N
N

N

HAL

open science

Joint Data QR-Detection and Kalman Estimation for
OFDM Time-varying Rayleigh Channel Complex Gains

Hussein Hijazi, Laurent Ros

» To cite this version:

Hussein Hijazi, Laurent Ros. Joint Data QR-Detection and Kalman Estimation for OFDM Time-
varying Rayleigh Channel Complex Gains. IEEE Transactions on Communications, 2010, 58 (1),

pp.170-178. 10.1109/TCOMM.2010.080296 . hal-00447390

HAL Id: hal-00447390
https://hal.science/hal-00447390

Submitted on 14 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00447390
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON COMMUNICATIONS 1

Joint Data QR-Detection and Kalman Estimation
for OFDM Time-varying Rayleigh Channel
Complex Gains

Hussein Hijazi and Laurent Ros
GIPSA-lab, Department Image Signal, BP 46 - 38402 Saint Martitects - FRANCE
E-mail: hussein.hijazi@gipsa-lab.inpg.fr, laurent.rag@a-lab.inpg.fr

Abstract—This paper deals with the case of a high speed called comb-type pilot [9]. Assuming such a strategy, conve
mobile receiver operating in an orthogonal-frequency-division-  tional methods consist generally of estimating the chaanel

multiplexing (OFDM) communication system. Assuming the ; ; ; eEy
knowledge of delay-related information, we propose an iterative félsgcf):]esqeu?;éles and next interpolating the channel f

algorithm for joint multi-path Rayleigh channel complex gains X . .
and data recovery in fast fading environments. Each complex gain ~ For fast time-varying channels, many existing works re-
time-variation, within one OFDM symbol, is approximated by a sort to estimating the equivalent discrete-time channgs,ta

polynomial representation. Based on the Jakes process, an auto which are modeled by the basis expansion model (BEM)
regressive (AR) model of the polynomial coefficients dynamics is [10] [11]. The BEM methods [10] are Karhunen-Loeve BEM

built, making it possible to employ the Kalman filter estimator .
for the polynomial coefficients. Hence, the channel matrix is (KL-BEM), prolate spheroidal BEM (PS-BEM), complex-

easily computed, and the data symbol is estimated with free €xponential BEM (CE-BEM) and polynomial BEM (P-BEM).
inter-sub-carrier-interference (ICI) thanks to the use of a QR- The KL-BEM is optimal in terms of mean square error (MSE),

decomposition of the channel matrix. Our claims are supported put is not robust to statistical channel mismatches, wiserea
by theoretical analyysis and simulation results, which are obtained ha PS-BEM is a general approximation for all kinds of
considering Jakes’ channels with high Doppler spreads. channel statistics, although its band-limited orthogspdier-
Index Terms—OFDM, channel estimation, time-varying chan-  gjdal functions have maximal time concentration within the
nels, Kalman filters, QR-decomposition. considered interval. The CE-BEM is independent of channel
statistics, but induces a large modeling error. Finallyreag
|. INTRODUCTION deal of attention has been paid to the P-BEM [11], although
its modeling performance is rather sensitive to the Doppler
spread; nevertheless, it provides a better fit for low, tham f
gigh Doppler spreads. In [23], a piece-wise linear method
mobile communication system due to the high spectrlsl used to approx_imate the channel taps, a_md the channel
L . . p slopes are estimated from the cyclic prefix or from both
efficiency and robustness to the multipath mterferencg(.jjaCent OFDM symbols,

Currently, OFDM has been adapted to the digital audio .

. : ) As channel delay spread increases, the number of channel
and video broadcasting (DAB/DVB) system, hlgh-speet% s also increases, thus leading to a large number of BEM
wireless local area networks (WLAN) such as IEEE802.11x P ' 9 g

HIPERLAN Il and multimedia mobile access communicationcoemments’ and consequently more pilot symbols are rieede

f contrast to the research described in [10], we sought to
(MMAC), ADSL, digital multimedia broadcasting (DMB) . . : : ’ .
system and multi-band OFDM type ultra-wideband (MB(_jwectIy estimate the physical channel, instead of theequi

OFDM UWB) system, etc. However, OFDM system is ve alent discrete-time channel taps. This means estimatiag th
vulnerable when the’ cha;nnel chaﬁges within one OFD ysical propagation parameters such as multi-path delays

symbol. In such case, the orthogonality between subcariser and multi-path complex gains. In [1] [2], we have proposed

. . . o an iterative algorithm for complex gain time-variation es-
easily broken down resulting the inter-sub-carrier-ifgmnce . . . C .
(ICI)yso that system per?ormance may be considerabﬁ'matlon and inter-sub-carrier-interference (ICIl) swgg®ion
degraded Whose execution is done per block of OFDM symbols. This

A dynamic estimation of channel is necessary since tglggorlthm demands very high computation. In [3] [5], we have

RTHOGONAL frequency division  multiplexing
(OFDM) is widely known as the promising
communication technique in the current broadband wirele

) ; i ; : oposed a low-complexity iterative algorithm based on the
radio channel is frequency selective and time-varying f P plextity g

) . o ._demonstration that each complex gain time-variation can be
wideband mobile communication systems [8] [21]. In pI’EE;tICa proximated in a polynomial fashion within several OFDM
the channel may have significant changes even within o . .
OFDM symbol, therefore it is preferable to estimate channEI mbols. Both algorithms above reduce the ICI by using

by inserting pilot tones into each OFDM symbol which ispuccesswe interference suppression (SIS), and have a good

erformance for normalized Doppler spregdX() up to 10%.
Part of this work was presented in IEEE ISWCS, Reykjavik, dodl| For IC_I mitigation, MMSE_ and _successw_e interference
October 2008 [4] cancellation (SIC) schemes, with optimal ordering, wenetie
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oped in [23]. Since the number of sub-carriers is usually veto row k., and from columnm; to columnms. Iy is a
large, these receivers are highly complex. In [24] [25],\&-lo0 N x N identity matrix andOy , is a N x L matrix of zeros
complexity MMSE and decision-feedback equalizer (DFEPy = Oy n). diag{x} is a diagonal matrix withx on its
were developed, based on the fact that most of a symbatmin diagonal, diagX} is a vector whose elements are the
energy is distributed over just a few sub-carriers, and iftat elements of the main diagonal of and blkdiadX,Y} is a
on a sub-carrier originates mainly from its neighbouring-sublock diagonal matrix with the matrices andY on its main
carriers. These equalizers are in the case of pure Doppleiagonal. The superscripts)” and(-)* stand respectively for
induced ICI .e., with sufficient guard interval). In the casetranspose and Hermitian operators(-Yand H:] are the trace
of insufficient cyclic prefix, inter-symbol-interferenckS() oc- and expectation operations, respectively(-) is the zeroth-
curs and can lead to a considerable performance degradatamder Bessel function of the first kind.
In [26], the authors suggest an iterative technique for the
equalization of ICI and ISI. II. OFDM SYSTEM AND POLYNOMIAL MODELING
hl’;:'thlsﬂ‘?%perll \Nf:1 prhesentla newllterauye alggrgh;n for oIk OFDM System Model
multi-path Rayleigh channel complex gains and data regover . . .
in very fast fading environments{T" > 10%). Exploiting the C_Ons'de,r an OFDM _system ,W'mv subcarriers, and a
channel nature, the delays are assumed invariant (over:ad;evgy(:“C prefix IengthNg. The dur_at|or_1 of an OFDM symbol is
OFDM symbols) and perfectly estimated as we have alreagy: vTs, whereTs is the sampling time and = ]TV+N9‘ Let
done in OFDM [1] [3] and CDMA [14] contexts. It shouldX(n) = [Z() (=5, 2(m) [~ 5 +1], ...,z [5 ~1]]* be thenth
be noted that an initial, and generally accurate estimaion transmitted OFDM symbol, wheréz,,)[b]} are normalized
the number of paths and time delays can be obtained by usf§M-symbols ¢.e., E[x ) [blzn)[b]*] = 1). After transmis-
the MDL (minimum description length) and ESPRIT (estimaSion over a multi-path Rayleigh channel, the¢h received

tion of signal parameters by rotational invariance techegy OFDM symboly,, = W =51y =5 + 1y |5 —
methods [13]. However, we test by simulation the sensytioft 1}]T is given by [3] [1]:

our algorithm to errors of estimated delays. In order to make

the polynomial approximation in [3] [5] more accurate, we Yoy = Hw) X + W (1)
approximate the time-variation of each complex gain Withiﬂ/herew(n) _ [w(n)[—%],w(n)[—%Jrl], ...,w(n)[%—l]]T is

one OFDM symbol by a polynomial model. Based on the Jakﬁ%hite
process, an auto-regressive (AR) model of the polynomigin
coefficients dynamics is built, making it possible to empiogy by:
Kalman filter estimator for the polynomial coefficients. iden . o

the channel matrix can be easily computed. The Kalman filter 1 Cor(m=1_ 1y N~ (n o mk
estimator was also examined in [28] for tracking the chann@lkm]hm - N Z {6 e Z al( )(qu)BJ2 N q}
frequency response in case of slow time-varying channels (n =1 =0 )

ICI). In order to perform polynomial coefficients estimatjo whereL is the total number of propagation paths,is thelth
we use the estimate along with the channel matrix output ('EBmpIex gain of variance? andr, x T, is thelth delay ¢
ay S

recover the transmitted data. On can, in turn, use the dmteqts not necessarily an integer, brt < N,). The L individual
data along with pilots to enhance the polynomial coeffigent ' g

; ] . ) : . lements of{a\™ (¢T,) = T T)} are uncorrel
estimate giving rise to an iterative technique for complaig elements of{a, ™ (qT}) au(¢T; +nT)} are uncorrelated

and data recovery. This intuitive idea is the basis of ioi ith respect to each other. They are wide-sense stationary
COVEry. . O '.&VSS), narrow-band complex Gaussian processes, with the so-
channel estimation and data detection proposed in MIM

context [15]. The detection is performed over the free Icg;“ed Jakes' power spectrum of maximum Doppler frequency

complex Gaussian noise vector with covariance matri
andH, isaN x N channel matrix with elements given

. * 2
data symbol thanks to the use of a QR (orthogonal-triang| O(Z'e" Elou(aTs)ai (@T5)] = 0q,Jo <27r.deS(Q1 - 42)))
o ) e ]. The average energy of the channel is normalized to one,

decomposition [16] of the channel matrix, which is betteatth ' L o
the SIS equalizer. The QR equalizer was previously useckin e 2t 0 = 1.
MIMO Receivers [27]. The present proposed algorithm has a ] ] .
good performance for very high Doppler spredgl{ > 10%). B- Complex Gain Polynomial Modeling

This paper is organized as follows: Section Il introduces In order to properly thelv samples of the complex gains,
the OFDM system and the polynomial modeling. Section Ilising the Nobservation equations in (1), we represent the
describes the AR model for the polynomial coefficients artime-variation of the complex gains by a more compact model.
the Kalman filter. Section IV covers the algorithm for jointn [23], a piece-wise linear method is used to approximage th
complex gains and data estimation. Section V presents twuivalent discrete-time channel taps. In [5] [3], the auth
simulations results which validate our technique. Finadlyr show that the time-variation of Rayleigh channel complex
conclusions are presented in Section VI. gain, within N, OFDM symbols, can be approximated by a

The notations adopted are as follows: Upper (lower) bofablynomial model ofN,. coefficients, chosen according to the
face letters denote matrices (column vectops), denotes the Doppler spready7.
kth element of the vectox, and [X]y ., denotes thék, m]th In this section, in order to make the approximation in [3]
element of the matriXX. We will use the matlab notation more accurate for high Doppler spread, we show that, for any
Xlk1:k2,m1:m»] 10 extract a submatrix withirX from row &,  value of f;7' < 0.5, each Rayleigh channel complex gain
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al = [al(")(—NgTS)7 ...,al(”)((N - 1)TS)]T, within one efficient to estimate all the coefficients in presence ofedis

OFDM symbol, has a polynomial time-variation of. < 5 the sequel, we will study the performance of the coefficients
coefficients {.e., a (IN. — 1) degree polynomial). Thus, for estimator in terms ofV. and f,7. More explanation about

q€D=[-N,N—1], a;’”)(qu) can be expressed as: polynomial modeling for jakes’ process can be found in [7]
[5] 3.
(n) . Under this polynomial approximation, the observation
(¢T%) = Z € Jat &" [ ) 3) model in (1) for thenth OFDM symbol can be rewritten as:
wherec!™ = [Cf'z), ...,C%lc)z] are theN, polynomial coeffi- Yoy = K Cw)+ W (10)
. ’ T T

cients and:(™[q] is the model error. where C(n) = [, .../ T is a LN, x 1 vector,

The optimal polynomlabzpoI , Which is Ieast -squares fltted,c( [Zﬁ"), _._7Z(Ln)] is a N x LN, matrix anle(") _
(linear and polynomial regression) [17] tm , and itsN. My dlag{x(n)}fl,...,MNCdiag{x(n)}fl] is a N x N. matrix,
coefficientsc\” are given by: wheref; is thelth column of theN x L Fourier matrixF and

o Mg is a N x N matrix given by:
afel = QT¢" =saf™ and ¢ = (QQ") Qa” (4) . v
F = e I 2T
whereQ andS are alN. x v and av x v matrices, respectively, Flea = ’ = 1
defined as: (12)
Qi = (m—N,—1)*D ) Moreover, the channel matrix can be easily computed as [3]:
T 7\ ! e
s = Q"(Q) Q (6) Hoy = S My diagfFx ("} (12)
It provides the MMSE approximation for all polynomials dle
containing N, coefficients, given by: where x /") = [c&”l), -~-’C£z72l . Notice that the matriceM 4
1 can be easily computed and stored, using the properties of
MMSE, = . [5 13 l power series.

1 © . It should be noted that if the complex gains are time-
= I (('v — SRy (I, =S )) (7) " invariant within one OFDM symbolife.,a!” (~N,T,) =
T = a"(N=1)T,) = ¢ l)) then,H ) is a diagonal matrix,
Wheregl") = O‘l(n) éZI) [ l(n) [=Ng], -y l(n) N — ”} N, =1, K,y = diag{x(, }F and Rg’) =02 Jo (27 f4Tp).

| ) —E la™am 9" |
is the model error an®,,;’ = E [al % } is thev x v . AR M ODEL AND KALMAN EILTER

correlation matrix ofal") with elements given by: A. The AR Model foc™

) ) As we have seenc(”) are correlated complex Gaussian
Ra!lkm = 0o,Jo( 27 faTs(k —m + sv) (8)  variables with zero-means and correlation maR|R’. Hence,

(n) ~
It should be noted that the MMSE is increasing in terms 6?6 dynamics ofc;" can be well modeled by an auio
£,7 and decreasing in terms af,. Moreover, the MMSE regressive (AR) process [18] [19]. A complex AR process of

is independent of the number of subcarrié¥s By using a orderp can be generated as:
normalized channel with, = 6 paths andv = 144, we

(n)  _ () (n=d) 4 |,(n)
have MMSE < 4 - 107 for f,7 < 0.5 and N, = 5. This G~ = _ZAz 4 (13)
proves that, for high values of;T, al( ") can be represented
by a polynomial model ofN. < 5 coefficients. Moreover, where A(l) l(p) are N, x N, matrices a”duz(n) is a

for f4T' < 0.001 and N. = 1, we have MMSE< 4-10". N, x 1 complex Gaussian vector with covariance matuix
This means that, for low values ¢f7’, the complex gains are A(l) 7AZ(P> and U; are the AR model parameters obtained

time-invariant within one OFDM symbol. by solving the set of Yule-Walker equations defined as:
cl( ") are correlated complex Gaussian variables with zero- »
means and correlation matrix given by: TA = -V, and U, = RY +ZA§“R§‘” (14)
1 1

n n—s)H -1 s - i=1
R = Ele” ¢" "] = (QQ") QRQ™ (QQ") 1 . ; .
@) whereA; = [Al a ey ATy = RDT L RPTT are
It should be noted that the variance of the coefficients deN. x N, matrlces andr; is apN. x pN, correlation matrix
creases very quickly in terms of the number of coefficientgefined by:
For f47 = 0.3 and N, = 5 coefficients, the average (over RO ... R(p+D
L = 6 paths) variance of the first three coefficients are equal “ _ o
to 0.1667,1.4 x 107> and 4.6 x 107!, respectively. This T = ; - : (15)

means that the last coefficients are very small. Hence, ibtis n Rg’*l) Rgf”
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Using (13), we obtain the AR model of orderfor c,,) = Measurement Update Equations:
mT T, _
[ SN S Ky = PuSY(SsPuySE +a%ly) 1
D A —  f K — S.0
Cy = =D AwCu—i) + U (16) Stnir) S+ Ko Vi = S8
o1 Pialn)y = P(n) = Km)SsPn) (23)

whereA ;) = blkdiag{AY% ‘”7A(L/L‘)} is a LN, x LN, matrix whereK is the Kalman gain. The Tlmg Update Equations
- T are responsible for projecting forward (in time) the cutren
andu,) = [ug”) ,...,u(L") | isaLN,.x 1 complex Gaussian state and error covariance estimates to obtain the a priori

vector with covariance matri) = blkdiag{Uy, ...,U}. estimates for the next time step. The Measurement Update
Equations are responsible for the feedback,, for incor-
B. The Kalman Filter porating a new measurement into the a priori estimate to

Based he AR del of in (16 defi obtain an improved a posteriori estimate. The Time Update
N ased on the | :“]? € ho ((g)FDlrll/l( ), we de Te Equations can also be thought of a predictor equationsewhil
the state space model for the SYSM RS = the Measurement Update Equations can be thought of a

[c%;), ...,ca7p+1)]T. Thus, using (16) and (10), we obtain: .o rector equations.
g(n) = Slg(nfl) + SQU(TL) (17)
. IV. JOINT QR-DETECTION AND KALMAN ESTIMATION

A. Data QR-detection

The QR-detection allow us to estimate the data symbol
with free ICI. First, we transform the channel mattik,,)
by performing a so-called QR-decomposition:

whereS, = [Izn,, 01w, (p—1)2n.]" is @pLN, x LN, matrix,
S3 = [K(n), On,(p—1)zn,] IS @N x pLN. measurement matrix
andS, is apL N, x pLN, transition matrix defined as:

—A 1 —A 9 —A 3 —A
|L1\(fc) oLJE,C) oL;]c) OL]EZPC) Hny = CmRwm) (24)
S = Ocn. v, Oy, -+ Orw, (19) whereQ, is aN x N unitary matrix (.c., Q_ﬁ)g(n) =1ly)
: . . : andR () is aN x N upper triangular matrix. Then, we can
OLn Oonv. |y O rewrite equation (1) as:
The state model (17) and the observation model (18) allow Yy = SLmYm = RmXm) +umWm) (25)

us to use Kalman filter to adaptively track the polynomiathe upper triangular form oR,,y now allow us to iteratively
coefficientsc,,). Letd,,,, be our a priori state estimate at steRalculate estimates, with free ICI, for the originally data
n given k_nqwledge of_the process pr_ior to strepg(n‘n) be our symbols{[x(n)]N, Xy N1 s [X(n)h} as:

a posteriori state estimate at stepgiven measuremen,,,

and,P,) andP,,,) are the a priori and the a posteriori error , ol N
estimate covariance matrix of sip& N, x pLN,., respectively. [y(n)] ko Z [Rm] k,m Rl
We initialize the Kalman filter Withg(o‘o) = O0pzn,,1 andP g [)N((")]k _ m=l;—£1
given by: [ (”)]k,k
PO sy = RG ) for el s.s'elop-11  (20) Bl = O([Xm)h) (26)

whereO(.) denotes the quantization operation appropriate to

_ N . , oF
wheret(l,s) = 14+(l—1)N.+sLN. : IN.+sLN. andR;” is the constellation in use.

the correlation matrix o€,("™) defined in (9). Notice that there

are zero matrices between the block matriEé?) since the . )

L complex gains are uncorrelated with respect to each othBr, Iterative Algorithm

For K = L = 2, P19 is given by: In the iterative algorithm for joint data QR-detection and
RO 0 RO 0 complex gains Kalman estimation, thé, pilots subcarriers

=l J(V(;) 001 RJ(VB are evenly inserted into the N subcarriers at the positiors
Pop = O(Jjul) Re, e Re, @1) [ pe=(—1)Lg+1, 7 =1,.,N,}, whereLy is the

Re, On.  Rg’ O, distance between two adjacent pilots. The algorithm prdsee
Oy, RGY Oy, RY as follows, where represents the iteration number:

The Kalman filter is a recursive algorithm composed of ) .
two stages: Time Update Equations and Measurement UpdSte COmputational Complexity

Equations. These two stages are defined as: The purpose of this section is to determine the implementa-
tion complexity in terms of the number of the multiplicatson
Time Update Equations: needed for our algorithm. The matricEsand M, are pre-
R . computed and stored if the delays are invariant for a great
9 = Si8n-1pn-1) number of OFDM symbols. The computational cost of com-

Py = SiPuijn-1)St +SUSY (22) puting the matrixC,,) is NL(N(N.—1)+1) and the channel
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TABLE |
initialization: Al(l) FORAR MODEL AND TAYLOR POLYNOMIAL EXPANSION WITH
Ne=3AND v = 144

e 9oy = Oprnea

o computeP oy as(20) ) i 20734
s nen+tl i — 1 _ —10

» execute the Time Update Equations of Kalman fi(fst) AR with faT'=0.01 | =4, = _2;?0,11 _01'385 g%%
« compute the channel matrix usirf@j2) ) :

o 11

. 0.99 143 20579
recursion: AR with f,7 = 0.1 —AW = { 21076 0.96 286 }
1) remove the pilot ICI from the received data subcarriers -2.10"7 —10"3  0.69
2) QR-detection of data symbo(24) (25) (26)
3) execute the Measurement Update Equations of Kalman filter

(23) ) 0.99 135 19360
4) compute the channel matrix usirf$j2) AR with f3T = 0.3 fAf )= |-6.10"5  0.574 240.8
5) i—i+1 —-107%  —0.0061 —0.973
) 1 v 02
matrix H, is NN.(N + L) — N?, since +M; = I y. The | Taylor Expansion A

complexity of removing the ICI in step 1 i&/,N,, and of
the QR-decomposition and the data QR-detection in step 2
is 2N3 + N2 + IN? and  Ny(Ng + 1), respectively, where
Nqg = N — N,. The complexity of Time Update Equation
and Measurement Update Equations of the Kalman filte
pLN? + 2(pLN.)?> and NLN.(p + 1)(N + LN, + 1) +

N(pLN.)? + 2N?(N — 1) + N, respectively, sinces; and
S; are sparse matrices. In practige, L and N. are much BCRB(a
smaller thanN, therefore, the computational complexity of

our algorithm isO(N?). where BCRB(CZ(K)) is the on-line BCRB associated to the

estimation ofc\ which is given by:

Sfor the case of rapidly time-varying channels. This on-line
"BCRB for the estimation ofx;”), in DA context, is given by:

()y = MMSEﬂr%TF (QTBCRB(CEOC))Q) (30)

D. Mean Square Error (MSE) Analysis
g (MSE) Analy . BCRB(C)) = BCRB(C)u1.0).4(1.0) (31)
The error between thé&h exact complex gain and thHeéh
estimated polynomiaﬁgg,)l is given by: where the index(l, s) is defined by (20)BCRB(c) is the
on-line BCRB for the estimation af = [c )", ...,c)y”]” in
el("’) = al(”) - aggﬁl = gl(’” + Qe (27) DA context which is given by:
heree™ — ¢™ _ &™ and ™ is the pol ial model . 1\ !
wheree;,” = ¢ — & and£;™ is the polynomial model BCRB(c) = (blkdlag{J(K),...,J(g),J(l)}+RC ) (32)

error defined in section II-B. Neglecting the cross-covare

terms betweer¢," and el]”, the mean square error (MSE)whereR. is calculated in the same way B, with s, s’ €

betweenal(”) and Oé;(;&)l is given by: [0, K —1], andd () = w952 F (1) MF (). M and F,,) are a
1 . NN.x NN_.and aN N, x LN, matrices, respectively, defined
MSE, = fE[el(”) el(")] as:
v
1 o
— MMSE + - Tr(Q"MSE,Q)  (28) M, M,
v M= | (33)
H
whereMSE,, = E[eél”)eél”) |. Notice that, at the convergence My o My,
of the Kalman filter, we have: Foy = [ ]_-gn) j:gL) } (34)
MSE;, = P(n|”)[t(l,0),t(l,0)] (29)

whereM; & and.’l-'l(") are alN x N and aN N, x N, matrices,
provided that the data symbols are perfectly estimaied, ( respectively, defined as:

data-aided).

The on-line Bayesian Cramer-Rao Bound (BCRB) is an Mgyqo = diag{diag{M My} } (35)
important criterion for evaluating the quality of our com- ") _ plkdia (n) ..(n) (n) 36
plex gains Kalman estimation. In [6], we have derived the F I g{vl ViV } (36)

expression of the on-line BCRB, in data-aided (DA) and non-. () ]
data-aided (NDA) contexts, for the dynamic estimation ofith Vi~ = diag{X()}f;. It should be notec!;?at, when the

time-varying multi-path Rayleigh channel complex gainghwi number of observation&” increasesBCRB(c;"’) decreases
slowly variations. In [7], we have extended this BCRB of [6and converges to an asympt@éZRB(cl((X’)).
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10° ! ! ! 10°
: =#= On-line BCRB( a”)
=¥- MSE (theoretical) with DA =
_ —e—MSE (simu) with DA 107k
10 ¢ - MSE (simu) after one iteration
=~ MSE (simu) after three iterations
MSE (simu) after ten iterations

MSE

|| == perfect channel knowledge and QR detector
& [9]
=%= [2] after three iterations
=& [1] after three iterations
10 °H = prediction
—e— after one iteration
== after three iterations
after seven iterations

o 5 10 15 20 25 30 35 40 o 5 10 15 20 25 30 35 40

SNR SNR
Fig. 1. MSE vs SNR forf;7'= 0.3 and N. = 3 Fig. 2. BER vs SNR forN. = 3 and /37" = 0.2
107 :
V. SIMULATION &~ On-ine BCRB( o)
. . ] . ) -0~ MSE with DA
In this section, we verify the theory by simulation and w -6~ MSE after one iteration
test the performance of the iterative algorithm. The noizedl :m:g Zggmg Iiﬁ[iﬂﬁﬁi
channel model is GSM Rayleigh model [1] [5] with = 6 MSE atter eight terations

paths and maximum delay,,,,, = 107,. A 4QAM-OFDM
system with normalized symbol8] = 128 subcarriersN, =

= subcarners,Np = 16 or 32 pilots §.e., Ly = 8 or 4) and
7 = 2MHz is used (note thatSN R)dB = (£:)dB+3dB).
These parameters are selected in order to be in concorda
with the standard Wimax IEEE802.16e. The MSE and tt
BER are evaluated under a rapid time-varying channel su
as f4T = 0.1, f47T = 0.2 and f47 = 0.3 corresponding
to a vehicle speed/,, = 140km/h, V,, = 280km/h and
Vi = 420km/h, respectively, forf. = 5GH z.

It should be noted that we have a small improvement wh
the ordem increases. So, in the sequel, in order to decrease
complexity of the Kalman filter, we choose an AR model ¢
orderp = 1. In Table I, we give the AR model paramem}”
for N, = 3 and different value of ;7. We naotice that, for low
Doppler spread; 7" = 0.01, Agl) is an upper triangular matrix
with ones on its diagonal. This corroborates the model
Taylor polynomial for a constant second derivative.( third

order), given in Table I. Wherf,T increasesA!" becomes %Eﬁﬁ?gak"mdgmomm

a roughly upper triangular matrix without having ones on th o5 nan i 13

diagonal. This is normal because, for high Doppler sprez o Zin=s

the concavity of the complex gain changes after each OFC o1 o 0 o5 03

2
T

symbol, whereas it is invariant for loyi; 7. (b)d
Fig. 1 shows the evolution ai/ SE versus SNR, with the

iterations, for f;7 = 0.3 and N, = 3. It is observed that, Fig- 3. SNR=20dB: (a) MSE vsfyT’ (b) BER vs fqT

with DA, the M SE obtained by simulation agrees with the

theoretical value ofM SE given by (29). Fig. 1 also showsalgorithm of [10] 6 x 6 = 30). Thus leading to use more pilot

that M SE with DA and the on-line BCRB are superimposedsymbols for the channel taps estimation [10]. As referenee,

This means that the Kalman filter works very well. After fouplotted the performance of QR-detector obtained with mérfe

and ten iterations, a great improvement is realized and tkeowledge of channel. This result shows that our algorithm

MSE is close to the MSE with DA. performs better than the algorithms proposed in [3], [1] and
Fig. 2 gives the BER performance of our algorithm fof10]. After seven iterations, a significant improvementwse

faT = 0.2 with N, = 3, compared to the algorithms in [3], the performance of our algorithm and the performance of QR-

[1] and [10] These results are obtained with the channed usdetector with perfect knowledge of channel are very closa A

in [10] (T = 1M Hz andr,,.. = 5T%), where the number of very high SNR, it is normal to not reach the reference because

discrete channel taps’ and the number of paths are equal we have an error floor due to the data symbol detection error.

to 6. The algorithm of [10] characterizes each channel tap wi We now study the MSE and the BER versfyd” = 0.1, 0.2

5 discrete KL-BEM coefficients and uses the banded LMMS&nd 0.3 (high normalized Doppler spread) with = 3. From

equalizer proposed in [30]. So, the number of coefficients Eg. 3 (a), it is observed that we have, with the iterations,

estimate in our algorithmB(x 6 = 18) is less than of that in the a more significant improvement whefy7" increases. This
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_4|| == perfect channel knowledge and QR detector
after ten iterations with exact delays
-4 after ten iterations with SD =0.01 T _

-5|| ~g= after ten iterations with SD =0.05T _
-o- after ten iterations with SD=0.1 T s
. —6-after ten iterations with SD =02 T _

10 E

-5 || =#e= perfect channel knowledge and QR detector
after seven iterations with exact L

=©- after seven iterations with an underestimation of L

=P after seven iterations with an overestimation of L

L L
25 30 35 40 (o) 5 10 15 25 30 35 40

(o] 5 10 15 20 20
SNR SNR

Fig. 4. Comparison of BER, for the case of imperfect knowledgeetays, Fig. 6. Comparison of BER, for the case of wrong estimatelLofwith
with N. =4 and f;7 = 0.3 N. =3 and fyT = 0.2

~1

10

o
©
T

o
®
T

10

o
N
T

o
o)
T

SD (Standard Deviation) [ T s ]
°
=

=B-50 OFDM symbols ||
-©- 75 OFDM symbols
=7~ 100 OFDM symbols
H =3¢ 200 OFDM symbols
20 30 40 300 OFDM symbols
SNR 0.1 400 OFDM symbols ||
*500 OFDM symbols

1
10 12 14 16 18 20

o
w
T

Probability of Correct Detection
o
o
T

o
[N

10~

Fig. 5. Delay estimation errors for the fourth and sixth patising the
ESPRIT method [13] (estimated correlation matrix, averagest V= 1000

OFDM symbols,i.e 0.072sec), forf, T = 0.3 Fig. 7. The probability of correct detection of the number afhs based on

the MDL criterion [13] (estimated correlation matrix, aveedgover K=[50
75 100 200 300 400 500] OFDM symbotlse [7.2 10.8 14.4 28.8 43.2 57.6

means that, in order for the algorithm to converge, we ne&él msec), forfy7' = 0.2
more iterations for a Doppler spread more large. Fig. 3 also . _
gives the BER versugy7T" in (b) for Ly = 8 and 4. It ?o\s\f;e tempo:a(ljretsholut|?fn 1-3 f—tf]OO ns). timate fof

is obvious that when the number of pilots is increased, the el nO\'/;/hs UA{/ tede ecth‘? he wrong es |Crina.e zgn d
performance will improve. It is interesting to note that th@Ur aigorinm. A study on this 1ssue was made in [29] an

results presented here demonstrate that with a lower numBQ{_alg(t)_mhm W?él prloposed f(f)r slowly tlTe-v?égng 7char(;nels
of pilots, our algorithm has better performance than g tmanion (no IC). In case of an overestimatéd ¢ 7 an

algorithms proposed in [3] and [1]. However, we can verify’ 6(:)1’ it i? shcf)wn that suchha mis.m?chGen:'js up in _slight
that the algorithms proposed in [3] and [1] do not work we egrades of performance as Snown In Fig. ©. HOWEVET, in case

for f47 > 0.1, even with more pilots, whereas our algorithmO1E unQerestlmatedL(e =5 gnd; = 0), the performance of our
works well. algorithm suffers from this disappearing of paths. Morepve

Fig. 4 gives the BER performance after ten iterations of Olgy estimating the number of pafvia the minimum descrip-
' . . . . length (MDL) criterion [13] { i d tant
proposed iterative algorithm, fa¥. = 4 and f;7" = 0.3, with on length ( ) criterion [13] € is assumed constant over

: .__each K OFDM symbols), the performance of this method,
imperfect delay knowledge. SD denotes the standard demnaqn terms of probability of correct detection, is satisfagto
of the time delay errors (modeled as zero mean Gauss '

&n at slow SNR as shown in Fig. 7. So, we can say when
variables). It can be noticed that the algorithm is not ve g . 0, y

'Yombined with the MDL thod Igorith till
sensitive to a delay error of SD0.17. By using the ESPRIT ombined Wi © method, our algorithm can st
thod [13] to estimate the del have &S5 T, for COrrectly perform.
rT;IeSl\(l)R[ ]ho es 'T“aF? 5eV\?hayS’ we b'avfj th th SI,ESILRI Fig. 8 shows the effect of the error in the estimation of
a as shown In F1g. . en comoined with the Boppler frequencyf,; and complex gain variance? , on the
method, our algorithm thus has negligible sensitivity téage BER performance after ten iterations, f6r\ R :l 30dB
errors. We now discuss the assumption of negligible tim ' '

%, =3 and faT = 0.3. We denote thef; error percentage
variation of the delays during a block & OFDM symbols. _ ° 2 iy .
Indeed, for a vehicle speel,, = 140km/h, the maximal and theo,, error percentage byy, and 5"31’ respectively.

variation of the delay duringc — 1000 OFDM symbols is It should be npted that a negative p_grcentage means that we
. v . .~ have underestimated whereas a positive percentage mesns th
given by “=.K.T = 9ns, wherec is the wave propagation

. g i . = =-1
velocity. We can therefore conclude that for a transmission have overestimated. For exarn Ple g"gz 0% and
. = &2 = 10% means that {; = 0.9fq, 62, = 0902,

of several OFDM symbols, where the channel estimation 43 R
performed, the delays can be considered invariant (witheets and (fy = 1.1 f4, (7(2” = 1.10(2”), respectively. We observe that
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Fig. 8.

BER, for the case of imperfect knowledge cﬁil and fg, with
SNR = 30dB, N. = 3 and f;T = 0.3

our algorithm is more sensitive to thfg error than to ther2

1

error and to the overestimation than to the underestimati%s]

For exactf; ando? , BER = 10~ and for 50%/f, and o3,
error percentages, BERS0~2. So, in brief, our algorithm
is not very sensitive tg; and ail errors.

VI. CONCLUSION
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