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Adaptive Observers With Persistency of Excitation
for Synchronization of Chaotic Systems

Antonio Loría, Member, IEEE, Elena Panteley, and Arturo Zavala-Río

Abstract—We address the problem of master-slave synchro-
nization of chaotic systems under parameter uncertainty and with
partial measurements. Our approach is based on observer-design
theory hence, we view the master dynamics as a system of differen-
tial equations with a state and a measurable output and we design
an observer (tantamount to the slave system) which reconstructs
the dynamic behavior of the master. The main technical condition
that we impose is persistency of excitation (PE), a property well
studied in the adaptive control literature. In the case of unknown
parameters and partial measurements we show that synchroniza-
tion is achievable in a practical sense, that is, with “small” error.
We also illustrate our methods on particular examples of chaotic
oscillators such as the Lorenz and the Lü oscillators. Theoretical
proofs are provided based on recent results on stability theory for
time-varying systems.

Index Terms—Adaptive control, chaos control, chaotic systems,
observers, synchronization.

I. INTRODUCTION

A. On Controlled Synchronization

S INCE the seminal work of Blekhman [1] systems synchro-
nization has attracted growing attention in different scien-

tific communities, ranging from that of physics, electrical en-
gineering, control theory, signal processing, to mention a few.
Synchronization appears in different ways and circumstances
but mainly in the so-called master-slave configuration, in which
a leader system marks the pace to a follower system, and mu-
tual in which generally more than two systems synchronize their
motion with respect to each other without any hierarchy.

We focus on the problem of master-slave synchronization of
chaotic systems. This was mainly initiated by the celebrated
paper of Pecora and Carroll [2] and has triggered a number
of works in the subject, motivated by applications such as (but
not exclusively) encoding of information for secure transmis-
sion—cf. e.g., [3]–[9]. During the last 15 years or so, a number
of methods to establish synchronization of chaotic systems have
been proposed in more or less generality: for instance, focussed
on the Lorenz system: [5], [10], [11] (one of the most pop-
ular chaotic oscillators) or covering relatively general classes
of chaotic oscillators—cf. [6], [7], [12]–[16].
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Beyond those of Physics and Electrical Engineering, view-
points that have proved to be useful to synchronization are that
from control theory, for design methods, and that from sta-
bility theory, for analysis. Indeed, two general questions that are
recurrently investigated in synchronization of chaotic systems
are: 1) under which conditions systems synchronize (values of
physical parameters, initial conditions, etc.) and consequently,
2) under which conditions one is able to design chaotic sys-
tems that synchronize with others? To answer the first question
Lyapunov stability theory may be used—cf. [17]–[19], for the
second, distinct control approaches have been put to test—cf.
[6], [7], [12]–[14]. Some papers rely on analytic study –[8],
[20], [21] and others on numerical methods and validation in
simulation—cf. [16], [22], [23]. Beyond stability theory, work
on synchronization analysis includes the study of synchroniza-
tion in networks of oscillators—cf. [24]–[29], relying on tools
from e.g., graph theory. Fundamental work on pinning-control-
lability just appeared in [24]. In [26] conditions are established
in terms of the average coupling path lengths among network
nodes; see also [25]. The recent paper [28] establishes synchro-
nizability in terms of conditions on parameters of the probability
distribution that governs the topological changes of the network.
A number of articles establish fast-switching conditions relying
on averaging techniques (also well-known in the theory of sys-
tems stability). In the recent paper [27] it is established that syn-
chronization may occur even if connections are instantaneously
lost ’at times’ as long as the interconnection among all nodes is
kept in average. Other recent articles relying on fast-switching
conditions include [30] which deals with stochastic models i.e.,
the nodes’ couplings switch on and off randomly.

The method presented in [15] which may also be re-casted in
the context of identification plus synchronization relies on syn-
chronizing the master and slave systems under parameter un-
certainty at the expense of synchronization mismatch then, an
adaptive algorithm is activated locally to estimate the parame-
ters. The article [16] has triggered many other works on adap-
tive synchronization and identification of chaotic systems. How-
ever, as pointed out for instance in [17], [31] the method from
[16] does not work in general: in [31] an alternative proof for
parametric convergence is given which relies on La Salle’s in-
variance principle or, a variant of it seemingly for chaotic sys-
tems1. In [17] a proof of convergence of synchronization er-
rors is established following “signal-chasing” arguments stan-
dard in adaptive control theory but parametric convergence is
not established, it is only observed (for the particular case of the
Lorenz system) that parameters converge when the system is in
a chaotic or in a periodic regime -this is stressed as an “inter-

1While we are not aware of a precise formulation of La Salle’s invariance
principle for chaotic systems we stress that this theorem does not apply in gen-
eral to time-varying systems (except periodic).
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esting phenomenon which remains to be further investigated”.
This phenomenon has been studied and explained recently in
[32] in terms of so-called persistency of excitation (PE). As a
matter of fact, this notion is known in adaptive control litera-
ture for about 40 years now and, within a specific setting2, it is
a necessary condition for parametric convergence. It also seems
closely related to the averaging techniques used e.g., in [25],
[26] and [27].

Among the many control-theory based approaches to syn-
chronization we single out that based on observer theory (Lu-
enberger, high-gain, adaptive, reduced-order, etc.). An observer
is, roughly speaking, a dynamical system designed to estimate
the states of another. As it has been laid out in [35] master-slave
synchronization a la Pecora-Carroll may be recasted in the con-
text of observer design. This is significant as observer theory
is well-developed, mainly for linear systems—cf. [36], [37] but
also with important advancements for nonlinear systems—cf.
[38]. Within the vast observer theory we shall emphasize adap-
tive observer design. In this case, it is required to design an
observer under parametric uncertainty. In the context of syn-
chronization of chaotic systems this translates into the problem
of designing a slave system which (as an observer) tracks (that
is, estimates) the trajectories of a master system by measuring
a function or part of the master’s state. This is in high con-
trast with many of the previous references where it is assumed
that a control action may be exerted by, possibly, measuring
the whole state—cf. e.g., [20], [39]–[42]. Early work on ob-
server-based synchronization includes [43]; more recent work,
including parametric uncertainty and adaptation are the inter-
esting papers [12], [44] of which we became aware after the
original submission of this paper. In the first reference the au-
thors present similar results to ours but under somewhat more
restrictive assumptions: adaptive observers for partially linear
systems, affine in the unmeasured variables and, under persis-
tency of excitation conditions, conclude synchronization and
parametric convergence with small errors. The second reference
is targeted to applications in the realm of secured communica-
tion based on synchronization of chaotic systems.

Generically, adaptive synchronization with full measurement
of the master system is an important and challenging problem
in its own right. In this context it is worth mentioning the in-
teresting and efficient open-loop identification scheme of [45]
but which is limited to systems having one unknown parameter
per dynamic equation and with a specific structure. Closed-loop
identification may be recasted in the context of so called adap-
tive tracking control for chaotic systems—cf. [32], [39], [46].
Roughly observer-based synchronization, which is the subject
of study in this paper, is comparable to a problem of tracking
control with partially unknown reference operating regime.

Literature on observer theory is very rich and we shall not
deal with a review; we only mention a few papers related to
the method we employ here. In that respect, let us recall the
articles [47]–[50] whose formulations are reminiscent of the
early works [51], [52]. The papers [47]–[49] deal with linear
time-varying systems and both parametric and state estimation
errors are guaranteed to converge under a condition formulated

2By “specific setting” we refer to classes of systems having certain structural
properties related, for instance, to relative degree; so-called Model Reference
Adaptive Control systems, etc. We shall not describe these in detail, readers are
kindly suggested to see [33], [34].

in terms of persistency of excitation. The article [50], among
others by the same author, deals with a similar problem for a
class of nonlinear systems which has two particularly impor-
tant features: the system is linear in the unknown variables (un-
measured states and parameters) and, moreover, parametric un-
certainty appears only in the set of dynamic equations of the
measured variables. Strictly speaking, the result is stated for
such class of systems but holds for more general forms pro-
vided a coordinate transformation exists which brings a “gen-
eral” nonlinear system into the desired form. More on such co-
ordinate transformations can be found for instance in [53], [54]
to cite a few. Recent articles on adaptive observers for systems,
linear in the unmeasured states specifically with the purpose of
addressing synchronization of chaotic systems include [6]–[8],
[12], [14], [35], [55]–[58]; in many of these references (at least
in [8], [55]–[57]) stringent conditions such as (global) Lipschitz
on the nonlinearities are assumed to hold.

Other techniques for controlled synchronization rely on time-
varying delay control. In particular, some results for systems of
the Lur’e type—cf. e.g., [59] that is, with sector nonlinearities
(hence a similar class of systems covered by observer theory
as previously discussed) include [60], [61]. The last three ref-
erences have also appeared during the review process of this
paper.

B. About This Paper

In this article we present sufficient conditions for parametric
and state estimation using adaptive observers which cover high-
gain designs—cf. [35], [51] and others from the references cited
above: 1) we lay sufficient general conditions in terms of persis-
tency of excitation along trajectories for nonlinear systems (in
contrast to [47]–[49]); 2) the class of nonlinear systems includes
systems that are linear in the unknown variables but parametric
uncertainty may appear anywhere in the model (in contrast to
[50]); 3) the conditions we set for our adaptive observers in-
tersect (and generalize in certain ways) with high-gain designs
for nonlinear systems, similar to those in [62], [63] however, in
contrast to the former our method is not restricted to high-gain
observers and, with respect to the latter, in this paper we cover
the case of parametric uncertainty without controls; 4) the class
of systems that we consider contains time-varying nonlineari-
ties which may be regarded as neglected dynamics; in contrast
with works relying on Lipschitz assumptions we allow for high
order terms provided that the trajectories of the master system
are bounded (which is not restrictive in the context of chaotic
systems); 5) the condition in terms of PE covers cases consid-
ered for instance in [7], [8], [12], [47]–[49], [55]–[58]. Our re-
sults are for a (structurally) similar class of systems as that con-
sidered in [12] except that in the latter systems are assumed to
be partially linear; another fundamental difference is that in [12]
synchronization is considered as making two respective outputs
which are part of the state of the master and slave system con-
verge to each other, as opposed to estimating the whole state of
the system. The theoretical proofs that we present are original
and rely on previous results for stability of parameterized linear
systems—cf. [64].

In our main theorems we state and prove that under relaxed
assumptions (in terms of persistency of excitation and structural
conditions such as detectability and observability) the synchro-
nization and parametric errors converge to compact sets, that is,
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the errors are bounded and relatively small (this is called prac-
tical asymptotic stability). Under more stringent conditions, for
instance, in the case that parameters are known but not the states,
synchronization may be achieved. Similarly, the adaptive ob-
servers may be employed into the specific problem of parameter
identification if full measurement of master states is available.
This situation is similar to the context of tracking control with
full state-feedback as mentioned earlier.

The rest of the paper is organized as follows. In Section II
we introduce some notation and definitions of stability that set
the framework for our main results. These are presented in an
increasing level of generality, accompanied with case-studies.
In Section III we present the simplest case, that is, when all pa-
rameters are known and only partial measurements of the master
system are available; in Section IV we study the case when the
constant lumped parameters are unknown and we add an adap-
tation algorithm to estimate them; in Section V we present the
most general result, for system’s synchronization with partial
measurement, parameter uncertainties and additional nonlinear-
ities which may correspond to neglected dynamics or undesir-
able external disturbances acting on the system. Along each of
the preceding sections we present case-studies and simulation
results that illustrate our findings. All the proofs of stability are
presented in an appendix at the end of the paper. We conclude
with some remarks in Section VI.

II. PRELIMINARIES

Notation. We say that a function where
is a closed, not necessarily compact set, satisfies the basic regu-
larity assumption (BRA) if is locally Lipschitz uniformly
in and is measurable. We denote the usual Euclidean
norm of vectors by and use the same symbol for the matrix
induced norm. A function is said to be of class

, if it is continuous, strictly increasing and equals to
zero at zero; if, in addition, it is unbounded. A function

is of class if ,
is strictly decreasing and . We denote the
solution of a differential equation starting at at
time by ; furthermore, if the latter are defined for
all we say that the system is forward complete.

Definition 1 (Uniform Global Stability): The origin of

(1)

where satisfies the BRA, is said to be uniformly glob-
ally stable (UGS) if there exists such that, for each

, each solution of (1) satisfies

(2)

Definition 2 (Uniform Global Asymptotic Stability): The
origin of (1) is said to be uniformly globally asymptotically
stable (UGAS) if it is UGS and uniformly globally attractive
i.e., for each pair of strictly positive real numbers , there
exists such that

Definition 3 (Uniform Exponential Stability): The origin of
the system is said to be uniformly exponentially
stable on any ball if for any there exist two constants

and such that, for all and all such
that we have

(3)

Definition 4 (Unif. Semiglobal Practical Asympt. Stability):
The origin of (1) is said to be uniformly semi-globally prac-
tically asymptotically stable (USPAS) if for each positive real
numbers and there exist and
such that for all and

For Definitions 1–3, for Definition 3 see [66]; for Definition
4 see [67].

III. SYNCHRONIZATION AND OBSERVERS WITH

PERSISTENCY OF EXCITATION

A. On Observability and Persistency of Excitation

Consider a nonlinear system of the form

(4)

where is the state vector; , , is a mea-
surable output. As explained in [35] synchronization a la Pecora
and Carroll may be recasted in the context of observer design.
Generally speaking, an observer system for (4) is a system with
state such that as . In the con-
text of master-slave synchronization, may be thought of as
the state variable of the slave system. Thus, one may solve the
master-slave synchronization problem if one can design an ob-
server for (4).

In the literature of nonlinear observers (cf. [35], [38])
a standard assumption is that the pair is ob-
servable from the output . To explain this condition
let us first consider the case when is constant; we
say that is observable if and only if the matrix

is of full
column rank. We stress that, in the case that is not con-
stant, for instance, if is a function of , one must require
this condition to hold for each . On occasions, one
may ask the following less restrictive property: let
with be a pair of initial conditions that generate
a trajectory (solution) of System (4) which we denote by

. In such case, the corresponding output trajectory
is or, in short, .
For this particular output trajectory, generated by the partic-
ular pair of initial conditions and , the observability
condition is that

has full column rank for each
. Notice that this is less restrictive than requiring that

is of full column rank for all . This is clear if we con-
sider that the set of points for all is for a particular
pair of initial conditions, only a subset of . Hence, requiring
observability for all is tantamount to requiring that the
system is observable for all trajectories generated by any pair
of initial conditions , .

Another useful concept from control theory, in the design of
observers and therefore, to solve the problem of synchronization
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a la Pecora and Carroll is detectability. Roughly, we require that
the column rank of the matrix at the bottom of the page be full
for some and for all . That is, it is no longer required
that the rank condition holds for each but over a window of
length . For instance the matrix

looses rank at for all integer values of however,
its integral over a window is of rank 2 for any value
of .

In the literature of control systems and identification there ex-
ists a well known concept that is instrumental in understanding
and stating conditions for detectability and observability of dy-
namical systems. Such property is known as persistency of ex-
citation and its precise definition is as follows.

Definition 5 (Persistency of Excitation): A continuous 3 func-
tion is called persistently exciting if there
exist two strictly positive numbers and such that

For certain systems appearing in the context of adaptive con-
trol and adaptive observers, this condition is known to be suf-
ficient and necessary for the stability of the origin. More pre-
cisely, consider the following system:

(5)

(6)

under the following conditions:
• the matrix is Hurwitz i.e., its eigen-values have all

strictly negative real parts;
• the matrix is symmetric positive definite.

Then, the origin of the system is uniformly asymptotically
stable; in particular, as , if and only if
is persistently exciting. This result may be found in books on
adaptive control (cf. for instance [68]) and generalizations to
the case when depends on system’s trajectories appeared in
[64].

Our main results on adaptive observers and their application
in the master-slave synchronization problem rely on refinements
of the result above for the cases when depend on the mea-
surable outputs and depends on the state. As we show, such
formulations are adequate for a number of chaotic systems how-
ever, since we consider nonlinear systems one needs to start by
posing properly the conditions of persistency of excitation along
trajectories. We use a condition in the spirit of [64].

3Locally integrable is enough.

B. On Observers

With the previous discussions in mind, we are now ready to
present a preliminary result on persistency-of-excitation based
observer design for synchronization. A relatively simple ob-
server for systems of the form (4) is given by

(7)

where is a design function chosen to satisfy the basic reg-
ularity assumption to ensure the well-posedness of the differen-
tial equation. The matrix function
must be chosen in a way that the origin of the estimation error
dynamics

(8)

be uniformly globally asymptotically stable.
Observers of the form (7) are reminiscent of Luenberger-type

observers and are at the basis of designs for linear time-varying
systems as for instance in [48], [49]. Note that here the differ-
ential (8) is time-varying and depends on the output trajectories

. In the context of master-slave synchronization (8) repre-
sents the dynamics of the synchronization errors between that
of the master’s state and the slave’s state . For example, a
Lorenz oscillator, given by the equations:

(9a)

(9b)

(9c)

may be represented in the form (4) with

(10)

hence, the observability matrix for this system, from output
is

which looses rank, for instance when . Yet, it may be pos-
sible that the integral of this matrix along particular trajectories

over a window of length be of rank 3 for all . In that
case, the observer defined above, under an appropriate condi-
tion of persistency of excitation may reproduce the unmeasured
states. More precisely we can establish the following.

Proposition 1: Consider System (8) and define for
each .
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LORÍA et al.: SYNCHRONIZATION OF CHAOTIC SYSTEMS 2707

Assumption 1: Assume that there exists a globally uniformly
bounded positive definite matrix function

such that and, defining

(11)

we have the following for all and all
1) ;
2) there exist and such that

(12)

3) there exists such that .
Under these conditions the origin of system (8) is uni-
formly globally exponentially stable (that is, uniformly expo-
nentially stable for any initial states and initial times

).
The proof of Proposition 1 is provided in Appendix A. We

draw the following immediate corollary.
Corollary 1: Consider two Lorenz systems: one master with

state and one slave system with state and assume that only
the first variable of the master system is measurable. Synchro-
nization is achieved under the conditions of Proposition 1. In
particular, we have as .

Remark 1: In general, verifying Assumption 1 is hard since
it must be done online; it is tantamount to verifying Assump-
tion 2 below. However, it should be clear that points 1) and 2)
of Assumption 1 hold if is positive definite for all values of its
arguments. Such assumption is common in related recent liter-
ature—cf. [7], [8], [47]–[49], [55]–[58] among others. To prove
further on the arguments behind Assumption 1 we address the
reader to [64].

Assumption 2: Let denote the transition matrix as-
sociated to , i.e., the solution of

(13)

Assume that there exist positive numbers and , such that,
for all

(14)

Remark 2: Note that condition (14) means that the output tra-
jectory is PE which is likely to hold if the system operates
under a chaotic regime4. Yet we emphasize that PE is verifiable
only on compact intervals of time as is naturally the case for any
asymptotic property; moreover, since (14) is a condition along
trajectories it may only be verified numerically and online.

Thus, Assumption 1 is little restrictive and allows to
design efficient observers such as the so-called high-gain ob-
servers—cf. [35], [51] and references therein. Below, we give
explicit formulae to compute and using a dynamic system.
The following equations are reminiscent of designs for linear

4While this seems a reasonable conjecture, verified for a number of particular
cases in simulations, we are not aware of a rigorous mathematical proof.

time-varying systems—cf. [47], [49] and for nonlinear systems
in the so-called observable form—cf. [50], [62]. The funda-
mental difference here is that conditions are clearly stated along
measured trajectories; note that they impose uniformity with
respect to initial conditions. Such uniformity is fundamental
for properties such as robustness with respect to “small distur-
bances”—cf. [66]. Hence, only by considering the trajectories
explicitly one may lay the appropriate conditions for stability
and robustness.

Proposition 2: Let Assumption 2 hold. For any given ,
we define the observer gain for each trajectory, , as

(15)

(16)

(17)

Then, one has

(18)

and, on the other hand, the matrix from (11) with
and given by (15) and (16), satisfies so
Assumption 1 holds.

The proof of the first part of this proposition is provided in
Appendix B; the second part follows by direct calculation.

C. Example

We wrap up this section with some simulation results for the
Lorenz system (9), using the observer from Proposition 2. In
the simulation setup we assume that only the variable from
the master is measurable and the observer (slave system) must
reconstruct and . In the simulation we have set s
and

(19)

whose eigenvalues are , and
.

The physical parameters , and are chosen to make
the Lorenz system describe a chaotic behavior i.e., ,

and . The initial states of the master system
are set to one while those of the slave system (observer) are set
to zero.

In view of Remark 2 and the facts that here and the
Lorenz system operates in chaotic mode, it is expectable that the
system satisfies the excitation condition imposed by Assump-
tion 2.

In Fig. 1 we show the plots of the norms of the synchroniza-
tion errors. One may appreciate the exponential decay of the
errors to zero. We stress that this is done with the observer from
Proposition 2 with measurement of only but with known pa-
rameters , and .

IV. ADAPTIVE OBSERVERS WITH PERSISTENCY OF EXCITATION

In the previous section we assumed that the constant param-
eters of system (4) are known. In practice this is an unrealistic
assumption; for instance, in the case of a chaotic oscillator such
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Fig. 1. Absolute value of synchronization errors for Lorenz system: � —states
of master system and �� —states of slave system.

as the Lorenz system which may be realized as an electrical cir-
cuit—cf. [9], it is clear that one typically will dispose of approx-
imate values of the parameters , and which depend on
the values of the physical components of the circuit. In such a
case, it is desirable to design an observer with an adaptation law
that updates the estimates , and .

Hence, in a more general context we assume next that the
system (4) may be written as

(20)

where the matrix depends only on the output (as
opposed to the matrix in (10) where the system parameters are
involved since they are considered to be known) and the matrix

depends only on the state but not on the unknown parame-
ters. We assume that is a vector of unknown constant
parameters and is a compact of , that is, we separate the
terms that depend on the unknown parameters from those terms
that do not and we assume that the dependence of the system’s
dynamics on the unknown parameters is linear.

The model (20) covers or intersects with other interesting
classes of systems studied in the literature of adaptive observers
design. For instance, in [50] the systems that are considered
(after a coordinate transformation) are such that appears only
in dynamic equations of measured states. In [12] the class of
systems considered restricts to the case where is constant or
satisfies some structural conditions of relative degree, minimum
phaseness—cf. [34], etc. This class covers systems with similar
structure but where and depend on time only and not on
the state; that is, the case of linear time-varying systems. Thus,
while restrictive from a strict systems’ viewpoint the model (20)
covers many chaotic oscillators studied in focussed articles such
as on the Lorenz system -see the references cited in the Intro-
duction.

We now make the following hypothesis on :
Assumption 3: Let and be two solutions satis-

fying (20) for certain initial conditions. We assume that the
function along the trajectories and satisfies, for
any vectors with and a positive constant

,
for all . We also assume that there exists
such that

(21)

The first part of the previous assumption may be satisfied, in
particular, in the following cases which make sense for chaotic
systems:

• the matrix function is once continuously differen-
tiable and the trajectories are bounded for all ;

• the function is globally Lipschitz:
for all , .

The second sufficient condition for Assumption 3, that is, glob-
ally Lipschitz, is restrictive in the context of general nonlinear
systems. The second alternative assumption, i.e., boundedness
on is not restrictive in the present context of synchroniza-
tion if we recall that corresponds to the solutions of an or-
dinary differential equation such that for a par-
ticular choice of the system exhibits a chaotic behavior and
therefore, is bounded. Boundedness of follows directly
from the regularity hypotheses imposed on to guarantee exis-
tence and uniqueness of solutions. On the other hand, that the
condition in the first bullet above is sufficient for Assumption 3
to hold, follows by invoking the Mean Value theorem for multi-
variable functions—cf. [69]. Thus, Assumption 3 is not restric-
tive in the present context of master-slave synchronization.

Under these conditions, an adaptive observer for systems of
the form (20) is given by

(22)

where satisfies the basic regularity assumption and
the persistency of excitation condition implicitly defined in
Assumption 1. Using (20), and defining ,
the estimation error dynamics is given by

(23a)

(23b)

Assumption 3 and the assumption that where is a
compact of appropriate dimension imply that there exists

such that

(24)

Next, consider the adaptation law

(25)

which, considering that , is equivalent to

(26)

with . We also impose a persistency-of-excitation condi-
tion on the function :

Assumption 4: The function is such that there exist
positive numbers and such that, for any unitary vector

(27)
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LORÍA et al.: SYNCHRONIZATION OF CHAOTIC SYSTEMS 2709

Fig. 2. Lorenz slave and master systems: phase portrait of� versus� (master,
continuous line) and �� versus �� (slave -dotted line).

Assumption 4 is a structural condition on the function
as well as on the richness of the trajectories .

Under these conditions we have the following.
Proposition 3: The origin of the estimation error dynamics

corresponding to and , i.e., (23) and (26), is uniformly
semi-globally practically asymptotically stable provided that
Assumptions 1, 3 and 4 are satisfied and the solutions and
their derivatives are bounded for all .

Roughly, Proposition 3 establishes conditions for the state
and parameter estimation errors to converge to a small neigh-
borhood of the origin. In the context of master-slave synchro-
nization of chaotic systems, Proposition 3 establishes conditions
under which two chaotic systems with unknown constant pa-
rameters, synchronize, in the event that only an output of the
master system is measurable.

A. Example: Synchronization of Two Lorenz Oscillators

Let us consider the synchronization problem for two Lorenz
systems—cf. (9). We assume to measure and that is
unknown. Under such conditions the system can be rewritten in
the form (20) with

(28)
The functions above satisfy the basic regularity conditions and

is globally Lipschitz.
We note that not any choice of measurable output leads to a

realizable synchronization algorithm since the detectability as-
sumption may not be verified. For instance, if only is mea-
sured and all parameters are unknown we have

(29)

The observability matrix for this system becomes

Fig. 3. Lorenz slave and master systems: phase portrait of� versus� (master,
continuous line) and �� versus �� (slave � � � dotted line).

Fig. 4. Lorenz slave and master systems: phase portrait of� versus� (master,
continuous line) and �� versus �� (slave � � � dotted line).

which is always of rank 1. In other words, it is impossible to
design a state and parameter estimator of the type (22) by mea-
suring only and having no knowledge of the parameters5.

We tested the proposed algorithm in simulation under the fol-
lowing conditions. For a chaotic behavior we set the parameters
of the master system to , and ; the
master initial states are set to ; the slave initial
states are set to and the initial estimate of the
master’s parameter to . The observer parameters
are set to , s and . The adaptation
gain is set to .

The simulation results are presented in Figs. 2–6. The
phase portraits of the master and slave systems are depicted in
Figs. 2–4; one can appreciate the good match between master
and slave trajectories. In Fig. 5 we present the graphs of the
three synchronization errors against time. The estimated value
of the parameter is depicted in Fig. 6 where it is appreciated a
small mismatch between the true and estimated value

. This small error is expectable: Proposition 3 es-
tablishes practical asymptotic stability in the case of parametric
uncertainty. Indeed, notice that, in the ideal case that after
a time say , we have from (25)
where ‘has a chaotic behavior’. On the other hand, note
that the ’stable’ term in (16) drives the solution of the
latter to zero (in the absence of the other terms) hence, it may
be inferred that the matrix becomes considerably small.
Moreover, since is chaotic it is also bounded so even
though does not necessarily tends to zero asymptotically. As
established by the proposition one can only guarantee practical
asymptotic stability.

5We are not aware of any result for such case by any other method either.
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2710 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 56, NO. 12, DECEMBER 2009

Fig. 5. Lorenz slave and master systems: synchronization errors for the three
variables i.e., �� , �� and �� .

Fig. 6. Lorenz slave and master systems: Estimate of parameter � . Value for
master system � � �; estimated value �� � ������.

V. ROBUST ADAPTIVE SYNCHRONIZATION VIA PE OBSERVERS

We consider now, systems with additional nonlinearities
that depend only on the state, time and known param-

eters, i.e., systems of the form

(30)

where satisfies the same assumptions as , uniformly in :
Assumption 5: Let be arbitrarily fixed and let and

be two solutions satisfying (30) for respective initial con-
ditions and such that . We assume
that there exists such that the function , along the trajec-
tories and satisfies

(31)

for all and all initial states such that
.

This condition on holds under similar conditions as for
—cf. Assumption 3. We stress that needs not to be

globally Lipschitz. In this respect it is convenient to stress that
the trajectories of chaotic systems are bounded.

For the system (30) the observer equation becomes

(32)

and the estimation (synchronization) error dynamics is

(33)

where

Assumptions 3 and 5 together with the hypothesis that
where is a compact of appropriate dimension imply that there
exists such that

(34)

which, considering (24), redefines . This makes it apparent
that there is no loss of generality in considering that does
not contain any unknown parameters since those terms may
be embedded in . As a matter of fact, a direct corollary
from Proposition 3 follows for systems (30); that is, the adap-
tive observer from previous section still ensures the property of
semi-global practical asymptotic stability.

Corollary 2: The origin of the estimation error dynamics
corresponding to and , i.e., (33) and (26), is uniformly
semi-globally practically asymptotically stable provided that
Assumptions 1, 3, 4 and 5 are satisfied and the solutions
and their derivatives are bounded for all .

In the context of synchronization this is tantamount to en-
suring master-slave synchronization with a small error. This is
stated in the following proposition which contains all the pre-
vious results.

Proposition 4: Consider a chaotic master system of the form
(30) where is such that the solutions exhibit a chaotic
behavior. Let be a measurable output of the master
system. Construct a slave system according to the dynamics
(32), (25). Then, under the conditions of Corollary 2 a slave
system synchronizes with the master; in particular, ap-
proaches as . Moreover:

1) in the case that the parameters are unknown, the errors
and approach a small neighborhood

of the origin as . Moreover, the size of this neigh-
borhood may be reduced by increasing the persistency of
excitation, i.e., and ;

2) in the case that the parameters are unknown but ,
i.e. the whole master system’s state is measurable, perfect
synchronization occurs and the parameters may be esti-
mated if the persistency of excitation condition (27) holds;

3) in the case that the parameters are known, the slave
system will achieve perfect synchronization provided
that the persistency of excitation condition imposed in
Assumption 1 holds.

The statement in point 1) generalizes previous results
which rely either on a Lipschitz condition on the additional
nonlinearities or, on positivity of the matrix in Assumption
1 or both—cf. Remark 1 and references mentioned there; the
statement in point 2) is reminiscent of controlled synchro-
nization under parameter uncertainty when the whole state is
measurable—cf. e.g., [32], [70], [71] and references in the latter;
the statement in point 3) generalizes results on observer-based
synchronization, as briefly treated in Section III—cf. e.g., [7],
[35], etc.

A. Example: the Chaotic Oscillator of Lü—Cf. [72]

We consider as example the chaotic oscillator from [72]

(35a)

(35b)

(35c)
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LORÍA et al.: SYNCHRONIZATION OF CHAOTIC SYSTEMS 2711

Fig. 7. Lü et al. chaotic oscillator: phase portraits of the master system—�

versus � and for the slave system —�� versus �� .

where . In the simulation setup we use
the high-gain adaptive observer (32), (15) with measurable
master’s states and . We also assume that and
are unknown. We consider the term as a “neglected”
dynamics i.e., we define . This
term satisfies the Lipschitz hypothesis on along trajectories,
in view of the boundedness of under a chaotic regime:
indeed, for any and any initial states satisfying
there exists such that for all . Hence,
condition (31) holds with . To see this we observe
that

.
However, it is clear that does not satisfy sector or Lips-
chitz conditions—cf. e.g., [7], [8], [55], [57], [58] since it is a
bilinear function of the states.

According to [20] this oscillator presents chaotic behavior for
parameter values , and and
initial states ; we set ; with these
values . The observer design parameters are set
to and and . The slave system’s
initial states are set to , , .
The matrix is initialized at .

The simulation results are shown in Figs. 7–11. Figs. 7 and
8 show the phase portraits of the slave system’s variables
and relative to the estimated state ; on the same figures we
present for comparison, the corresponding phase portraits for
the master system. For a better appreciation the small synchro-
nization error against time, is depicted in Fig. 9. Fig. 10
shows the estimated parameters and ; indeed, even though

is a function of and which is known, and are
computed according to the adaptation law (25) as independent
parameters. In this figure we show the small estimation error
for relative to albeit a more important mismatch between

and . Finally, some plots representative of the evolution
of the observer gain against time, are presented in Fig. 11:
in the simulation, the measurable output is so
we write with . The figure shows
the evolution of the three eigenvalues of the matrix

against time. While the gains’ magnitudes may
be a drawback of high-gain observers for implementation pur-
poses, it is worth to emphasize again that this observer is only
one case for which Assumption 1 holds. We recall at this point
that, roughly, it is needed an observer guaranteeing asymptotic
stability of the system , along the trajec-
tories ; a sufficient but not necessary condition for this is the
more restrictive hypothesis (used in a number of references—cf.

Fig. 8. Lü et al. chaotic oscillator: phase portraits of the master system—�

versus � and for the slave system —�� versus �� .

Fig. 9. Lü et al. chaotic oscillator: synchronization error i.e., difference be-
tween master’s variable � and slave’s variable �� .

Fig. 10. Lü et al. chaotic oscillator: estimates of parameters � and � .

Fig. 11. Lü et al. chaotic oscillator: three eigenvalues � ����� � ��,
� ����� � ��, � ����� � �� of the observer gain ���� � � on different scales.

Remark 1) that the matrix in the assumption is positive defi-
nite along trajectories, uniformly for all initial conditions.

VI. CONCLUSION

We presented an adaptive observer scheme for systems’
chaotic synchronization. Our approach applies to a class of
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systems with dynamics that contains, essentially, three terms:
the first is assumed to depend linearly in the unmeasured vari-
ables and have no parameter uncertainty, the second is assumed
to depend nonlinearly in the unmeasured states and linearly
in the uncertain constant parameters, a third term is consid-
ered to depend both on time and (un)measured states without
parametric uncertainty. Considering all three terms together,
the class of systems is fairly wide, covering many classical
examples of chaotic oscillators. Our conditions are stated in
terms of persistency of excitation which is a mild condition
for convergence in the context of time-varying systems and
covers many other results on observer-based synchronization
previously published. For illustration, we have addressed two
examples of master-slave synchronization, in particular, for the
Lorenz and for the Lü oscillators.

We believe that connections with some of the mentioned
works on swithching-topology networks6 may be established in
terms of persistency of excitation which is clearly linked to the
notion of average. Indeed, PE has been used formally to estab-
lish stability among a networks of systems with time-varying
(PE) interconnections in [73]. Future research is aimed in this
direction.

APPENDIX

PROOFS

Proof of Proposition 1: Consider Assumption 1. It is a stan-
dard result in adaptive control literature—cf. [33] that (12) is
equivalent to

(36)

for any unitary vector . That is,
is PE and satisfies for all . Consider
now the function ; its total deriva-
tive along the solutions of yields, by assumption,

. This implies that, defining and
as

(37)
the solutions of satisfy

(38)

It follows from this, the equation
and (36) that

6Many references have been left out due to space constraints; the reader is
invited to see other work on this topic, particularly by the independent authors
Belykh, Bollt and di Bernardo.

which, integrating on both sides from to , implies that

(39)

hence

(40)

It follows from [64, Lemma 3] that the origin of
is globally exponentially stable, uniformly in . Moreover,
defining

(41)

we have

(42)

Proof of Proposition 2: Positiveness of : In the se-
quel we drop the arguments: we write for , for

and for .
Multiplying by on both sides of (16) we obtain

(43)

Let denote the transition matrix defined in Assumption 2.
Then, left and right-multiplying on both sides of (43) by
and respectively, we obtain

Next, we recall from (13) that

hence

(44)

therefore

On the other hand,

Using (16) and (44) in the latter, we obtain
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LORÍA et al.: SYNCHRONIZATION OF CHAOTIC SYSTEMS 2713

Integrating the previous expression from to and re-
calling that , we get

Multiplying on both sides by and, on the left by
and on the right by , we obtain

Reducing the size of the window of integration and using the
transitivity of , we obtain

Hence, since

we get

and consequently, from (14),

(45)

Proof of Proposition 3: The dynamics of the estimation
errors is now given by

(46a)

(46b)

(46c)

where is defined by (23b). Let be such that
for all then, from (24) and (21), it follows that

(47a)

(47b)

Consider now the following claim to be true (the proof is
provided farther below).

Claim 1: Under the conditions of Proposition 1 the origin
of is UGAS and uniformly exponentially stable
on any ball.

From the proof of Claim 1—cf. Section C.1 we have, for any
and ,

(48)

where , and is defined below
(55). It follows, from the proof of [65, Th. 4.14], that there exists

with , such that

Evaluating the time derivative of along the trajectories
of (46a) and using (47) we obtain

hence if, for any given , , and satisfy

(49)

(50)

we obtain

It follows that the solutions are uniformly ultimately
bounded—cf. [65, p. 172] for all initial conditions such
that . On the other hand, the term on the right-hand
side of (50) may be reduced at will by enlarging (i.e., by
enlarging hence, and ) while the calculations above hold
for arbitrarily large but finite; hence, it follows that the origin
is semi-globally uniformly practically asymptotically stable.

Proof of Claim 1: The proof relies on the result from
Proposition 1 and the following

Claim 2: There exists such that the function
generated by the differential equations

where is defined in (46b), satisfies

(51)

and moreover, the origin of is UGS with
—cf. Ineq. (2), and

(52)
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2714 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 56, NO. 12, DECEMBER 2009

Claim 3: There exists such that the function
generated by the differential equations

where is defined in (46b), satisfies

(53)

From Claims 2 and 3 above it follows that

(54)

where . It follows from [64, Lemma 3]
that the origin is uniformly exponentially attractive on any ball,
that is, it is uniformly globally attractive and, moreover, for any

we have

(55)
with . We conclude that the origin of the
system is UGAS and uniformly exponentially stable on any ball.

Notice that as decreases, the rate of convergence
increases.

Proof of Claim 2: The proof follows naturally from the
proof of Proposition 1. Consider the positive definite function

(56)

its total derivative along the solutions of yields
which implies that

. It
follows that the system is UGS, in particular, it satisfies

with as defined in (52). The first part of the claim follows
observing that (40) still holds for the trajectories of
hence, (51) holds with

Notice that for each fixed , as .
Proof of Claim 3: Let be an arbitrary number and

define . Consider the system with initial
conditions satisfying ; then, we have for
all . Consider the function defined
as

(57)

Under Assumption 4 we have

hence, in view of the boundedness of and the Lipschitz
property of we have is positive definite for sufficiently
small ; moreover, there exist positive numbers , such that

On the other hand, the time derivative of along the trajectories
of yields

(58)

Under the regularity assumptions made on , etc., and con-
sidering that , it follows that there exists a number

such that

which, defining is equivalent to

(59)

(60)

The result follows with

Notice that as and .
Proof of Proposition 4: The proof follows from the devel-

opments of the previous section. In the first case, the synchro-
nization error dynamics is given exactly by (23) and (26) whose
origin has been showed to be uniformly semi-globally practi-
cally asymptotically stable. In the second case, the synchroniza-
tion error dynamics corresponds to (23) and, instead of (26),

In this case, in (47b) is zero and therefore, the calculations in-
volved in the proof of Proposition 3 hold for all . In the
case of the high-gain observer, notice that the synchronization
may be achieved from any initial errors. In the third case, the
synchronization dynamics is given simply by (23) with
and the result follows from the proof of Proposition 1 for suffi-
ciently large .
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