000738 - |
Consequently
035
MHCRB(7) = ! ! (16)
"7 BeRENE(T) p g
M —1 go.zs
MHCRB(a) = (2 + ) 17) £
g = 02
We assume a classical non-informative priorcgn(see, e.g., 015}
2
[19]). As a consequencg,,, (%fgg‘))) =0. S S S N S S S
We remark that thaIHCRB(7) is inversely proportional C T Bmonmumeer . ¥

to p and depends on the modulation indexhe shaping filter
g and the correlation length. (16) remains valid for all CPM
signal. This expression also is similar to the MCRB derived L e
in [4, rel. (2.4.54)]. Finally, we remark that tddHCRB () o v
) i v v
does not depend on the parameter Y De—

v Correlation method

O EM algorithm

+ ML method known gains
® MHCRB

Fig.1 An EM trajectory for two values of ;7 with SN R = 30 dB.

5. SIMULATION RESULTS

MHCRB(1)/T?

In this section, we present numerical examples to illustrat
the performance of the proposed algorithm to estimateljoint 107}
the path delay and complex gains in the special case of binary
GMSK signal with a bandwidth-bit time produBtI” = 0.3, a
modulation index: = % and a47T'-wide approximation of the 107} - ~ = = .
Gaussian shaping filtere. L = 4 (seee.qg. [4, rel. (4.2.8)]). SNR (dB)

These parameters are those of GSM systems. The channelg > normalizedMIHCRB(r) /T2, and estimated MSE(+ — 7)2 /T2
simulated according to the Jakes model [21, 22] with dopplefgiven by the EM algorithm (ten iterations) and by the cotielamethod for
time product off;T" = 0.000738, corresponding to a carrier fiT = 0.000738, versus SNR.

frequency of1.8 GHz, a mobile speed df20 km/h, and a Fig. 2 compares thelHCRB(7) normalized tdl"? (given
transmission rate di70 kb/s. First order AR process, with by (16)) to the MSE of the normalized path delag.(E(7 —

a known coefficienty = 0.99999 (which corresponds to a 7)2/7?) given by the EM algorithm initialized by the esti-
slow fading channel) is chosen to model the time variatiormate given by the correlation method (ses.[20]), and the




correlation method, as a function of the SNR. For comparigiven by the EM algorithm remains almost constant contraril
son purpose, we have computed the MSE associated to thethe MSE given by the correlation method which increases
ML method with a perfect knowledge of the complex gains.when f; T increases.

As seen from the_shown simulation results, perf_ormance of 6. CONCLUSION

the EM algorithm is very close to the ML method in the case

of perfect knowledge of the complex gains. We observe alsQye nhave presented an EM algorithm for joint path delay and
that the EM algorithm significgntly outperforms the correla time-varying complex gains estimation for CPM signals over
tion method based on the maximum of the delay-Doppler amy time-selective slowly varying flat Rayleigh fading chalnne
biguity function. On the other hand, the performance of thgye have modeled the flat fading channel as a first order au-
EM algorithm is close to the MHCRB contrarily to those of {gregressive process. The EM algorithm has been combined
the correlation method. with Kalman smoother to yield time-varying complex gains
Fig. 3 compares the MSE for the complex galf{§l& —  estimation and ML estimate of the path delay. The proposed
a|?) given by the EM algorithm, the Kalman smoother with algorithm was reduced to a single-parameter search over the
a perfect knowledge of the delay path to thBEICRB(«x)  path delay only. We have also derived a closed-form expres-
given by (17), as a function of SNR. We see that the persion of the MHCRB for path delay and time-varying complex
formance of the EM algorithm and the Kalman smoother argains parameters. The performance of the proposed algorith
very close, and the associated estimates reach the MHCRive been evaluated in terms of the MSE and the MHCRB.
when the SNR increases. At low SNR, We recall that theFinally, the simulation results have shown that the progose

Modified CRB is, in general, looser than the true CRB. algorithm provides better estimation of the delay and com-
- } ‘ plex gains parameters compared to the conventional corre-
~ O phagonm oty lation method. Moreover, the performance of the proposed
g MHCRB algorithm in term of delay estimation is very close to the-per
" ? o ] formance of the ML method in the case of perfect knowledge

of complex gains.

MHCRB(a)
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A. APPENDIX: PROOF OF REL. (13)

Fig.3 NormalizedMHCRB(«x), and estimated normalized MS;EE(H&—

a|?) given by the EM algorithm (ten iterations) fg 7' = 0.000738, ver- Taking the expectation with respect ¢o conditioned ony

sus SNR. . . .
} given the current parameter estimat& , we obtain from (12)
1 R e the expectation of the log-likelihood function of the coetpl
7 data which can be expressed as
v
Vv  Correlation method
10" v : : : : g
L v Q(r, 7)) = E(In(P(z; 7)|y, a; 7" (18)
5oy o ] N-1
= ‘ = (0% 02,0%) — Tr (ynyf
107°F g n=0
+ P(P) (1) H(T) . @(P)* H(T) - d(P) (1) H
© 0 .6.0 0 o5 0 .45 6.0 6 0 nl]\/‘gn g'n, n‘Nyngn nlNgn Yn
U B LN p) 12 p) ®) (»)
2 4 6 8 10 12 14 P p p p
faT x10™ - ;Z(Pn|N+7 Pnfl\N 77(Pn,n71\N+ Pnfl.,n|N)) (19)
€n=0

Fig.4 The normalized MSEE(+ —7)2 /T2 given by the EM algorithm (ten
iterations) and by the correlation method N R = 30 dB, versusfT.
Fig 4 compares the normalized M$E+ — )% /T2 given
by the EM algorithm and the correlation method (ses. 1 (p) def ) )y p®
[20)), as a function off;T" with SN R = 30 dB. We observe with Py = E(aniﬁ'% ST Fonoa

from this figure that ag, T increases, the MSE of the delay a; 7)), P7§,p_)1,nuv = E(ay_1aly,a;7®) and 0‘%\/

1
Pl (20)
0

def
é E(anazfl ‘yv
def



E(an| y,a; 7). We remark that the terms given by (20), [14] V. Digalakis, J. Rohlicek and M. Ostendorf, “ML estimation
(19) and the variance-dependent constato not depend on
7, then these terms can be removed from (18).

Since

def N
S = E(la(n) — &l Py, air®)
(p) ~ () ~(p)*
Pn1|jN o anZTNanp\N (21)

By deducing the value OPT(L”J)V from the relation (21) and

replacing it into (18), we obtain (13).
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