N
N

N

HAL

open science

Linear robust output—feedback control for
permanent—magnet synchronous motors with unknown

load

Antonio Loria

» To cite this version:

Antonio Loria. Linear robust output—feedback control for permanent—magnet synchronous motors
with unknown load. IEEE Transactions on Circuits and Systems Part 1 Fundamental Theory and

Applications, 2009, 56 (9), pp.2109-2122. 10.1109/TCSL.2008.2011587 . hal-00447339

HAL Id: hal-00447339
https://hal.science/hal-00447339

Submitted on 14 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00447339
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 56, NO. 9, SEPTEMBER 2009

2109

Robust Linear Control of (Chaotic)
Permanent-Magnet Synchronous Motors
With Uncertainties

Antonio Loria, Member, IEEE

Abstract—We solve the problem of set-point (respectively,
tracking) control of a permanent-magnet synchronous motor via
linear time-invariant (respectively, time varying) control. OQur
control approach is based on the physical properties of the ma-
chine: inherent stability and robustness to external disturbances.
Our analysis is carried out under mild conditions, using cascaded
systems theory. For all cases: constant operating point, trajectory
tracking, and with known and unknown load, we show uniform
global asymptotic stability of the closed-loop system with a linear
controller that uses only velocity measurements. Furthermore,
we explore natural extensions of our results to improve robust-
ness with respect to external ‘“‘disturbances” and parametric
uncertainties.

Index Terms—Chaos, output feedback control, PMSM, synchro-
nization, synchronous motor.

1. INTRODUCTION

HE analysis and control of chaos in electrical machines
T operations is of increasing interest cf., [1], [2]. In this
paper, we revisit the problems of set-point (constant operating
point) and tracking (time-varying operating regime) control of
open-loop chaotic permanent-magnet synchronous machines
(PMSM). This problem has attracted a number of researchers
from different areas as witnessed by the variety of publications’
fora: physics cf., [3], [4], (power) electronics cf., [5]-[7], elec-
trical engineering (circuits) cf.,[8]-[12]; besides the fact that
the PMSM is a popular benchmark in the control community
cf., [13], [14]. One of the key problems related to the PMSM is
its natural chaotic behavior, for certain choices of parameters
and initial conditions, see, e.g., [15], [16], [6], [11].

In some of the cited works the control goal is to stabilize the
system to a constant operating point. Typically, this means a
constant shaft angular velocity. As is often desirable in control
theory and practice, the control goal is to be achieved for all
initial conditions, i.e., one seeks for global results. Of partic-
ular interest (at least in electrical engineering and physics) is to
drive the PMSSM to a constant operating point from initial condi-
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tions leading to chaos in open loop cf., [8], [10], [14]. The latter
two exploit the Hamiltonian structure of the PMSM, the design
in [14] leads to a closed-loop system with multiple equilibria,
and the result is shown to hold for almost all initial conditions.
While no stability proof is provided in [8], the control is inter-
esting in that it exploits the dissipative forces inherent in the
system and yields good performance, in simulations. Adaptive
set-point control algorithms are included in [14] (known param-
eters, unknown load) and in [4] (zero load, one unknown param-
eter, smooth-air-gap machine). Other papers aiming at annihi-
lating chaos include [15] where the goal is to drive the machine
to describe periodic orbits.

Following an opposite train of thought, other works concen-
trate into generating chaos in the PMSM. Indeed, while it has
been argued that chaos is undesirable for a number of relatively
valid reasons, it is also argued the opposite with certain inter-
esting applications in mind: [3] presents a controller to gen-
erate chaotic behavior in PMSMs used to construct vibratory
soil compactors. Simulation results are presented in [5], where
chaos is induced via delayed feedback.

With a grasp on the physical properties of the PMSM, in this
paper, we take a control and stability viewpoint on the prob-
lems of set point (eliminate chaos) and tracking control (pro-
duce chaos) for the PM synchronous machine. We propose very
simple output feedback control laws and show that uniform ex-
ponential stability may be achieved; in the case that the torque
load is unknown, we use adaptive control. The term “output
feedback” corresponds to shaft angular velocity measurements.
We also show (analytically) that the output feedback controllers
are robust with respect to additive disturbances, and (in simula-
tions) with respect to measurement noise and parametric time-
varying uncertainties. As a direct corollary of the main results
several natural modifications, along the lines of similar results
from the literature (without proof or with known load or only
for set-point control—cf., e.g., [8]), may be introduced to im-
prove robustness. Simulation results are presented to illustrate
our theoretical findings.

The rest of the paper is organized as follows. In Section II,
we present the dynamic model; in Section III, we describe the
cascades-based control approach that we follow to solve the
set-point control problem—cf., Section [V— and tracking con-
trol problem—cf. Section V. In Section VI, we discuss robust-
ness properties. In Section VII, we present several simulation re-
sults and we conclude with some remarks in Section VIII. Some
material on stability theory is presented in the Appendix.

1549-8328/$26.00 © 2009 IEEE
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II. MODEL

A. “Physical” Model

The dynamic model of the PM synchronous machine on the
d — q axis is given by—cf., e.g., [15], [17], [8]

di 1 ) .

d_f-c/l = L—l[’[}d — RZd + UJL(I'L(I] (la)

di 1 ) .

d_t(f = L—['Uq — qu — de'Ld — wdlr] (1b)
q

dw 1 . .

E = j[np’l/}rzq + np<Ld - Lq)ldlq —TL — ﬁW] (lc)

where ¢’ denotes time. The variables carrying the index ¢ are re-
ferred to the quadrature-axis and those carrying an index d are
referred to the direct-axis. As is customary the variables ¢ rep-
resent currents, v represent input voltages (control inputs up to
a gain); L, Lq are stator inductances and I? corresponds to the
stator resistance. The rest of the variables represent the perma-
nent-magnet flux (t,.), the number of pole pairs n,,, the viscous
friction coefficient (3), and the polar moment of inertia (.J). The
angular velocity is represented by w and, finally, 77, corresponds
to the external-load torque. The latter two are of obvious prac-
tical interest from a control viewpoint.

Model (1) is expressed in d—q coordinates, i.e., after per-
forming a coordinate transformation that renders rotor induc-
tances constant—cf., [17], [11] as opposed to rotor-position de-
pendent. The starting point goes farther to a unified theory of
electrical machines, which includes certain simplifications to
obtain a tractable model. Indeed, from a machine-engineering
viewpoint, the nonlinear magnetic characteristic of the iron core
should be considered; due to saturation of the latter the flux is
a nonlinear function of the currents.! A direct consequence of
magnetic saturation is that inductances depend on currents (be-
sides rotor angular positions). Even though saturation plays an
essential role for the operation of certain machines such as the
surface-mounted PMSM cf., [18], [19], we follow the trend of a
unified electrical machine theory in which saturation of the iron
core and the effects of the iron yokes are neglected. Therefore,
it is assumed that inductances are current independent cf., [17].

We have found in the literature, a few exceptions to this
“rule,” in the series of fairly recent papers [18], [20]-[22],
where surface-mounted PMSM are analyzed with scrutiny
thereby considering the physical nonlinearities due to magnetic
saturation, however, in a context fundamentally different to
this paper’s: rotor estimation position for direct-torque control
(DTC). See also [23] where an -3 model incorporating salien-
cies (more precisely, considering inductances as functions of
rotor positions only) is used in angular position estimation. In
[24], the authors propose a model incorporating effects such
as saturation of the iron core, cross-coupling, cross-saturation,
and slotting, which yield current and position-dependent flux
linkage equations. Flux variations are showed in experimenta-
tion. Motivated by the problem of rotor position estimation via
saliency “tracking” [25] presents and validates experimentally
a model that includes rotor-angles-dependent (but current-in-
dependent) inductances. We also mention [26], where the

ISuch saturation is often called physical nonlinearity, not to confuse with
mathematical nonlinearity.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 56, NO. 9, SEPTEMBER 2009

a-f3 model is used to estimate flux linkage ripple; again, the
inductances are considered to depend on rotor positions but not
currents.

Variations of the d—g model (1) also have been used in
different contexts and with different motivations. Simplified
d-q models are often used for instance, neglecting viscous
friction—cf., [14], [10] or by considering the stator inductances
Lg, Lg to be equal, that is the case of the smooth-air-gap PM
machines—cf. [15], [6], [13], [3], [5], [9]. Our main results
cover but are not limited to these cases. Other d—g models, such
as that in [27] incorporate rotor-position back electromotive
force terms in the context of torque ripple minimization; see
also [28], where the same model is used in the context of
observer design for sensor-less control.

In this paper, we deal with the problem of (angular) velocity
control based on the d—q coordinates model (1) thus, we con-
sider the inductances constant but not necessarily equal. To
some extent, modelling errors entailed by neglecting saturation
may be by considered as parameter uncertainty variations cf.,
[17] and additive disturbances. Therefore, we show analytically
that the controlled system under our approach is robust with
respect to external perturbations and, in simulations, we show
that the controller is also robust with respect to time-varying
parameter uncertainties and measurement noise. Other papers
where parameter uncertainty, albeit constant, is considered
include [8], [29], [30], [4]. The last three deal with adaptive
control problems in particular, in [4] parameter convergence is
showed under the assumption of smooth air-gap (constant equal
inductances). In [8], a robustness approach is taken to show,
in simulations, that the controlled machine remains practically
asymptotically stable. In all of the latter the model (1) is used,
except for [30] where it is further assumed that inductances are
equal and constant (i.e., ¢ = 0).

B. Control Model and Control Problem

For control purposes, we recall a standard transformation of
system (1) to put the dynamical model in an equivalent form
more “comfortable” for control-design purposes; this is used in
most of the cited references where the d—g model appears. Let

bk 0 0

L R
T:=]10 &k 0 ; b::L—q; k:ziLﬁ
0 0 R/L, d anpYr
Pr BL, npbL3k®(La — Lq)
= - ;0= ——; =
7 kL, RJ’ JR?
ﬂ p— v_d ,& — ’U_q 7~. —— L(ZITL
TR T RE P JRT
Then, the system (1) may be written in the dimensionless form
di
% = iy + Dig + iig (2a)
di . -
d_tq = —1g —Wig + YW + 14 (2b)
di
d—“t’ = o(iy — @) + cigiy — 71 (2¢)

where time has been redefined to ¢ := Rt'/ L, and the state vari-
ablesas (-) := T~1(-). For more details on this transformation
see, e.g., [11], [17].
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Next, let the state be defined by = := [iz i; @] . Then,
defining (-) = % the system can be written as

T1 = —%1 + T3T2 + Uqg (3a)

To = —Xo — XT3T1 + YT3 + ’aq (3b)

I3 = —O’(:E3 — :EQ) — 7T, + €x122. o)

The control problem now comes to finding inputs ug and
such that the system (3) is stabilized over an operating point (or
regime). We shall consider that the main variable to control is
the velocity w which, in the coordinates of (3) corresponds to the
variable x3, up to a transformation gain and time rescale. Hence,
the goal is to find a pair of controls and values of the desired
(current’s) reference z24 such that the control goal is achieved.
Besides, we stress that with the motivation of achieving robust-
ness with respect to external inputs, the goal is to establish uni-
form global asymptotic stability of the origin of the closed-loop
system as opposed to the weaker property that z3(t) — z34(t)
as t — oo.

III. THE (CASCADES-BASED) CONTROL APPROACH

The approach consists in exploiting the physical properties
of the system, in contrast to constructing a Lyapunov function
via systematic methods such as backstepping control that often
lead to unnecessarily complex nonlinear controls—cf. [4], diffi-
cult to implement due to practical constraints (gain restrictions,
etc.). Our starting point is to observe that the currents’ (3a) and
(3b) are “stable” without controls and under a zero-velocity (i.e.,
rs = 0) regime, i.e.,

(4a)

(4b)

11'91 = —2

11'92 = —X2.

Using the Lyapunov function V' = z? + 2, we see that its
derivative along the trajectories of (4) yields V. = —2(z? +
73). Global exponential stability follows. Let us now consider
the velocity variable x3 as an “external” input to the currents’
dynamics. This also makes sense if we consider the z1 — x»
equations as a fast electrical system and the x3 equation as a
slow mechanical system. With this interpretation in mind, let the
“input gain” 7y be equal to zero; the electrical equations, without
controls, become

T1 = —x1 + T3To (5a)
.i’g = —X9 —I321. (Sb)
Using V = 22 4 23, we again obtain V = —2(z3 + 23) and we

may conclude that the origin of system (5) is globally exponen-
tially stable, i.e., defining 712 := [r1 x2] ", we have

|z12(t)]] < |lz12(te)|le™ 1) Vaz € R, ¢ >ty > 0.
Considering the coordinate transformation and the time-rescale
performed in Section II, we obtain an exponentially decaying
bound on the currents. The overshoot (maximal absolute value
attained during transient) and the decay rate purely depend on
the system physical parameters: a simple computation yields

1 e 1 -
— 0 Zdt — 0 1d to
bk ) <|[[ k| (te) o (1)
0+ L@ 0+ L)

2111

Hence,
’id(t/) max{l/bk 1/k} —%(t’—tg)
iq(t) mln{l/bk 1/k} '
Exponential stability of the zero-input system (4) is crucial since

it implies that the uncontrolled subsystem, i.e., (3a)—(3b) with
Uq = Uq = 0, is input-to-state stable—cf., [31] from the input
x3. Indeed, for the equations

(6a)
(6b)

T1 = —T1 + T32>

11.32 = —T92 —T3T1 + Yrs3

we have the following: let v(t) := 0.5[x1 (¢ ) +12(t)?]; observe
that 025[$1(t)2 +.Z‘2(t)2] S ’U( ) < fI)l( ) +x2( ) and

o(t) < —llz2()I + yllz2(8)lll2s(0)]]
< =@ +yllz@lllzs @) Q)

For any two positive numbers a and b we have, by the triangle
inequality, yab < a?/4 + +2b?; hence,

—o(t) + 7 [lzs(t)]I*. ®

Integrating on both sides of the inequality above and using the
comparison lemma we see that

i(t) <

t
o(t) < e t)y(ty) + 42 / e~ ||lzs(7)|Pdr.  (9)
to

From (9), we see two interesting features that are at the basis
of input-to-state stability and of the control strategy followed in
this paper: 1) if the “input” z3(t) is bounded then so is v(¢) and
hence the currents’ magnitudes ||z12(t)]|; 2) if, moreover, 2:3(¢)
decays to zero “fast” so do the currents since the convolution
integral in (9) decays to zero.

The previous reasoning sets the following criterion for the
control design of 4, and u,: it is necessary to define these inputs
in a way that the internal stability properties of (3a), (3b) are
exploited and “translated” from the zero-current equilibrium to
a desired set point. It is also required to design the control in a
way that the “input” z3 in (6) be instead a tracking error that
converges to zero. To that end, we analyze now the mechanical
(30).

Now, let us consider z1(t) and z5(t) as external “inputs.”
Under zero load, (3c) reads ©3 = —ox3; hence, the origin is
exponentially stable for any positive o. Next, let

2(t) == owa(t) — 7o +ex1(t)z2(t) (10)
then, proceeding as for the states z; and x5 we define v'(¢) :=
0.5x3(t)? and evaluate its derivative along the trajectories of
(3¢) that is the equation 43(t) = —ox3(t) + z(t), to obtain
o' (t) < —v'(t) + (1/20)2(t)?%; hence,

2 t
23(t)? < 0Ty (k)2 4 = / ™= z(r)| P dr.
Jito

As before, if z(¢) tends to zero so does z3(t); this holds, i.e., if
71, = 0 and x4 (¢), z2(t) tend to zero asymptotically—cf., (10).
The first requirement holds if we consider zero load, as, i.e., in
[4]; the second requirement holds for free for smooth-air-gap
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machines (¢ = 0), studied, i.e., in [15], [6], [13], [3], [5], and
[9].

The fact that z(¢) depends on the trajectories x1 (¢) and zo(t)
that, in their turn are “driven” by the “input” x3(¢) makes it dif-
ficult to conclude that, in general, all signals converge to zero.
An obvious counterexample to such supposition is that for cer-
tain values of the physical parameters, the system without con-
trols exhibits chaotic behavior—cf., [12], [15], [6]. Yet, it is intu-
itively clear that the term —ox3 in (3c) and the terms —z1, —x
inducing stability in (6a) and (6b), respectively, keep solutions
from growing unboundedly.

Summarizing, we view the system (3) as a cascaded system,
where z3(t) is regarded as an external input to (3a), (3b) and
in turn, 21(t) and x2(t) “perturb” the mechanical (3c). That
is, the system is in feedback form and not in strict cascaded
form as, it would be if z:3(¢) did not enter as a perturbation into
the electrical system o: (32)—(3b). While this is obviously a
feature of the physical structure of the system and may not be
avoided; alternatively, in the stability analysis we may “forget”
about the feedback link if the system X5 is exponentially stable,
independently of x3(t).

This is the central idea of cascades-based control design; the
formal arguments that support the previous discussions are pre-
sented in Appendix A. See also [32].

IV. SET-POINT CONTROL

Let us consider the control model of the PMSM, i.e., (3). Ac-
cording to the material presented in the Appendix, in order to
formally analyze the system as a cascade, we must make sure
that the stability attained for the electrical system X is inde-
pendent of the behavior of z3(t); in particular, we must design
the controls so that z12(t) — 0 robustly with respect to the
input z3(¢). In this section, we pursue this objective for a de-
sired given constant set-point zz.

A. Known Load

Assume that 77 is known. The overall constant operating
point is set to

(1)

g
ZT1d F —Ch @24 = T + 7

where ~
TL — €T14T

9 = L T E1dP3d (12)
ET1q4+ O

The motivation for this choice of set point becomes clear if we

reconsider the mechanical equation (3c). We add
:EEZEld:EQ + EX14dT2d + O'(J]‘Qd — :E3d) =0
to the right-hand side to obtain, using (11)

i3 = —oe3+ (0 + ex14)e2 + exaeq (13)
where we have defined the error variables e; := z; — x;4 for
1 = 1,2, 3. The previous equation may be regarded as a dynamic
equation of eg with “input” (o +¢ex14)ea(t) +ex2(t)er(t). With
the aim at creating a cascaded system, we define the time-in-
variant linear velocity-feedback controller

wg(T3) = T14 — T2aT3 (14a)
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Ug(T3) := T2a + (T14 — V) T3. (14b)

Substituting (14) in the first two equations of (3), we obtain, by
direct computation,

(15a)
(15b)

T1 = —e1 + x3e2

iQ = —€g2 — XI3€e1.

Clearly, since x14 and w94 are constant we also have é¢; = ; for
1 = 1,2, 3. The resulting error-dynamics equations are

és = —oeg + (0 +ex1q)es + exa(t)ey (16a)

€1 = —e1 + $3(t)62

. 16b
{ €9 = —€9 — IL‘3(t)61. ( )

which may be regarded as a cascaded system of the form (49).
Note that this system is nonautonomous even-though, the equiv-
alent feedback-interconnected representation

és = —oe3 + (0 + ex1q)es + e(ea + z2a)er (17)
é1 = —e1+ (e3 + x34)e2 (17b)
éy = —eg — (€3 + Taq)er (17¢)

is time invariant. That is, in the system (16), we “see” z3(-)
and z5(-) as external signals of time in the respective equa-
tions where they appear: (16a) forms a time-varying subsystem,
which depends on the continuous function ¢ — x5 and has in-
puts e; and eo; the latter are generated by (16b), which form
another nonautonomous subsystem with no inputs.

For the controller (14), (11), we have the following result.

Proposition 1 (Set-Point Control): The system (3) in closed
loop with the controller (14) has a globally exponentially stable
equilibrium point at (11) provided that o > 0. O

The following observations are in order:

First, note that other interesting cases considered in the lit-
erature are contained in the proposition above. For instance, if
the direct-axis and quadrature-axis stator inductances are equal,
i.e., if we assume that ¢ = 0 (commonly assumed in the litera-
ture—cf., [15], [6], [13], [3], [5], [9]) the valid operating points
include any value for “direct-axis current” z14.

Second, the result holds based purely on the internal stability
properties of the system; the only requirement is that c > 0.
This is a consequence of the cascades-based design and anal-
ysis approach that we use; in contrast to this, one may wish to
proceed to analyze the stability of the closed-loop system, using
Lyapunov’s direct method. Let us start with a simple Lyapunov
function

1
V(e1,ez2,e3) := —e%—l—e%—i—e%. (18)

2
Its total time derivative along the trajectories of the system (17)
yields

V< —ed — e — ek + (0 + emg)eses + e(ex + ag)eres.

For V to be negative definite the cubic term eezejes must
be dominated, which is impossible to do, globally, with the
quadratic terms —e?, —e2, and —oe3. Alternatively, one may
assume that e = 0. Yet, even in such case, to dominate the term
oeses a simple computation yields that o < 4 must hold. This
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is obviously a stringent condition, e.g., it does not hold in the
interesting case when o = 5.46, which yields chaotic behavior;
we explore this case study in simulations. Note also that La
Salle’s theorem cannot be used. An alternative is to look for
a Lyapunov function yet, the structural problem imposed by
the bilinear term ese; in (17a) makes this task considerably
difficult. Finally, following a systematic control design methods
such as backstepping—cf., [4], yields in general complex con-
trols, which may depend on the whole state. Other approaches
based on the physical structure of the system may lead to
simpler controllers. For instance, Hamiltonian-based control
is used in [14] and [10] yet, restrictive conditions must be
imposed on the controller and, moreover, in the first reference
the closed-loop system has more than one equilibrium, which
rules out any global result.

B. Unknown Load

Let us assume now that the torque load 77, is unknown. In
this case, the operating point x4 is unknown and we use the
estimate 77, to define
71, — EX147T3d

Tod = T34 + (192)

EX1q + O
and we shall design an adaptation law for Zs4. The design
strategy, as in [14], relies on our ability to to steer Zo4 to oq
and x> to Tog4.
Proposition 2 (Set-Point Control): Consider the system (3) in
closed loop with the controller

Ug = 14 — Laqx3(t) (20a)
Ug == —yx3(t) + z1423(t) + 24 (20b)
71, = —aez(exia + o), a>0 (20c)
with 214 # —0/e,%9q as in (19a). Define Tog := Tog —

Z24. Then, the origin of the closed-loop system, i.e., the point
(e1,€2,e3,T24) = (0,0,0,0) is globally asymptotically stable
provided that o > 0. O

Proposition 2, which holds under the same little restrictive
assumptions of Proposition 1, establishes global asymptotic sta-
bility of the closed-loop system; in particular, the load torque
71, may be estimated asymptotically. To see this more clearly
note, from (11), (12), and (19a) that

Ti=Tr— 1T = (51171(1‘1“7)532!1' @D

Proposition 2 follows as a corollary of a more general result,
for the case when x 34 is a time-varying reference trajectory, i.e.,
tracking control, solved in the following section.

V. TRACKING CONTROL

A. Known Load

The discussion on the cascaded nature of system (16), which
is equivalent to system (17), does not rely on considerations such
as invariance of the set point (11); hence, as we shall see, it
is also useful for the case of tracking control since we regard
a time-invariant feedback system as a time-varying cascaded
system. This continues to be the rationale behind the proof of the
following proposition, which covers the result in Proposition 1.

2113

Proposition 3 (Tracking Control): Let t — x;4 be contin-
uously differentiable functions, bounded and with bounded
derivatives, such that

z
x14(t) # —0/e; Tog = Tyq + U0+ e (22)
ex o

14 +

Consider the system (3) in closed loop with

(23a)
(23b)

Ug 1= T1q — T24T3 + T14

Ug = Taq + (14 — Y)T3 + T2q.

Then, the closed-loop system has a uniformly globally asymp-
totically stable equilibrium at the origin. O

Proof: The closed-loop system. First, we derive the error
dynamics. Note that (15) and (13) are still valid; then, sub-
tracting @14 to both sides of (15a) and @24 to both sides of (15b)
we obtain the first two closed-loop equations with controls (23),
i.e., (17b) and (17c). To analyze the stability of the origin, i.e.,
of the point (e, ez,e3) = (0,0,0), we write the closed-loop
system in terms of the state variables &; := e3 and & := [ejes] T
and in the cascaded form:

€1 := —oby + [e(ban + waa(t)) o +exa(t))ée  (24a)

Eﬁﬂ = [—(gl(t):ul 34(t)) El(t)ff Sd(ﬂ [Zﬂ (24b)

or in compact form

& _Zfl(&) + g(t,&2)& (25a)
& = fa(t,&2) (25b)
where
Ji:=—0&1; g(t,&2) = [e(&a2 + w24(t)); 0 + em1a(t)]
S -1 &1(t) + z3a(t) | | €2
f2(t7£2)'— —fl<t)—$3d(t) 1 :| |:£22:| .

Stability. For clarity of exposition, at this stage, we assume
the following.

Claim 1: Under the conditions of Proposition 3, all trajec-
tories are defined on [t,,o0) for any t, € R > 0, i.e., the
closed-loop system (25) is forward complete.

The proof of this claim is provided in Appendix B. Indeed, if
no trajectory explodes in finite time, the following hold:

1) the system &; = f1(&1) is globally exponentially stable at

the origin for any positive value of o;

2) the system & = f1(¢,&2) is uniformly globally exponen-
tially stable at the origin: notice that it is of the form of
system (5).

To be more precise regarding the second point, let V(¢,&3) :=
0.5|¢2]|?, its time derivative along the trajectories of (25b)
yields V' = —2V; hence,

1€2(0)]] < lléa(to)le™ ")

In view of Claim 1, the function &; () in (25a) exists for all ¢
and ¢, and the solutions of (25a) are well defined on compact
intervals of time. Therefore, the bound holds for all ¢ > ¢, and
allt, > 0.

Uniform global asymptotic stability of the closed-loop
system follows using standard arguments—, e.g., invoking

Vit > to. (26)
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that the system & = f1(&1) + g(t, )€, is an exponentially
stable linear system with a vanishing integrable input —cf.,
[33] and [34, sec. 5.1], Section 5.1; modulo the time-varying
nature of the system one may invoke standard results on
input-to-state stable systems with vanishing inputs. For results
on time-varying cascades, see [35] and Appendix A. To apply
Theorem 1, we observe the following.

 Assumption 1 holds with V' = 0.5¢2.

e Assumption 2 holds with 5 = 0

bar 2 maxt||za(t)]l; [lz2a ()]}

01(1&1D) 1= [elléall + 2bar + o]l

* Assumption 3 holds with ¢(s) = s, in view of (26).

B. Unknown Load

In this case, we define the estimate of the operating point for
the normalized ¢-current variable as
. 3 T3d i TL — €T14%3d
Tog = x3q + 9 + Y= ="

_ 27
ET1da+ 0 @7

EX1q+ O
Proposition 4 (Tracking Control): Let t — x;4 be contin-
uously differentiable functions, bounded and with bounded

derivatives satisfying (22). Consider the system (3) in closed
loop with

lg = T14 — T2473(t) + T14 (28a)
Ug 1= —yz3(t) + T1423(t) + 2q + Eaq (28b)
71 = —aez(ex14(t) + o), a>0 (28c)
with either 414 = 0 and 14 > —o/e or e = 0 and Zo4
as in (27). Define Tog := 24 — x24. Then, the origin of the
closed-loop system, i.e., the point (e1, €2, €3, T24) = (0,0,0,0)
is uniformly globally asymptotically stable. O

Proof of Proposition 4: The closed-loop equations. Define
€9 := T9 — Zo4; hence, we observe the following useful iden-
tities: éo — €3 = —Taq := Tog — Toq;€z = €2 + Tag and
To = €9 + Toq + x24. We start with ez equation of the error
dynamics, which is obtained by direct computation, using the
latter identities in (13), which is equivalent to the system's (3c)
that is,

é3 = —oes+ (04 ex14)Toa+ (0 +ex14)éa +exa(t)er.  (29)

Now we derive a differential equation for Zo4. To that end,
we use the expressions in (27) to obtain

5 . B d I
$2d:$3d+0+_{i}

dt |ex1q+o (30)

where, using (28c)

(71 — €Z14%34)eT14
(ex1q + 0)?
3D

5= (ed14%3a + €X14834)
=—ae3 — -
(ex14 + 0)

Similarly, for 24, we find the following. Using (12) and (22)
we have

. A
xQd:=m3d+ﬂ+—{&} (32)

dt |ex1g+o
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where

(TL — €%14%34)eE14
(ex1q + 0)2

9= (e21aT34 + ET1a¥34)
(ex1a + 0)

(33)

When € = 0, we have 9 = 0; this corresponds to the case of
smooth-air-gap PM machines common in the literature. If ¢ # 0
and z14 = 0 (constant set-point direct axis current) then

—€T14T34

€T1q+ 0

J =

Subtracting (32) from (30) and using (33) and (31), we obtain

Gog =0 — 1) (34a)
= ey — —(Zx_lﬁr);”;d. (34b)
By assumption, either 14 = 0 or ¢ = 0; hence,

Tog = —aes. (35)
Defining & := [e3Taq] ", & := [e1é2]". Equations (29) and

(35) can be put together in the compact form
&= fit6) + Gt 6,6)6 (36)

where G(t,&1,62) := [g(t,&1,&) " [00]T]T
it &) = [:Z ’ +0€x”] & (37)
9(t,€1,82) =[e(§a2 + &12 + @2a(t)) (0 +ex1a(t))]. (38)

Next, we derive the dynamics of &;. For this, we substitute 4,
as defined in (28a), in place of @4 in (3) and correspondingly,
we substitute 4, in (3b) by @, £ yz3(t) to obtain

(39a)
(39b)

él = —€1 =+ l‘g(t)éz

€y = —ég — $3(t)€1

which can be expressed in compact form, exactly as
(25b)-(24b)—only, we have redefined the state variable
& = [e1é2]". To proceed further we make the following claim
whose proof is included in Appendix B.

Claim 2: The system is forward complete.

Under Claim 2, we may show via Lyapunov’s direct method
that the system & = fa(¢,&2) has a globally exponentially
stable equilibrium at the origin exactly as we did for system (5)
and (25b); hence, (26) holds for & = [ef é;]".

To show the same property for system & = f1(¢,&1) ob-
serve that, by assumption, either e = 0 or x4 is constant and
x14 > —o/e; hence, the matrix in (37) is constant. It suffices
to chose the parameter « so that the eigenvalues of this matrix
are negative; i.e., it suffices to place the poles according to a de-
sired performance goal. The eigenvalues are the solutions \; of
the characteristic polynomial

M4+ Ao+alezig+0)=0
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which have negative real parts for any positive values of o and
(ex14 + o). The latter holds by assumption; moreover, if £ = 0
the condition reduces to o > 0.

The proof ends by applying Theorem 1 in the Appendix. To
see that Assumption 1 holds we introduce

1 9, €Tida+ O 9

== - s— 40

vi(&) = SllEnll” + ———ll&w|l (40)

which is positive definite and radially unbounded if « and

(ex14 + o) are positive. Since V' is quadratic it is easy to see
that (51) and (52) hold.

Finally, let by; > maxy>o{||z14(2)]], ||z24(¢)||}; then, using

(38) we see that
G (t, &1, &2)&2l < [e(ll&2ll + &2l + bar) + (ebar + o)][1&2 ]l

s0 (53) holds with 61 (||&2]]) = [e(||€2]] + 2bar) + o]||€2]| and
Oa2([|E2l) = ell&l-

Assumption 3 holds uniformly in &;(¢) since &2(t) satis-
fies (26). This concludes the proof of stability for the point
(es,ZTad,e1,¢é2) = (0,0,0,0). Finally, we observe that

Zog| |1 0] |Zog
€9 - 1 1 ég
so the result follows. [ |

VI. ROBUSTNESS IMPROVEMENT

It may be reasonably argued that the controls u, and @, as
defined in (14) may lead to relatively poor performance since
no freedom is given to improve, i.e., the convergence rate. Fur-
thermore, as we have discussed in Section II-A even though the
model (1) covers a number of case studies used in the literature
important physical aspects, which entail inductance variations
are not reflected in the d—q coordinates model (1). These phe-
nomena affect the machine performance under specific regimes
(low speeds) or at start-off, in this section, we study the robust-
ness of the controlled PMSM (1) with respect to additive distur-
bances. Indeed, these may be seen as produced by parametric
variations and neglected dynamics. In addition, in the following
section, we illustrate in simulation the robustness of our con-
trollers with respect to measurement noise.

To start with, note that the controllers proposed so far do not
contain any control gain to be tuned, but we have purposely lim-
ited ourselves to show the inherent stability properties of the
PM machine under pure velocity feedback. In order to stress the
robustness properties and possible direct improvements of the
controllers previously introduced, let us reconsider the inputs to
system (3), i.e., let 44(x3)* and 44(z3)* be, respectively, de-
fined by the right-hand sides of (14), and let us redefine

(41a)
(41b)

fbd(fﬂg,) = ﬂd(aj’g)* + 11
tg(23) := tg(73)" + 12
where 1 and v, are considered to be external (additional) in-
puts; these may contain perturbations to the system, measure-

ment noise, additional control terms, etc. The closed-loop equa-
tions with (3a) and (3b) yield

(42a)
(42b)

é1=—e1+x3(t)ea + 11

é2 = —€9 — $3(t)€1 + vo.

2115

Define V(&) := 0.563 with &5 = col[eres] and v = col[v1vs)].
The time derivative of V' (£2) along the trajectories of (42) yields

V(&) < —ll&lP+& v

i.e., the system is output strictly passive—cf., [36]-[38] from
the input v to the output &>. In words, it means that the system
seen as a black-box, which transforms inputs v into the currents
(errors) &5 dissipates energy. From a robust stability viewpoint,
we say that the system is input-to-state stable from the input v
with state &2, which is a property of robust stability with respect
to input disturbances such as measurement noise. To see more
clear, we observe that

(43)

1 1
v < 5 (Il +1v1P) = V(&) + 3l

and we regard (43) along the closed-loop trajectories, i.e., for
any 7 € [to,t) and t, > 0, we set £ = &(7) and integrate
from ¢, to ¢t on both sides of

V(&(r)) < =V(&(r)) + %IIV(T)II2

to obtain \
1
V(&(t)) < V(fg(to))e_(t_t°)+§ / e(T_t)||1/(T)||2dT. (44)
Jto
Let |||+, +) denote the sup_ ¢, ) ||v(7)[; using this in the in-
tegrand above we see that

2 t
V(e < Vgl + 10 [ g
Jt,

hence,

Il < alto) ™3~ 4 e,y 6)
i.e., the tracking errors £ converge to a neighborhood of the
origin, proportional to the size of the perturbation.

A natural requirement is to reduce the size of this neighbor-
hood that is, to impose an error tolerance despite the perturba-
tions. This is a direct modification that can be carried out to con-
trols (23) provided we are willing to accept current feedback.
Indeed, let 1 and v, in (41) be defined by

vy = —k161 + dl(t)
Vo (= —k262 + dg(t)

where k; > 0 are design parameters and d; now play the role of
disturbances. Restarting the above computations from (43) we
obtain, defining k,, := min{ky,ko} and d = (d1ds) T,

(47a)
(47b)

V(€2) < —(km + D||&|? + &5 d.

Observing that

64< 5 (hn + DIl + 7 1)
we (.)btain .
V(&a(r) < = + DV (&(r) + 5 )
hence,
lea(t)] < ||sz<to)||e—’”"3““‘“)+mudu[tm. (48)
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It is clear that for &; = k,,, = 0, i.e., if no current feedback is
applied, we recover the inherent robustness expressed by (46);
however, for positive values of k,,, we see that the currents' er-
rors converge to the interior of a ball that depends on the norms
of the disturbances d but which may be diminished at will by en-
larging k,,. In this case, the error tolerance is dictated by phys-
ical specifications (maximal size of input voltages %, and 4g).

More “sophisticated” controls may be used: the gains k1, ko
may be functions of the state as opposed to constants. For in-
stance, we may decide to make k; depend on the currents values,
i.e., k; := k;(e;). Then, the requirement is that the functions k;
be such that:

1) ]CL(BL) >0 Ve; € R;

2) there must exist class & function? y such that

ki(e; 1]e2
% > |1di ]| with i € {1,2}
€

we have that V(&) < —p(]|é2])).

To see how the last condition enters in play, let us reconsider
(43) with v as in (47) and k; as defined earlier. We see that

whenever

V(f2) < - 2[6?[1 + ki(e;)] — eids].

In these cases, it is not straightforward to integrate the “Lya-
punov equations” as done before to obtain bounds with
exponential decays; however, under the conditions earlier men-
tioned, we have that the system is input-to-state stable (ISS)
with input d and output {&s—cf., [31], [37]. Formally speaking,
it may be shown that the currents’ error trajectories satisfy the
robust bound

€201 < BUIE(to)Il = to) + 1/ (lldlly, +))

where [ is a class K function with respect to the first argument,
for each fixed ¢, and it decreases to zero, for each fixed value of
the initial errors ||{2(2 ) || Also, p/ is of class —cf., [31], [37].

Other practically motivated choices for the control gains are
possible. For instance, one may use saturation terms such as
—k;sat(e;) with sat(-) being a smooth saturation function,
such as tanh(-). In this case, however, it is obvious that the
robustness improvement is limited by the saturation level.

The functions k; may also be chosen to depend on the ve-
locity errors eg. For instance, it seems reasonable that, since the
variable of main interest is e3, we make the control gains large
only for “large” velocity errors; hence, we define &; := k;(||es]||)
with k; of class K.

The proofs for all these cases remain unchanged. Moreover,
it should be clear that the calculations and discussion men-
tioned earlier hold for all cases previously studied: set point
and tracking with known and unknown load.

VII. SIMULATIONS

We have used SIMULINK of MATLAB to test in simulations
the performance of the controllers proposed in the previous sec-
tions. The simulations’ benchmark model is taken from the liter-
ature and is as follows: we set the system parameters to values,
leading to chaotic behavior in open loop, i.e., 0 = 5.46,7 =
30,e = 071, = 10, and initial state values of 0.01. Several sets

2Continuous, positive strictly increasing and “zero at zero.”
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Fig. 1. Graph of the normalized d-current, i.e., x; and its reference trajectory.
Zooms on reference changes are also shown. Actual response shown in solid
line, reference in dashed line.

of simulations are presented covering the cases with and without
disturbances and with and without load estimation. These sim-
ulation results illustrate the performance and robustness of all
controllers previously introduced.

A. Without Adaptive Control

The simulation experience is as follows: the machine is left
to run in open-loop (chaotic) regime for 15 s. At this moment,
the controller (23) is “turned on.” The results of the simulations
are showed in Figs. 1 and 2. The simulation span is of 149 s,
and the reference trajectory changes at 30, 60, and 90 s. From
15 to 30 s the reference corresponds to a sinusoid of period 2w
followed by a ramp, generated by a step function of amplitude
150 and a “rate delimiter.” The reference changes to a step of
—10 at 60 s and is left constant up to ¢ = 90 s. At this stage,
the reference switches to a signal generated by a chaotic Lorenz
oscillator. In Fig. 1, we show the reference and actual response
for the d-axis normalized current, i.e., the functions z(¢) and
x14(t). In Fig. 2, we depict the graphs of the system’s normal-
ized angular velocity z3 and its corresponding reference x34.
For better appreciation of transients, we also present zooms on
selected windows of the time span. We stress that in the simula-
tions showed in Figs. 1 and 2, we have used the controller (23),
i.e., only with velocity measurement and assuming that all pa-
rameters are known.

In a second run of simulations, we have introduced up to 20%
of time-varying uncertainty in ¢ and 77 and additive distur-
bances generated by a Gaussian random noise signal with zero
mean in all three (3). As in all other simulations, control is in-
active for ¢ € [0, 15).

Results are shown in Figs. 3-5. In Fig. 3, we show 21 (t) over
x14(t); in Fig. 4, we show the plots for x3 and z34(t); finally,
the added noise and perturbations are showed in Fig. 5. In a
third run of simulations, we have added the extra current feed-
back terms in (47) with k&; = ko = 10, and the additive per-
turbation in the velocity equation (3c) has an absolute ampli-
tude of 10, i.e., 20 times as much as in the previous case. The
plots for the output of interest, i.e., the (normalized) angular ve-
locity is shown in Fig. 6. Graphs for the normalized d-current
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Fig. 2. Graph of the normalized angular velocity, i.e., 3 and its reference tra-
jectory. Zooms on reference changes are also shown. Actual response shown in
solid line, reference in dashed line.
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Fig. 3. Graph of the normalized d-current, i.e., 1 and its reference trajectory.

Zooms on reference changes are also shown. Actual response shown in solid
line, reference in dashed line.
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Fig. 4. Simulation under uncertainty and noise. Graph of the normalized an-
gular velocity, i.e., 3 and its reference trajectory. Zooms on reference changes
are also shown. Actual response shown in solid line, reference in dashed line.
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Fig. 5. Simulation under uncertainty and noise. Graphs of additive perturba-
tions d(t)cf., (47).
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Fig. 6. Simulation under uncertainty and noise. Graph of the normalized an-
gular velocity x; and reference trajectory under 20% of parameter uncertainty
and additive perturbations —d2 () 20 times larger as in Fig. 5. Zooms on tran-
sients. Actual response in solid line, reference in dashed line.

are shown in Fig. 7. In particular, one may appreciate the tran-
sient improvement due to the additional current feedback and
the relatively small steady-state error despite a much larger ad-
ditive disturbance.

B. With Adaptation

We have run another set of simulations, using the adaptive
controller of Proposition 4 under different conditions: with and
without current feedback and with and without (time-varying)
parametric uncertainty, additive disturbances and measurement
noise. When we use the current feedback terms—cf., (47) both
gains are set to ky = ko = k = 20. The adaptation gain in
(28¢) is set to &« = 3 in all cases. Measurement noise, distur-
bances, and time-varying parametric uncertainty are generated
by random normal Gaussian signals; parametric uncertainty
varies from 0 to 20%. The simulation experiment is similar
to the previous case: controls are switched on at £ = 15 s,
the normalized reference signal z34(t) changes from different
regimes going from sinusoidal (period = 27 and amplitude
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Fig. 9. Graph of the normalized angular velocity and reference in the worst-
case scenario: with & = 0 in (47), uncertainty and noise. NW plot: transient
toward sinusoid of amplitude equal to 100; NE plot: transient from sinusoid
toward step of 150; SW plot: transient and tracking of step to zero; SE plot:
tracking a Lorenz-generated chaotic reference.
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Fig. 8. Graph of the normalized angular velocity and reference in the worst-
case scenario: without & = 0 in (47), uncertainty and noise.

equal to 100) to steps (150 and zero) and finally to a chaotic
regime. Reference changes occur at ¢ = 30 s, ¢ = 60 s, and
t = 90 s. The simulation results are showed in Figs. 8—15.

In Fig. 8, we show the system’s normalized-velocity response
in the worst-case scenario: no current feedback—k = 0 in (47),
presence of additive disturbances, parametric uncertainty and
measurement noise. The figure shows both the system's actual
trajectory x3(t) and its reference x:34(t). For better apprecia-
tion, zooms on different time windows are depicted in Fig. 9.
For the sake of comparison in Fig. 10, we show a zoom on the
system’s response (normalized velocity x3(t)) in the four dif-
ferent scenarios. The window shows the transient response from
the first step (to 150) to a steady-state zero-velocity reference,
over the first 10 s. One can appreciate that, in the absence of
noise and disturbances, the transient duration is significantly re-
duced using the state feedback terms in (47). Correspondingly,
in the case of parametric uncertainties and noise, the effect of the
latter is significantly reduced via the controls from Section VI.
In Fig. 11, we show the normalized velocity errors e3(t) for
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Fig. 10. Zoom on the normalized velocity transient for the second step and
reference in four scenarios.

three different cases with and without noise and disturbances
and with (kK = 20) and without (k = 0) current feedback. From
the zoomed plots, one can clearly appreciate both the transient
and steady-state improvement when additional feedback is used,
as discussed in Section VI. Also, observe in the lower zoomed
window in Fig. 11 the zero-error in the ideal case when there
is no parametric uncertainty nor noise even when no extra cur-
rent feedback is used; that is using the output-feedback adaptive
algorithm from Proposition 4. A closer inspection is showed in
Fig. 12, where we depict four signals corresponding to the four
different scenarios previously described, over a zoomed window
around ¢ = 30 s. This Figure shows the error transient from a
sinusoidal reference to a step of 150. The two plots presenting
oscillations correspond to output-feedback control; one may ap-
preciate that the oscillatory behavior is suppressed under current
feedback (k = 20). When noise and additive disturbances are
present, one may appreciate that the steady-state error is con-
siderably reduced when the additional feedback loops (47) are
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Fig. 11. Graph of the normalized angular velocity errors and zooms. Three
cases showed: 1) without extra gain (“4 = 07) and without uncertainty nor
noise; 2) with & = 0, uncertainty and noise; and 3) with extra gain & = 20
(current feedback), uncertainty and noise.
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Fig. 12. Zoom on the normalized velocity errors during transient. Four cases
showed: 1) without extra gain (“k = 0”) and without uncertainty nor noise; 2)
with & = 0, uncertainty and noise; 3) with extra gain k = 20 (current feedback)
but without uncertainty nor noise; and (4) with uncertainty, noise and current
feedback.

added. The ideal case, i.e., with state feedback, known param-
eters (except for the load) and absence of disturbances is illus-
trated by the dashed curve. See also the NE plot on Fig. 9. Fi-
nally, we remark from Fig. 11 the steady-state oscillatory be-
havior of the velocity error when tracking the Lorenz reference
(for t > 90 s); as we show below, this error may be attenuated
by increasing the adaptive gain « in (28c).

Similar responses are obtained for the estimated reference
Toq4 that depends on the unknown load estimate and for the
normalized current z;(t). The previous observations hold for
these curves as well; for comparison, in a third set of simula-
tions, we have kept the current feedback gains as ky = ko =
k = 20 and increased the adaptation gain to & = 30. The sce-
nario includes additive disturbances, measurement noise, and
time-varying parametric uncertainty. The results are showed in
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Fig. 13. Zoom on the normalized velocity errors during transient under state-
feedback control. Two cases showed: o« = 30 and o« = 3; additive disturbances,
measurement noise, and time-varying parametric uncertainty present in both
cases.
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Fig. 14. Zoom on the estimation errors é>(t) during transient and under state-
feedback control. Two cases showed: @ = 30 and a = 3; additive disturbances,
measurement noise, and time-varying parametric uncertainty present in both
cases.

Figs. 13-15. In Fig. 13, we show the effect of increasing the
adaptive gain, on the velocity error e3(t) when tracking the
Lorenz chaotic reference, to be compared with the error curve
in Fig. 11. Similar effects may be appreciated for the estima-
tion error é5(t) depicted over different time windows in Fig. 14.
Finally, in Fig. 15, we show the system’s responses for the nor-
malized d-current under the same scenarios. Once again, the ob-
servations of Section VI as well as the results of Section V are
clearly illustrated.

It may be argued that considering random parametric vari-
ation is unrealistic. Indeed, as it has been widely validated in
experimentation, inductance is, in its most simplistic form, a
function of the rotor position. However, the latter depends on
the operating regime (constant, chaotic, sinusoidal, etc.) thereby
making it hard or impossible to generate a realistic variation for
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Fig. 15. Normalized d-current x;(t) and reference under state-feedback con-
trol. Two cases showed: &« = 30 and @ = 3; additive disturbances, measure-
ment noise, and time-varying parametric uncertainty present in both cases.

L with respect to time. Thus, random variations within reason-
able limits (say 15%) may be considered as “worst-case” sce-
narios, which cover a variety of possibly more realistic situa-
tions3. Besides, the study of chaotic systems under the influence
of noise has interest of its own, e.g., in the context of synchro-
nization—cf., [39], [40].

VIII. CONCLUSION

We have showed that both set-point and tracking output regu-
lation of permanent-magnet synchronous maOchines are achiev-
able via a simple linear output feedback controller, provided that
one chooses adequately the operating point for the quadrature
axis current. The control is shown to induce global exponen-
tial stability in both set-point and tracking control tasks, even
in the case of unknown load torque. Stability of control systems
under “obvious” modifications to the control algorithms, in view
of improving performance and robustness, follow as corollaries
from our stability proofs. Future work that comes naturally is
experimental validation.

APPENDIX A
ON CASCADED SYSTEMS

Consider the cascaded system

éfl = fi(t, 1) + 9(t, &1, 62)
& = fo(t, &)

where, for simplicity, we assume that all the functions are
smooth. For the case when fi, fo, and ¢ are independent of
time, i.e., if the system is autonomous, we know the following
fact from [41] and [42]: The origin £ = 0 is uniformly glob-
ally asymptotically stable (UGAS) if 1) §&; = fi(£,&1) and
& = f2(t,&) are UGAS and 2) the solutions of (49) are
uniformly globally bounded cf., ([43, Lemma. 2]). In general,
boundedness of solutions does not come for free and largely

(49a)
(49b)

3In simulations not showed here for space constraints, we use lookup tables
based on experimental data taken from ([18, Fig. 4],); the results are better.
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relies on the interconnection term g. Indeed, even if it is
guaranteed that x4 (¢) — 0 asymptotically, large transient over-
shoots may entail finite-time explosions, i.e., ||z1(t)]| — oo as
t — t. < oo. If otherwise, that is if the trajectories are defined
for all ¢ we say that the system is forward complete. This
property cannot be overestimated; it goes beyond academic ex-
amples. For instance, for the system & = £z it can be shown
by solving the differential equation, that there is finite-escape
time for specific initial conditions; this is due to the square
exponent in the term x2. For the sake of comparison, let us
recall that, for Lagrangian systems, the Coriolis and centrifugal
forces matrix is of order square with respect to generalized
velocities cf.,[44].

The following example, which is somewhat reminiscent of
the situation we encounter in cascaded-based control of the PM
machine, aims at illustrating such stumbling blocks.

Consider the system

1 :él = -+ &
Yo i€y = —(1+ €.

We observe the following: 1) defining Vi = £2 we have V=
—2¢} < 0; hence & = —&3 is asymptotically stable and 2)
defining Vo = €2 we get Vo < —2€2 — 2¢2¢2 < —¢2. That
is, V5 is negative definite, independently of ¢7. We would like
to regard the subsystem Y5 along the trajectories & (¢) thereby
“forgetting” the feedback loop established by &; in (50b). While
this seems possible under the previous (standard) Lyapunov ar-
guments, strictly speaking, the system

(50a)
(50b)

Syl = —(1+&(t)%)é

is ill-defined if &; (¢) explodes in finite time. That is, all what we
may conclude from the previous Lyapunov analysis is roughly
that, “while the trajectories do not explode, &»(t) decreases
exponentially fast,” which implies that “if (and only if) the
trajectories £ (¢) do not explode the system X is exponentially
stable.” For a recent formal treatment of feedback systems
viewed as cascades see [32].

When taking care of the technical issues discussed earlier,
feedback systems may be regarded as cascaded systems. Then,
one can use (among others) the following result on stability of
cascaded systems (49).

Theorem 1: Let the origin of systems & = f1(¢,&1) and
& = fa(t,&2) be UGAS and Assumptions 1-3 below hold.
Then, the origin of (49) is UGAS.

Assumption 1: There exist constants ci,co,n > 0 and a
Lyapunov function V' (¢,&;) for & = f1(¢,&1) such that V' :
R>o x R® — Ry is positive definite, radially unbounded,
V(t, &) < 0and

Assumption 2: There exist two continuous functions 6, 65 :
R>o — R>o, such that g(¢, &1, §2) satisfies

lg(t, &1, &)1l < O1(l|E211) + O2([[E1D[[E€1]]- (53)
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Assumption 3: There exists a class K function ¢( - ) such that,
for all ¢, > 0, the trajectories of the system (49b) satisfy

/ st to, 2ttt < olllE(t)). (54

APPENDIX B

A. Proof of Claim 1
Consider system (25). Let

1
V=3 (@+lel?).

The time derivative of V' along the closed-loop trajectories of
(25) yields

V < =o€ — [l&l” + &l €l llg(t, )]

Let t,,.x < oo determine the maximal interval of existence of
the closed-loop solutions, i.e., let (- ) be an absolutely contin-
uous function defined on [to, tmax) and let ||€(tmax)|| — o0 as
t — tmax. Define v(t) := V(¢,£(¢)) then, on the interval of
existence we have
o) < & @ 15201 Nlg(t, &)
<&@ + 11E2ONP[er + ealléa(B)]1]?
[

however, on the same interval [to, tmax), We have ||&2(2)|| <
[€2(to)[]. Define es([|€2(to)ll) = [c1 + callé2(to)]]* and
ca(ll&2(to)ll) := 2 max{1, cs(||€2(20) )} then,

(1) < ca(ll&2(to) ) o(t) Yt € [to, bmax)-

‘We have, on one hand,

/t o(t)d
Je,  cav(t)

lim v(t) = o0

t—tmax

=~

S tmax - to

and, since

we have on the other hand#4

tmax () dt < dv
/ (t)dt _ / — = In(cqv) j(i:)
Jto ’

C4’U(t) v(to) C4U

We conclude that #,,,,, cannot be finite.

= +o00.

B. Proof of Claim 2

Consider the system (36), (39). Let [to, tmax ) denote the max-
imal interval of definition of solutions of (39) and define

1

va(&2(1)) := gllﬁz(t)llz-

The total time derivative of vy yields, using (39),

i2(62(t) = —[l&2(1)]*-

4We consider, without loss of generality, that 1=(to) # 0.
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That is,
€2t < [|&a(to) et

The interconnection term g in (36) satisfies, along solutions, and
on the interval of definition of the latter

llg(2, &1 (8), (D) < e+ elll&a2(B)] + lIE22()I]

where c is a positive number independent of the initial condi-
tions—it depends only on bounds on the reference trajectories
x24(t) and z34(t). Using this and (40), it is direct to obtain that
the time derivative of

v(t) == v2(&2(t)) + vi(&u(2))
along the trajectories generated by (36) and (39), satisfies
i(t) <
e @I 1@+ e @101 + @16 @]

where (-) := (- ) max{l, (exz14+0)/(c)}. Using the triangle
inequality on the bound aforementioned and (55) we obtain that
there exists ¢’ : R — R such that

B(t) < " (I&2(to) v (?)

Integrating on both sides and proceeding as in the proof of Claim
1, we conclude that ¢, = +00.

Vt € [to,tmax).  (55)

(56)

Yt € [to, tmax)-
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