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Some numerical simulations of large deformations of heterogeneous

hyperelastic media

Philippe Aubert - Christian Licht - Stéphane Pagano

Abstract Numerical experiments done on a two-
dimensional stratified two-phase composite corroborate
theoretical results on homogeneization of media capable of
large deformations.

Keywords Homogenization - Large deformations -
Non-convex energy density

1 Introduction

Determining the behaviour of a structure made of a highly
heterogeneous hyper-elastic material is a rather difficult
numerical problem. The homogenization theory, whose
purpose is to determine the macroscopic behaviour of such
materials, may provide some help. In some cases of periodic
heterogeneity distribution, macroscopic behaviour is that of
a homogeneous material, with an explicit expression of the
homogenized bulk energy density. The well-known formula
derived in the seventies [2,9, 13—15] for linearly elastic media
also works in the case of convex energy densities [10] that
satisfy the growth conditions:

3 p>1 3 a,b>0 such that
alFIP <W(y,F) <b(1+|F|’) YFeMy,V¥yeY (1)

where F is the deformation gradient, M, the set of d x d
matrices, d (= 2 or 3) the space dimension and Y the basic
cell which describes the periodicity of the medium. The
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homogenized density reads as:

1

Whom(F) — lnf .
1Y

/ Wy, F+ Vy)dy,
Y

¥ € Vyer(Y) @)

where | Y| is the volume (or area) of ¥ and V/p,, is the subspace
of the Y -periodic fields of the Sobolev space W7 (¥)<.

But it is well known [4] that the convexity of the stored
energy is not suitable for the framework of large deforma-
tions. For non convex densities which satisfy the growth con-
dition (1) and:

3 ¢>0 such that
\W(y, F) = W(y, F)|

5c(1+|F|P_1+|F/|p_1)|F—F’| VE,F e My ()

Braides [3] and Miiller [11] have established that the
homogenized energy density is given by:

Whom(Fy = inf{(W"(F);n=1,2,3,...}

1

with W"(F) =inf { —
InY|

/ Wiy, F + Vidy,
nY

Y € Vper(nY) 4

The difference between the expression (2) for convex W and
the expression (4) for non convex W is considerable. For con-
vex W, it is sufficient to consider fields which are periodic
in one cell Y, so that Y is representative of the medium from
both the geometrical and mechanical points of view. For non



convex density, the periodic fields must be considered for
each n¥ set of n basic cells (Fig. 1). Hence, Y is representa-
tive of the medium from a purely geometrical point of view.
Actually, the expression (4) allows one to consider deforma-
tion gradient oscillations at a finer scale than formula (2).

Unfortunately, the growth condition (1) is incompatible
with the condition:

det(F) — 0= W(F) — o0, (5)

which expresses the need for an infinite amount of energy
to squeeze a block of matter down to a point. Thus, the
homogenized density of a realistic heterogeneous hyperelas-
tic medium is still unknown.

The aim of this paper is to illustrate these theoretical con-
siderations by some numerical experiments. For instance,
when local bucklings may occur the volume averaged strain
energy (Formula (2)) can lead to significant errors by provid-
ing a far stronger homogeneized material. The experiments
are carried out on a two-dimensional stratified two-phase
composite material (Fig. 1).

More precisely, the unit cell ¥ is (0, 1) x (0, 1) and let
O =:(0); %) x (0, 1) and

Wy, F) = {axo() + xyo(»)} w(F) (6)

where:

—  X@- Xy are the characteristic functions of Q and Y/Q

— o represents the relative strength of the two-phase and is
equal, here, to 10° to give a high contrast.

— w is a function chosen among {wy, weg}

The non convex density wyy:

wy (F) = |F [* + h (det (F)), (7)
765448
—988 +24 ifs <0,

was introduced by Miiller [11] to show the large discrep-
ancy between the homogenized density formulae for convex

T

v

a) b) c)

Fig. 1 a The unitcell ¥, b the set 3¥. ¢ a unit sample of the composite
when the density of the layers of each phase is 8

and non convex W. Whereas wy; does not satisfy (5), the
so-called Ciarlet—Geymonat energy density [5]:

g (F) = 0.505 (|F|'3 . 2) +0.355 ((der(F)F - 1)
—0.86 Log(det (F)), ®)

belongs to the class of Ogden’s densities which are often used
to model several rubber-like solids.
To numerically tackle the problem:

ﬁ/w(}’- F+V7\£’(,\’}] d,‘"- ¥ oe va(ny]
J;Y

(Py) inf

related to (4), the Newton—-Raphson algorithm was chosen,
whose one iteration reads as:

Find y**! e vk

per

(nY) such that

BEW (v, F+Vyh) (&)
iy B (gykt vy Ty
WOLEVIVhdy, Yh € VK, (nY)

™~ "‘LY aF

where V‘fj(,r(n Y) is a “finite-element” subspace of Vper (nY).
In fact, the periodicity conditions are enforced by Lagrange
multipliers [7,8]. In all the numerical experiments, the “con-
vergence” test |y*T! — y¥| < 1074y has to be satisfied
for five consecutive iterations.

The fundamental non convexity of the bulk energy implies
that the “solution” supplied by the Newton—Raphson algo-
rithm is close to a critical point of () = [, W(y, F +
Vi )dy and not necessary a minimum, even locally. The
focus here is on macroscopic deformation gradients corre-
sponding to contractions in the direction of the layers. It is
intuitive that minima will present oscillations with respect
to the y» “vertical” coordinate. To obtain a “solution” ¥, ,,
with m undulations the algorithm can be initialized with a
field like 1,(;,?_;,(_\;) = (A(n)sin(mpy2),0). This method is
very sensitive to the choice of A(n): for instance, an initial
guess with p = 4 can supply a deformation field with two
undulations. Ultimately, an approximate solution of (P,) is
expected to be the field ¥, s, () Which minimizes:

| .
meN-— I u(F)= m/ Wy, F 4+ Vi mdy

nYy

and we set:
TH(!:) et fﬂ,mﬂm[.n{F) (10)

so that 1,(F) is a numerical approximation of W”(F). In
the sequel the deformation associated with i, ,,, Ynmoprny
is denoted by ¢, ,, and @, respectively: ¢, (y) = Fy +

Yum(¥), @u(¥) = Fy + '#!rrr.mn],,w”(}")-



2 Numerical experiments concerning the energy density
Wy

Here, Wy, is the energy density deduced from (6) with
w = wpy.

2.1 Contraction in the direction of the layers

First, for 0.9 < d < 1, the Newton—Raphson algorithm
supplies a “solution” without undulation for every value of n
(mope(n) = 0). Moreover I, (F) does not depend on . Thus,
the homogenized energy density is obtained by a formula like
(2).

For 0.74 < d < 0.9, I, ,, depends strongly on n and m:
I,.m increases with m but is always smaller than [, ¢, and the
“solutions™ given by the algorithm never present a number
of undulations larger than n. For every number of cells n, the

Here F = ((]] 2). 0<d<l. results are similar to those of Fig. 2 where n = 16.
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Fig. 4 Two deformed
configurations: @1,1 (lefr) and
@16,1 (right) for d = 0.9
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Fig. 5 1, ford = 0.74

Table 2 Evolution of {L with d

d 0.9 088 086 084 082 08 078 076 74

%‘— 88 105 123 140 157 175 192 209 227
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Fig. 6 Evolution of mp, (16) with d

The numerical results reported in Table 1, Figs. 3 and 4
agree with the theoretical results of [11], T 40 is about 90 times
lower than 7;!

In other words, blind use of the “classical” formula (2)
would give a homogenized material more than 90 times
harder.

In the case of d = 0.74, as previously, 7, decreases
strongly with n (Fig. 5) and using formula (2) would give
a homogenized material more than 227 times stronger.

For d < 0.74, mopi(n) decreases with d (Fig. 6).

The algorithm gives deformation fields with several
undulations (Figs. 7, 8) and it seems impossible to get “solu-
tions” with few undulations. For instance, with n = 16 and
d = 0.7, the “solution” has at least six undulations. The
algorithm stops when the strong layers are close to contact
(Figs. 7, 8) and was not possible to consider larger macro-
scopic deformation gradients.

2.2 Other tests

Next, three types of macroscopic deformation gradients will
be considered corresponding first to a normal compression
to the layers and next to two shearings:

d 0 1 d 1 0
2 s 3
#i= g )P =y §)mir =y )

For any values of d, we do not obtain solution with undula-
tions and /,,(F) = I(F), the “solution™ @,, being built by
reproducing @, by periodicity:

2.3 Remarks

In the case of tests like those in Sect. (2.1) and for a fixed
value of d, the Newton—Raphson algorithm can provide sev-
eral solutions with the same level of energy [, ,, (Fig. 11).

The shape of the horizontal edges of the deformed unit
cell depends on m: flat when m is odd, corrugated when m
is even (Figs. 12, 13).

These results stem from the fact that some ¢, ,, can be
constructed by elementary transformations of some g,
(Figs. 14, 15, 16).

3 Numerical experiments with the Ciarlet-Geymonat
density Weg

Now, Weg is the energy density deduced from (6) with w =
weg. In the absence of a formula giving the homogenized
energy density, tests were carried out directly on a sample
of the composite material. So, for a given F, an attempt was
made to solve the problem



Fig. 7 9}, when
d =10.74,0.7,0.64

Fig. 8 Zoom on the “contact zone™ between two strong fibers for @4 when d = 0.74, 0.7, 0.64

Fig. 9 @, for F' ford = 0.9,
F?and F3 ford = —0.1
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. 1
(Qn) inf m/WCG(”)’sv‘P()’))d.‘r’v of Y. We expect that when n is very large
Y
. 1
¢(y)=Fy on dY W =inf 1l / Wee(ny, Vo(y))dy,
Y
numerically, where the function y € ¥ — Weg(y, F) is o(y) = Fy on Y

extended by Y -periodicity to R and 8Y denotes the boundary



will be a good approximation of the value at F of the
homogenized energy density if such a density does exist.
Because

1

W"(F) = inf T

chc(y, F+ Vi (y)dy,
nY

Y(y)=0 on anY
Fig. 12 s and @g 2 with Is | = lg 2 ford = 0.9

the numerical problem is similar to that of the previous section.
But with this Dirichlet boundary condition on the boundary

of nY and for F as in Sect. (2.1), the algorithm is some-

times unable to provide a solution with at least one or more

undulations. The use of the Newton-Raphson algorithm with

damping [6] allows us to overcome this difficulty for n at least

equal to 18. Figure 17 presents the variations with respect to

n of the numerical approximation J,(F) of W"(F) and of

the optimal number of undulations.

Because J, keeps decreasing for n = 18, the following
method was used to estimate the value at F of the expected
homogenized density. To estimate Wn+1(F), the field is con-
sidered to be v which solves the problem (7,) of Sect. (2.1)
(but with Ciarlet-Geymonat energy). Here, 7 is the largest
value of n available in the computations with periodicity con-
ditions. Let ¥, defined on Y by ¥u(y) = Lym(iy), it is
extended by ¥-periodicity to the whole nY set. This exten-
sion is modified on the cells adjacent to the boundary dnY
in order to make it vanish at onY. If u';,, denotes this modifi-
cation, then:

Fig. 13 g3 and g 4 with Iy 3 = Ig 4 ford = 0.9

Fig. 14 Construction of ¢g | from gg 2 for d = 0.9
1
 InY]

2
- n s
Wee F A% n = ——— !E n
f cG(y, F+Vyn)dy (n+1) +1
nY

Fig. 15 g 4 can be constructed
with the replication of ¢4 2

Fig. 16 ;7 canbe
constructed with the replication
of 42
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Fig. 17 Evolution of J, withn ford = 0.9

where [, is of the order of % Because, clearly, Wn(F) <
f,,(F), we deduce that I; is an upper bound of the value
at F of the expected homogenized density. A formula like
(4) will probably give an upper bound of the homogenized
energy density if it does exist...

Anyway, here again, the approximation by only consider-
ing periodic fields in cell ¥ produces a far stronger material,
here more than 90 times greater for d = 0.9 and 250 times
ford = 0.74!

Remark For smaller values of d, it is necessary to consider a
greater number of basic cell to get a very small value of T,,.
For purely numerical problems this phenomenon could not
be emphasized.

Remark For a fixed value of d, the numerical solutions
obtained with m undulations and n basic cells practically
have two hard layers in contact. The solution towards which
Newton—Raphson converges has a greater number of undu-
lations. This remark is valid only in the case of Dirichlet
boundary conditions.

4 Conclusion

The numerical simulations of large deformations of hetero-
geneous hyperelastic media presented in this paper highlight
the considerable difference between the expressions (2) and
(4) for possible macroscopic stored energy densities. The
formula (2) substantially overestimates the stiffness, while a
large number of multiples of the basic cell are required to get
an estimation of the homogeneous density through the for-
mula (4). This discrepancy can be explained in our example of
composite by micro-scale bucklings which are characteristi-
cally difficult to trap numerically. For instance, in the case of
Ciarlet-Geymonat density which needs to consider Dirichlet
boundary conditions, the Newton—Raphson algorithm had to
be improved. Therefore much remains to be done from the
algorithm point of view. Moreover, it is interesting to con-
sider other heterogeneous media, where significant micro-
scale deformations may occur: for instance the honeycomb

Fig. 18 The unit cell and loading

Fig. 19 an=20andd =0.8,bn =20 andd = 0.8

Fig. 20 Periodic “solution” forn =2 and d = 0.8

cellular media is a suitable model for wood material. The
numerical experiments will be done with energy density Weg
and a macroscopic deformation gradient corresponding to a
so-called radial compression (Fig. 18).

As explained in Sect. (3), tests were carried out directly
on a cellular media subjected to Dirichlet boundary condi-
tions. The “solution” obtained for n = 8 and n = 20 and
ford = 0.8 is given in Fig. 19. Note that when n increases,
the solution is close to the periodic one in the centre of the
specimen. Thus, it can be postulated that the homogenized
energy density is given by considering two unit cells and peri-
odic boundary conditions (Fig. 20). An interesting extension
of this study will be to consider the self-contact of the cell
walls [1,12].
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