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Abstract—This paper deals with the on-line estimation of a
dynamical carrier phase and a frequency offset in a digital
receiver. We consider a Brownian phase evolution with a linear
drift in a Data Aided scenario. The proposed study is relative to
the use of an oversampled signal model after matched filtering,
leading to a coloured reception noise and a non-stationary power
signal. We derive a closed-form expression of the Hybrid Cramér-
Rao Bound (HCRB) for this estimation problem. We use a Binary
Offset Carrier (BOC) function as shaping pulse. Our numerical
results show the potential gain of using the oversampled signal for
estimating the dynamical phase and frequency offset, obtaining
better performances than using a classical synchronizer.

Index Terms—Phase estimation, HCRB, oversampling, carrier
synchronization, GALILEO, BOC

I. INTRODUCTION

Synchronization is a fundamental part in modern digital

receivers. A synchronizer has to estimate some parameters

such as carrier frequency, carrier phase and timing epoch.

This knowledge is required to recover the signal of interest

correctly. In this paper we focus our attention on the dynamical

phase and frequency offset estimation problem. When having

an estimation process we need lower bounds on the estimation

performance to be used as a benchmark. The family of

Cramér-Rao Bounds (CRBs) has been shown to give accurate

estimation lower bounds in many scenarios [1].

Several Cramér-Rao lower bounds have appeared in the

literature.

For constant phase offset estimation in the so-called Data-

Aided (DA) scenario, Rife et al. [9] derive CRB closed-

form expressions; Cowley [10] does so in the Non-Data-Aided

(NDA) scenario.

For time-varying parameter estimation, an analytical expres-

sion of a general on-line recursive Bayesian CRB (BCRB)

is given by Tichavský [8]. Bay et al. [6] introduced an

Asymptotic BCRB(ABCRB), provide an analytical expression

of the off-line CRB and BCRB, and derived the general

formulation for the Hybrid CRB (HCRB) [7], useful when

having both random and deterministic parameters.

Most of the lower bounds assume a white observation noise

and a stationary signal.

In this contribution, we consider an oversampled (regarding

the symbol time interval) signal model after receiver matched

filtering, this implies dealing with a coloured reception noise

and taking into account the non-stationarity of the digital

signal power (cyclostationarity when transmitting a random

sequence), as done in [3]. Although this scenario is standard

in satellite radio-localization based on a BOC time-limited

shaping pulse modulation, there is no theoretical study con-

cerning the performance of the dynamical oversampled phase

and frequency offset estimation in this context (to the best

of our knowledge). We derive a closed-form expression of the

on-line Hybrid Cramér-Rao Bound (HCRB) for the dynamical

phase and frequency offset estimation in a Data Aided (DA)

scenario, assuming a Brownian phase evolution with a linear

drift. The study allows to measure the potential gain for

phase and frequency offset estimation provided by the use

of the fractionally-spaced processing after matched filtering,

instead of the symbol time-spaced signal. In [4] we propose

an algorithm that approach this lower bound.

This paper is organized as follows. Section II sets the signal

model. Section III recalls the HCRB expressions and derives

the HCRB for this estimation problem. Finally, in Section

IV, the numerical results are presented and interpreted. The

conclusion is given in Section V.

Notations: italic indicates a scalar quantity, as in a; bold-

face indicates a vector quantity, as in a and capital boldface

indicates a matrix quantity as in A. The (k, l)th entry of a

matrix A is denoted [A]k,l. The matrix transpose and self-

adjoint operators are denoted by the superscripts T and H

respectively as in AT and AH . ℜ(·), ℑ(·) and (·)∗ are the real

part, the imaginary part and conjugate of a complex number

or matrix, respectively. Ex denotes the expectation over x. ∇θ
and ∆θ

ψ
represent the first and second-order partial derivatives

operator i.e., ∇θ =
[

∂
∂θ1

· · · ∂
∂θK

]T

and ∆θ
ψ

= ∇ψ∇T

θ
.

II. SIGNAL MODEL

We propose the signal model for the transmission of a

known complex-valued sequence {am}m∈Z
over an Additive

White Gaussian Noise (AWGN) channel affected by a carrier

phase offset θ(t).

A. Oversampled Signal Model

The received complex baseband signal after matched filter-

ing is

y(t) =

[{

T
∑

m

amΠ(t − mT )

}

eiθ(t) + n(t)

]

∗ Π∗(−t)

(1)



where T, Π(t) and n(t) stands for the symbol period, shaping

pulse and circular gaussian noise with a known bilateral power

spectral density (psd) N0.

We define the filtered coloured noise

b(t) = [n(t)] ∗ Π∗(−t) (2)

and the shaping function g̃m(t) as

g̃m(t) = T

∫ +∞

−∞
Π∗(−α)eiθ(t−α+mT )Π(t − α)dα (3)

Then the received signal can be written as

y(t) =
∑

m

amg̃m (t − mT ) + b(t) (4)

Hereafter we suppose a shaping pulse with support in [0, T ]
and a slow varying phase evolution during a period T . In this

case we can approximate g̃m(t) by

g̃m(t) ≈ g(t)eiθ(t+(m+ 1

2
)T ) (5)

where

g(t) = T

∫ 0

−T

Π∗(−α)Π(t − α)dα (6)

If the received signal is fractionally-spaced at tk = k T
S

+ τ ,
where S is an integer oversampling factor and τ a known offset
from the optimum sampling instants (we suppose 0 ≤ τ < T

S
),

we have that

y

„

k
T

S
+ τ

«

=
X

m

amg̃m

„

k
T

S
+ τ − mT

«

+b

„

k
T

S
+ τ

«

(7)

and from (eq. 5) we have that

y

(

k
T

S
+ τ

)

= eiθ(k T

S
+τ+ T

2
)Ak + b

(

k
T

S
+ τ

)

(8)

where

Ak =
∑

m

amg

(

k
T

S
+ τ − mT

)

. (9)

We can finally write the received oversampled signal as

yk = Akeiθk + bk (10)

where k refers to tk instants. Note that the noise bk is coloured

with variance σ2
n, where σ2

n = N0 × g(0)
T

is the variance of

the AWGN n(t) measured in the noise equivalent bandwidth

of the receiver filter Π∗(−t).

We can define the symbol index p = ⌊ k
S
⌋, or equivalently,

k = pS + s with s the sub-symbol index (i.e. the position

inside the symbol interval). We note that s = 0, · · · , S − 1.

We note that {Ak}k∈Z
is a non-stationary power sequence

for S > 1, even if {am}m∈Z
is a stationary power symbol

sequence (a2
m = 1).

B. Phase-offset Evolution Model

In practice we have a frequency shift between transmitter’s

ocillator and receiver’s oscillator, so the phase distortion is

linear. We also must consider jitters introduced by oscillators

imperfections. To take it into account we suppose a Brownian

phase offset evolution with a linear drift [5]:

θk = θk−1 + δ + wk k ≥ 2 (11)

where wk is an i.i.d. zero-mean Gaussian noise sequences with

known variance σw

S
, where σ2

w stands for the variance of the

phase increment in one symbol interval, and δ is the unknown

constant drift. We note that the variance of the Gaussian

noise is directly related with the rapidity of evolution of the

parameter. We note θ = [θ1 · · · θN ]T with a covariance matrix

Σ.

III. HYBRID CRAMÉR-RAO BOUND

When dealing with an estimation problem we aim to know

the ultimate accuracy that can be achieved by the estimator.

The Cramér-Rao Bounds (CRB) provide a lower bound on

the Mean Square Error (MSE) achievable by any unbiased

estimator. Depending on the nature of the parameters to be

estimated we use different bounds of the CRB family. If the

vector of parameters is assumed to be deterministic we use the

standard CRB and if the vector of parameters is random and an

a priori information is available we use the so-called Bayesian

CRB [6]. When dealing with both random and deterministic

parameters an Hybrid CRB (HCRB) is used [7]. The CRB

suited to our problem is the HCRB as we want to estimate

the phase offset evolution vector θ which is a random vector

with an a priori probability density function (pdf) p(θ) and

the linear drift which is a deterministic parameter.

In the on-line synchronization mode, at time k the receiver

updates the observation vector y = [y1 · · · yk−1]
T including

the new observation yk to obtain the updated vector y =
[y1 · · · yk]T in order to estimate θk. In this section we recall

the expression of the Hybrid CRB and we present the closed-

form expression of the HCRB for an oversampled dynamical

phase and frequency offset estimation problem in a Data Aided

scenario.

A. HCRB: background

We have a set of measurements y and we want to estimate

a N -dimensional vector of parameters µ =
(

µT
r µ

T
d

)T
. We

consider the case where the random (µr) and the deterministic

(µd) part of the vector of parameters can be statistically

dependent. We note µ∗
d the true value of µd. The joint

probability density of the pair (y,µ) is py,µ(y,µ) and the

a priori pdf of the random part of µ is p(µr | µ∗
d) 6= p(µr).

If µ̂(y) is our estimate of µ, the HCRB satisfies the following

inequality on the MSE:

Ey,µ|µ∗

d

{

[µ̂(y) − µ][µ̂(y) − µ]T | µ∗
d

}

≥ H−1(µ∗
d) (12)

where H(µ∗
d) is the so-called Hybrid Information Matrix

(HIM) defined as [7]

H(µ∗
d) = Ey,µ

r
|µ∗

d

[

−∆
µ
µ log p(y,µr | µd) | µ

∗
d

]

(13)



Expanding the log-likelihood the HIM can be rewritten as

H(µ∗
d) = Eµ

r
|µ∗

d
[F(µr,µ

∗
d)]

+Eµ
r
|µ∗

d

[

−∆
µ
µ log p(µr | µd) | µ

∗
d

]

where F(µr,µ
∗
d) is the Fisher Information Matrix (FIM)

defined as

F(µr,µ
∗
d) = Ey|µ

r
,µ∗

d

[

−∆
µ
µ log p(y | µr,µd) | µ

∗
d

]

(14)

We can see that H(µ∗
d) = HD(µ∗

d) + HP (µ∗
d), where the

first term represents the average information about µ brought

by the observations y and the second term represents the

information available from the prior knowledge on µ, i.e.,

p(µr |µd).
The N × N HCRB matrix can be written as

HCRB = {H(µ∗
d)}

−1
=

{

HD(µ∗
d) + HP (µ∗

d)
}−1

(15)

where the kth element of the diagonal, [HCRB]k,k rep-

resents the lower bound on the estimation of [µ]k from the

observations block y = [y1 · · · yN ].

B. HCRB: Application to Dynamical Phase Offset and Linear

Drift Estimation

In this paragraph, a closed-form expression for the HCRB

for an on-line fractionally-spaced phase-offset and linear drift

estimation problem is presented. On the following we drop the

dependence of the different matrices on µ∗
d = δ∗ for easier

notation.

We use the model presented in Section II (eqs.11,10):

θk = θk−1 + δ + wk

yk = Ak exp (iθk) + bk

where, as stated before, bk is a non-white noise with

covariance matrix Γ. The index k refers to tk instants and

Ak are the coefficients specified in eq.(9).

Comparing this state-space model to the general model

presented on the last paragraph, and supposing that we have N
available measurements, we identify µr = θ = [θ1 · · · θN ]

T

and µd = δ. From this the HIM can be rewritten into a

(N + 1) × (N + 1) block matrix as [7]

H =

(

H11 h12

h21 H22

)

(16)

where

H11 = E
y,θ|δ∗

[

−∆θθ log p(y | θ, δ) | δ∗
]

+Eθ|δ∗

[

−∆θθ log p(θ | δ∗)
]

h12 = hT
21 = E

y,θ|δ∗

[

−∆δ

θ log p(y | θ, δ) | δ∗
]

+Eθ|δ∗

[

−∆δ

θ log p(θ | δ∗)
]

H22 = E
y,θ|δ∗

[

−∆δ
δ log p(y | θ, δ) | δ∗

]

+Eθ|δ∗

[

−∆δ
δ log p(θ | δ∗)

]

So to compute the HIM we need the likelihood function
and the a priori pdf. From the model we can write the log-
likelihood as

log p(y | θ, δ∗) = log 1
πN |det(Γ)|

− [y − m]H Γ−1 [y − m]
(17)

where y is the N -dimensional received signal array and m

is the mean vector of y, where the kth component is [m]k =
Akeiθk . The a priori pdf is

log p(θ | δ∗) = log p(θ1) + (N − 1) log
(

1√
2πσw

)

−
∑N

k=2
(θk−θk−1−δ∗)2

2σ2
w

(18)

• Expression of H11: we can write that

H11 = HD
11 + HP

11 (19)

where

HD
11 = E

y,θ|δ∗

[

−∆θθ log p(y | θ, δ) | δ∗
]

HP
11 = Eθ|δ∗

[

−∆θθ log p(θ | δ∗)
]

The first term can be computed from eq.(17). We note

Λ(θ) = log p(y | θ, δ). The first derivative of Λ(θ) with

respect to the lth phase parameter is

∂Λ(θ)
∂θl

= ∂
∂θl

{

−[y − m]HΓ−1[y − m]
}

=
{

∂mH

∂θl
Γ−1[y − m] + [y − m]HΓ−1 ∂m

∂θl

}

= 2ℜ
{

∂mH

∂θl
Γ−1[y − m]

}

(20)
if we compute now the derivative with respect to the kth

phase parameter we have that

∂2Λ(θ)

∂θk∂θl
= 2ℜ



∂2mH

∂θk∂θl
Γ

−1[y − m] −
∂mH

∂θl
Γ

−1 ∂m

∂θk

ff

(21)

The (k, l)th element of the matrix HD
11 is

[

HD
11

]

k,l
= Eθ|δ∗

{

E
y|θ,δ∗

{

−∂2Λ(θ)
∂θk∂θl

}}

= Eθ|δ∗

{

2ℜ
{

∂mH

∂θl
Γ−1 ∂m

∂θk

}}

We note that

∂mH

∂θl

=
[

0, · · · , 0,−iA∗
l e

−iθl , 0, · · · , 0
]

(22)

∂m

∂θk

=
[

0, · · · , 0, iAkeiθk , 0, · · · , 0
]T

(23)

with the non-null values on the lth and kth position

respectively, and so the coefficients can be written as

[

HD
11

]

k,l
= Eθ|δ∗

{

2ℜ
{

A∗
l Ak ·

[

Γ−1
]

k,l
ej(θk−θl)

}}

= 2ℜ
{

A∗
l Ak ·

[

Γ−1
]

k,l
Eθ|δ∗

{

ej(θk−θl)
}

}



We can write that

Eθ
{

ei(θk−θl)
}

= Eθ

{

ei(uT

kl
θ)

}

= φ (ukl)
(24)

where uT
kl = [0, · · · , 0, (+1), 0, · · · , 0, (−1), 0, · · · , 0],

+1 in the kth position and −1 in the lth position of the
array, φ(·) is the characteristic function of a Gaussian
random variable θ:

φ (ukl) = exp
˘

− 1
2

uT
klΣ

−1 ukl

¯

= exp
n

− 1
2

“

ˆ

Σ−1
˜

k,k
+

ˆ

Σ−1
˜

l,l
− 2

ˆ

Σ−1
˜

k,l

”o

(25)

with Σ the covariance matrix of the phase evolution θ.

Finally

[

HD
11

]

k,l
= 2ℜ

{

A∗
l Ak

[

Γ−1
]

k,l
eΨ

}

(26)

where

Ψ =

{

−
1

2

(

[

Σ−1
]

k,k
+

[

Σ−1
]

l,l
− 2

[

Σ−1
]

k,l

)

}

(27)

On the following we compute the second term of eq.(19).

From the state evolution eq.(11) and assuming that the

initial phase θ1 doesn’t depend on δ, we have that

p(θ | δ∗) = p(θ1)Π
N
k=2 p(θk | θk−1, δ

∗) (28)

and due to this expansion we can rewrite the expression
as

∆θθ ln p(θ, δ
∗) = ∆θθ ln p(θ1)+

N
X

k=1

∆θθ ln p(θk | θk−1, δ
∗)

(29)

The first term in (eq.29) is a matrix with only one non-

zero element, namely, the entry (1,1) which is equal to

[

∆θθ ln p(θ1)
]

1,1
=

∂2 ln p(θ1)

∂θ2
1

(30)

The other terms are matrices with only four non-zero

elements, namely, the entries (k − 1, k − 1), (k − 1, k),
(k, k − 1) and (k, k). Due to the Gaussian nature of the

noise, one finds

[

∆θθ ln p(θk | θk−1, δ
∗)

]

k,k
=

−s

σ2
w

(31)

[

∆θθ ln p(θk | θk−1, δ
∗)

]

k,k−1
=

s

σ2
w

(32)

The values for (k − 1, k − 1) and (k − 1, k) are, respec-
tively, the same that for (k, k) and (k − 1, k). Assuming

that Eθ1

[

∆θ
θ

ln p(θ1)
]

= 0 that corresponds to the case

of non-informative prior about θ1 (see [2]), we obtain

that

HP
11 = Eθ|δ∗

h

−∆θθ log p(θ | δ∗)
i

= 1
σ2

w
/s

0

B

B

B

B

B

B

B

@

1 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

... −1 2 −1
0 · · · 0 −1 1

1

C

C

C

C

C

C

C

A

(33)

• Expression of h12: the log-likelihood (eq.17) doesn’t

depend on δ so the first term of h12 is null, so

h12 = Eθ|δ∗

[

−∆δ

θ log p(θ | δ∗)
]

From the state model we have that

h12 =

[

S

σ2
w

01×N−2 −
S

σ2
w

]T

• Expression of H22: as the log-likelihood doesn’t depend

on δ and using eq.(18) we have that

H22 = Eθ|δ∗

[

−∆δ
δ log p(θ | δ∗)

]

= Eθ|δ∗

[

− ∂2

∂δ2 log p(θ | δ∗)
]

= S(N−1)
σ2

w

Remarks: we as analyse the estimation problem in a DA

scenario the bound depends on the transmitted sequence a. We

note that, contrary to [3] where the proposed bound was the

minimum over a set of sequences, the HCRB is computed in

this paper for a specific known sequence.

However we note that for S = 1, s = 0 (symbol reference

points) and τ = 0, we have that the bound is independent of

the transmitted sequence a since | Ak |= 1 ∀ k. In the other

cases the bound depends on the sequence, the oversampling

factor S and on the position s inside the symbol interval of

the current transmitted symbol (index M ):

HCRBθ(a, S, s) =
[

H−1(a)
]

N,N
(34)

HCRBδ(a, S, s) =
[

H−1(a)
]

N+1,N+1
(35)

with N = (M − 1) ∗ S + 1 + s.

IV. DISCUSSION

In this section we show the behaviour of the HCRB by

considering different scenarios. We assume the transmission

over an AWGN channel of a known M-sequence of length 511

bits, generated using a Linear Feedback Shift Register (LFSR)

with characteristic polynomial [1021]8 (octal representation).

We consider three oversampling factors (S = 1, 2 and 4) and a

BOC shaping pulse (see figure 1). BOC shaping pulse is used

in Galileo positioning system.

In the figures, we plot the Mean Square Error (MSE)

obtained by Monte Carlo simulation versus the Signal to Noise

Ratio (SNR). The SNR corresponds to the Carrier to Noise

Ratio ( C
N

) at the input of the receiver. In our case, as shaping

pulse and symbols ak are normalised (i.e σ2
a = 1; g(0) = 1)



−1 0 1 2

−1

−0.5

0

0.5

1

× T

BOC Shaping Pulse
×
 1

/T

−1 0 1
−1

−0.5

0

0.5

1

BOC autocorrelation

× T
×
 1

/T

Fig. 1. BOC shaping function Π(t) and its autocorrelation g(t)

−20 −10 0 10 20 30 40
−50

−40

−30

−20

−10

0

10

SNR(dB)

M
S

E
(d

B
)

HCRB
!
 versus SNR

 

 

HCRB
!
 S=1 s=0 "

w

2
=0.1

HCRB
!
 S=2 s=0 "

w

2
=0.1

HCRB
!
 S=4 s=0 "

w

2
=0.1

HCRB
!
 S=1 s=0 "

w

2
=0.001

HCRB
!
 S=2 s=0 "

w

2
=0.001

HCRB
!
 S=4 s=0 "

w

2
=0.001

Fig. 2. HCRB versus the SNR for three different oversampling factors S =
1, 2 and 4. We consider two phase noise variances σ2

w = 0.001 rad2 and
σ2

w = 0.1 rad2.

this ratio is simply C
N

= 1
σ2

n

. For the MSE we consider two

cases:

1) We compute BCRB(a, S, 0) for the T -spaced symbol

reference point estimation for S = 1, 2, 4.

2) We compute the MSE for the mid-point estimation (s =
S/2). This scenario is also interesting because the in-

termediate points can be useful when using fractionally-

spaced algorithms (i.e. half symbol spaced equalizer or

Gardner’s timing recovery algorithm).

A. T -spaced symbol reference point estimation MSE

Figure 2 superimposes versus the SNR, the on-line HCRB

(see eq.(34)) for two different phase variance values. We

consider a slow varying phase with variance σ2
w = 0.001 rad2

and a phase with a fast evolution, σ2
w = 0.1 rad2. In both cases

there’s no offset from the optimal sampling instants, τ = 0.

One can see that the gain increases with the oversampling

factor S and the interest of oversampling becomes clear at

low SNR. The gain due to oversampling decreases as the

SNR increases. As expected, we note that the performance

are looser when increasing the phase noise variance.

In figure 3 we analyse the HCRB behaviour versus phase

noise variance for a slow SNR value (0 dB). Here we can still

measure the potential gain given by the oversampling. The
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Fig. 3. HCRB versus the phase noise variance for three different oversam-
pling factors S = 1, 2 and 4, SNR = 0dB.
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Fig. 4. HCRB versus the SNR for three different oversampling factors S =
1, 2 and 4. We consider a phase noise variance σ2

w = 0.01 rad2 and in
presence of a non nul offset for the sampling instants.

gain obtained with the oversampling is greater at weak σ2
w.

Figure 4 superimposes versus the SNR, the on-line HCRB,

HCRBθ(a, S, 0), for a moderate varying phase evolution,

σ2
w = 0.01, and a non-null offset τ = T

8 . For τ 6= 0, the

bound are looser, performances decrease when increasing τ .

The gain between different oversampling factors is greater at

high SNR when having a non-null offset.

Figure 5 superimposes versus the SNR, the on-line HCRB

for the drift estimation, HCRBδ(a, S, 0), for two different

block sizes N = 200 and N = 511. We consider a phase

noise variance σ2
w = 0.01. The performances depend on

the estimation block size N because the parameter to be

estimated has a constant value. The performances increase

when increasing S but in all the cases we have a very good

estimation, as shown by weak MSE values.

B. T -spaced symbol mid-points estimation MSE

We now take the S = 4 case as the reference. For S =
1, there is only 1 estimate per symbol, so, to compare with
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Fig. 5. HCRBδ versus the SNR for three different oversampling factors
S = 1, 2 and 4. We consider a phase noise variance σ2

w = 0.01 rad2.

S = 2, 4, missing mid-points are generated by blocking the

estiamted value (s = 0) over the symbol period.

The HCRB for the blocked case S = 1 can be easily

obtained as

HCRBθ−b(a, 1, 1/2) = HCRBθ(a, 1, 0) + σ2
w/2.

For S > 1, the bound strongly depends on the last observed

value AN because of the non-stationary power. In this case we

rename the bound as BCRB(AN , S, s). For τ = 0, | AN |
can be equal to 0 or 1, so there are two possible bounds. We

can define an average bound as follows:

HCRBθ(S, s) = p0 · HCRBθ(| AN |= 0, S, s)
+(1 − p0) · HCRBθ(| AN |= 1, S, s)

(36)

where p0 is the proportion of Ak = 0.

1) Results: For the mid-points case, figure 6 superimposes,

versus the SNR, the on-line HCRB (HCRBθ−b(1, 1/2),
HCRBθ(2, 1), HCRBθ(4, 2)) for a phase noise variance

σ2
w = 0.01 rad2. We also plot as a reference the symbol

reference point case.

The gain increases with the oversampling factor S, the

interest of oversampling, as in the T-spaced reference points

case, is clear at low SNR. At high SNR MSE → σ2
w/2S,

this is due to the blocking process for S = 1 and to the non-

stationary power sequence Ak for S = 2 and 4. We can also

see this saturation from eq.(36) which for p0 = 0.5 at high

SNR becomes BCRB(S, s) ∼ 1
2BCRB(0, S, s).

V. CONCLUSION

In the context of satellite positioning systems, like GPS

and GALILEO, time limited shaping pulse are used and the

Nyquist-Shannon sampling theorem does not apply. These

special conditions let us hope a significant receiver synchro-

nization performance improvement when the received signal

is oversampled.

In this contribution, we study the gain due to oversampling

of the received signal for the problem of dynamical carrier
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Fig. 6. HCRB versus the SNR for the mid points, three different oversampling
factors S = 1, 2 and 4, and a phase-noise variance σ2

w = 0.01 rad 2.

phase and frequency offset tracking. Assuming the data are

known at the receiver, we derive the Hybrid Cramér-Rao

Bound for carrier phase and frequency offset estimation in

such an oversampled scenario.

We present numerical results that show the potential im-

provements of using a fractionally-spaced method. The esti-

mation MSE decreases as the oversampling factor S increases

and the interest of oversampling is more important at low SNR.
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