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ABSTRACT. Geophysical problems as forced-fold evolution and fault propagation induce large
deformations and many localisation. The continuum mechanics does not seem the more appro-
priate for their description and it appears more interesting to represent the media as initially
discontinuous. To face both phenomena, a non smooth Discrete Element Method is used. Geo-
physical structures are considered as collection of rigid disks which interact by cohesive fric-
tional contact laws. Numerical geophysical formations are correlated to mechanical properties
of structures through observation and mechanical analysis.

RÉSUMÉ. Les problèmes géophysiques tels que l’évolution des plis et la propagation de failles
induisent de grandes déformations et de nombreuses localisations. Il apparaît donc difficile de
décrire le problème avec les outils de la mécanique des milieux continus, et il est donc préfé-
rable de représenter la structure comme initialement divisée. Ces deux phénomènes sont étudiés
via une approche non régulière par éléments discrets. Les structures géologiques sont considé-
rées comme des collections de particules dont les interactions répondent à des lois de contact
cohésif frottant. Les observations des structures géophysiques numériques sont corrélées aux
propriétés des structures au travers d’une analyse mécanique.

KEYWORDS: discrete element method, non smooth mechanics, granular material, fault, fold.

MOTS-CLÉS : méthode par élements discrets, mécanique non régulière, granulats, failles, plis.
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1. Introduction

Many mechanical, tribological and geophysical problems bring difficulties such as
large deformations, fracture, multiple localisations or wear. Numerical tools have been
developed and adapted to fill the lack of knowledge and to bring informations in fields
where experimental approaches are limited (for example, contact interface measures).
If for some applications efficient numerical methods are well identified, there exist
some problems where no well suited methods have been explicitly determined. It is
the case of two geophysical phenomena: propagation fault and forced-fold evolution.

Using the continuum mechanics approach, the standard Finite Element Method
(FEM) is not really appropriate to simulate this kind of phenomena. Kinematic and
mechanical model used can only predict the zone of localisation and not represented its
evolution especially when large deformations occur. It is clearly due to the continuous
description of the model. Among the improvements of the standard method, the well
known X-FEM (Belytschko et al., 2000) allows to describe localisation phenomena
such as fracture but efficient re-meshing techniques must be used to follow fracture
with accuracy and preserve CPU time. A solution could be found with mesh-less ap-
proaches such as the Natural Element Method (NEM) (Yvonnet et al., 2005) which
appears as a good alternative to extended FEM, but as the previous one, it seems dif-
ficult to observe mixing which occurs in forced-fold evolution or surface movements
created by the fault propagation such as avalanches.

Discrete Element Methods (DEM) which consider the media as fully discontinu-
ous appear the well suited to describe these phenomena. When the continuum me-
chanics is not the more appropriate to describe the problem, it appears more inter-
esting to represent the media as initially discontinuous and compute the evolution of
each element. Moreover when the medium heterogeneity has a strong influence on its
evolution (it is the case of the previous geophysical problems), it is important to deal
with the discontinuous feature of the structure.

The aim of the paper is to present the adaptation of granular mechanical tools to
the simulations of fault propagation and forced-folds through a mechanical analysis.
These numerical investigations on geophysical phenomena are presented following the
preliminary study presented in (Renouf, 2004). In the Section 2, the geophysical con-
text and related numerical works are exposed. Different DEMs currently used in the
simulation of granular material are exposed (contact formulation and time-integration
scheme) in the Section 3. A focus on the held method and the interaction law used
is presented in Section 4. In the Section 5 dedicated to geophysical applications, fold
formation and fault propagation problems, are respectively studied in Subsection 5.2
and 5.3 and finally the Section 6 concludes the paper.

2. Geophysical context

Earth deformations are the result of motions of large continental plates. Their
quasi-static motion produces mechanical solicitations such as traction, compression
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and shear. Combinations of theses solicitations lead at the earth time scale to the
occurring of geophysical structures such as faults and folds. These structures present
a dynamical character in regard of their time evolution. Their dramatic consequences
on the human environment (Chang et al., 2005) motive a large number of studies to
understand their mechanism and to prevent geophysical disasters.

Initial researches result first from in-situ and post-mortem observations of earth
deformations. Consequently explanations about the history of structures lay on hy-
pothesis which can be verified with difficulty. The direct consequence is the motiva-
tion of more accurate researches to understand and to reproduce the evolution of the
structure. In this aim, experiments on analogue models (sandbox model) have been
developed (Hubbert, 1951). It consists on the reproduction of the studied geophys-
ical structure at the laboratory scale. Dry layers of sand are laid down a large box.
Layers can have or not the same mechanical properties. Then external solicitations
are applied on the structure (compaction, shear...). Although deformations similar to
the ones observed in the crust can be reproduced with accuracy, analogue models are
often limited in the range of problems that they can examine (granular internal friction
coefficients for example (Lohrmann et al., 2003)).

Fault propagation and forced-folds have been modelled both kinematically (Hardy
et al., 1999) and mechanically. In spite of the fact that the models provide some
feasible behaviour, they have some limitations. On the one hand, the kinematic models
use idealised velocity distributions with or without mechanical validity. On the other
hand mechanical models suppose an idealistic rock behaviour and loading conditions
during folding and do not model fault explicitly.

Some models use FEM for a greater flexibility (Cardozo et al., 2003; Exadaktylos
et al., 2003) and consider a wider range of rheologies and boundary conditions. How-
ever, these methods have some difficulty in modelling large amounts of deformations
accurately, especially the succession of faults observed in analogue models. Usually
in geophysical applications, FEM models are built around a continuity assumption at
some scale of the model that prevents the elements from separating and makes large
amounts of strain localisation very difficult.

DEM models have been used to study fold or fault (Burbidge et al., 2002; Finch et
al., 2003). Although DEM models take into account structure discontinuity, the ones
used lead to crystalline structures and have few particles to observe with accuracy fold
phenomena. The interest of these works is underlined by more recent investigations
on geophysical problem. Different results presented in (Renouf, 2004) underline also
the feasibility of the non smooth approach. In (Hardy et al., 2006) more complex
investigations are performed on the influence of the angle of the propagation fault.

3. Discrete Element Method

Discrete Element Methods appear as the most appropriate tool to represent the
evolution of a media considered as a collection of particles. Rigid multi-body systems
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in virtual reality (Renouf et al., 2005), third-body particle flows in rheology (Fillot et
al., 2005) or granular material in soil mechanics or geophysics (Chang et al., 2005)
refer to the same concept of particle systems. This diversity of application fields and
related topics motive the permanent improvements of DEMs.

Their developments start with the pioneer works of Cundall who developed the
Distinct Element Method (Cundall, 1971). Initially used to simulate rock systems, the
method is extended to the simulation of granular media (Cundall et al., 1979). Contact
interactions are described by compliant model related to an admissible numerical pen-
etration. Then, improvements of the method are proposed by (Kishino, 1988) with the
so-called Granular Element Method. An incremental formulation, an iterative process
and a convergence criterion are added to respect the motion equation not always sat-
isfied in the initial method. The GEM has been used for study different deformation
modes in plasticity (Kishino et al., 2001).

An other contribution to DEMs is a variant of the Cundall approach, called Molec-
ular Dynamics (MD) (Allen et al., 1987) which consists in simulating the dynamics of
atom and molecule in order to deduce macroscopic properties of the matter. As Cun-
dall method and GEM, MD resorts to compliant model to describe contact between
particles. The motion equations are not always satisfied but the simulation time step is
kept small enough to ensure integration scheme stability. Moreover, some numerical
artefact can be added, such as numerical viscosity, to control the energy evolution in
the system.

The Contact Dynamics method initially developed by (Moreau, 1988) based on
the convex analysis framework appears as a different approach. Contrary to compliant
models, no regularisation scheme is used to describe particle interactions: the non
smooth contact feature is preserved according to an implicit formulation of the global
contact problem solved classically using a projected block splitting algorithm. Further
works lead to the extension of the method to multi-contact simulations of collections
of deformable bodies (Jean, 1999) and the method becomes the so-called Non Smooth
Contact Dynamics method (NSCD). Different strategies must be used to solve the
implicit contact problem: the bi-potential method (de Saxcé et al., 1991), the Newton’s
method (Alart et al., 1991), the Conjugate Projected Gradient algorithm (Renouf et
al., 2004), etc.

If the contact description appears often as the most important part of DEMs, con-
tact detection and time integration are both two important phases in this scheme. If
the contact detection is identical for all the DEMs, the time-integration scheme de-
fers from a method to an other. In smooth DEM, since the contact regularisation
requires small time step, second order schemes are adapted: the Gear method for
MD (Allen et al., 1987), a Newmark scheme for Cundall’ DEM and GEM or a Verlet
scheme (Iordanoff et al., 2002). In non smooth DEM, especially when dense granular
assemblies are considered, shocks can be occurred. It seems not appropriate to deal
with the second time derivative of the configuration parameter, especially when large
time step are used. A non smooth DEM may work with large time step and a first
order scheme as Euler scheme or second order one as the theta-method is required.

4



The Non Smooth Contact Dynamics approach is well adapted to simultaneous
multi-contact problems occurring for instance in granular flows. It is quite different
from the Event Driven (ED) techniques (Baraff, 1993; Pfeiffer et al., 1996) for which
the impacts are isolated in time. After catching the impact time, high order scheme are
used between two impacts to describe with more accuracy the evolution of particles.

Consequently, the comparison of the different numerical approaches has to account
for the context of application to provide pertinent conclusions in agreement with ex-
perimental results (Lanier et al., 2000; Renouf et al., 2005; Renouf et al., 2005).

4. Contact Dynamics framework

4.1. Local formulation

The approach used in the present paper is based on the Contact Dynamic frame-
work developed by (Moreau, 1988) and its extensions proposed by (Jean, 1999). The
local variables, defined in the local frames, are preferred to the global ones: the lo-
cal relative velocities vα (α, index of the contact number) are concatenated in a large
vector v, the local impulses rα in a vector r. The corresponding global variables are
the generalised velocities of the system (collection of bodies) q̇, first time derivative
of the configuration parameter q, and the contact forces R applied to all the bodies.
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Figure 1. Representation of: (a) the global and local frames and (b) the linear map-
ping

Local variables are related to global ones via the linear mapping H which transfers
informations computed at the contact points to bodies in contact. It can be summarised
by the following system:

{
R = Hr

v = H
∗q̇

. [1]

where H
∗ is the transpose of H. Then both mapping contain all local informations

such as the local frame defined at each contact point.
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4.2. Global formulation

Since in multi-contact systems, shocks are expected, the velocity may be discon-
tinuous and the acceleration can not be defined as the usual second time derivative of
q. Consequently the classical equation of motion is reformulated in terms of differen-
tial measure equation:

Mdq̇ = Fext(t,q, q̇)dt + dR, [2]

where M represents the inertia matrix and Fext the external forces. dt is the Lebesgue
measure on the real space R, dq̇ is a differential measure representing the accelera-
tion and dR is a differential measure of impulses. A θ integration scheme is used to
discrete Equation [2]. Scheme stability condition implies that θ remains between 1/2
and 1. The θ-method is an implicit scheme, equal to the backward Euler’s one when
θ = 1.

Proceeding to the time discretization, the contact problem is solved over the inter-
val ]ti, ti+1] of length h in the terms previously defined. Then successive approxima-
tions of both Equation [2] and first time derivative of the configuration parameter lead
to the following system:{

q̇i+1 = q̇
free
i + h(M−1)Ri+1

qi+1 = qi + hθq̇i+1 + h(1 − θ)q̇i

[3]

with

q̇
free
i = q̇i + M

−1h(θFext
i+1 + (1 − θ)Fext

i )

where q̇free denotes the free velocity (velocity computed without contact forces).
Quantities indexed by i (resp. i + 1) refer to time ti (resp. ti+1). For rigid body sys-
tem, the inertia matrix M is diagonal and easily invertible, internal forces vanish and
the external forces are given by a function of time. For deformable bodies, a linearis-
ing procedure via a Newton scheme, allows us to obtain the same set of discretised
equations with account of the stiffness and damping matrices (Jean, 1999).

The second Equation of system [3] is used to update the system. When θ = 1
the contact detection is performed using the configuration parameter at time ti. On
the contrary, when θ �= 1, the contact detection is performed using a prediction of the
configuration parameter (at time ti +h(1− θ)). In this case the θ-method corresponds
to the well-known predictor-corrector scheme.

Using the Equations [1] in the first Equation of system [3], the global discretization
of the equation of motion and the contact laws can be summarised in the following
system:{

Whri+1 − vi+1 = −vfree

ContactLaw[vi+1, ri+1]
[4]

where W (= H
∗
M

−1
H) is the Delassus operator, which models the local behaviour

of the solids at the contact points. The right-hand-side of the first Equation in [4]

6



represents the free relative velocity only accounting for the internal and external forces
F(t). The second Equation in [4] requires that the contact law must be satisfied by
each component of the couple (vi+1, ri+1). A specification of the general splitting
method dedicated to contact problems is used to solve system [4], the so-called Block
Non Smooth Gauss-Seidel algorithm (NSGS) a splitting method exposed in (Cottle et
al., 1992). The global splitting scheme is written down as follows for the first Equation
of system [3]:

Wααrk+1
α − vk+1

α = −vα,free −
∑

β<α Wαβrk+1

β −
∑

β>α Wαβrk
β

= bk
α

[5]

where the index k refers to the splitting method iterations and nc the number of con-
tacts. The time index is omitted to make pleasant reading. This solver has proved to
be very robust and efficient on a large collection of heterogeneous problems (Jean et
al., 2001; Saussine et al., 2006) and benefits of a parallel version (Renouf et al., 2004)
to ensure reduced simulation time.

When the system [4] is solved, the contact forces are introduced in the first Equa-
tion of system [3] to compute the velocity at time ti+1. Then this last one is introduced
in the second Equation of system [3] to correct the configuration parameter.

Table 1. Pseudo code of the NSCD approach⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

i = i + 1 (time step loop)
q(i + 1) prediction
Contact detection
q̇(i)free computation⎡
⎢⎢⎢⎢⎣

k = k + 1 (NSGS iterations)⎡
⎣ α = α + 1 (contact loop)

bk
α (computation)

Local contact problem resolution: (vk+1
α , rk+1

α ) solution

⎤
⎦

Convergence test
q̇(i + 1)correction

4.3. Frictional and cohesive contact laws

When collections of rigid bodies are considered, the physical behaviour of the
system is deeply dependent on the interaction law between particles. As body defor-
mation are not taken into account, it controls the evolution of the media. The contact
law must be chosen according to the behaviour of the real media.
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Modelling complex phenomena which occur in geological formations (erosion,
fracture, sedimentation) is out the scope of this paper. Nevertheless some rough inter-
action laws provide pertinent indications about geophysical phenomena. In the present
paper, a frictional and a cohesive laws are used. The frictional contact law combines
a velocity Signorini condition and the Coulomb friction law (Figure 2).

n

vn

rt

vt

μr

−μrn

n

(a) (b)r

Figure 2. Graph of the velocity Signorini condition (a) and the Coulomb’s friction (b)

Both graphs can be summarised by the following system of equation involving the
normal and tangential components of the local unknowns:

⎧⎨
⎩

rn ≥ 0 vn ≥ 0 rn.vn = 0
If ‖rt‖ < μrn then vt = 0
else rt = εμrn and εvt < 0

[6]

where μ is the friction coefficient and ε takes the values {−1, +1} according to the
sliding direction.

The second law, the non smooth Lennard-Jones law (Figure 3a), corresponds to a
simplification of phenomena present in a geophysical structure. It takes into account
water effects and induces cohesion between particles.

n rn rn

g g gγ γ

dw

(a) (b) (c)r

Figure 3. Graph of the non smooth Lennard-Jones law (a) as a combination of two
Signorini graphs with (b) and without (c) a γ-translation along the rn axis. γ repre-
sents the cohesive force while g the distance between bodies

Two parameters are considered: a cohesive force γ which represents a constant
force in oposition of body detachment and the distance dw which defines the attraction
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area of each body. The graph of the non smooth Lennard-Jones law can be seen as
a combination of two Signorini graphs according to the contact status (Figure 3b and
3c). If body attraction areas do not overlap then the contact status is non contact
(rn = 0 and g > dw). If body attraction areas overlaps and the gap between bodies
is not equal to zero, a additional cohesive force interferes then the contact status is
cohesive (γ < rn < 0 and g ≤ dw). Finaly the contact status is stick when the gap
vanishes (rn ≥ 0 and g ≤ dw). When γ = 0 then dw = 0 and the cohesive status
is no more considered. In this case the contact description is the classical Signorini
condition. Note that the non contact condition appears as a condition of non attraction
between the candidate and the antagonist bodies. If the System [4] is reduced to
a single contact and if the cohesive contact law is used, one obtains the following
system:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

If the previous contact status is no contact (g > dw) then

[4] ⇔
{

Wrn − vn = −vn,free

rn ≥ 0 vn ≥ 0 rn.vn = 0
else

[4] ⇔
{

W (rn + γ) − vn = −vn,free + Wγ
rn + γ ≥ 0 vn ≥ 0 (rn + γ).vn = 0

To close this section, it is important to underline that the aim is not to investigate
several interaction models. Simple interaction laws are chosen, not so far of the real
behaviour, defined by few additional parameters (here the friction μ, the cohesion γ
and the wetting distance dw) to ensure a higher control of the simulation process.

5. Geophysical applications

5.1. Pre- and post-processing

5.1.1. Sample preparation

In granular material, the history evolution plays an important role on the evolution
of the media. Uniform bi-axial compression or compaction under gravity do not lead
to the same sample properties. Consequently the preparation of samples and its initial
state appear as an important part of the simulations. In the most cases they are them-
selves given by a simulation process. As it is difficult to predict how is the initial state
of a geophysical formation, it has been obtained after a compact geometric deposit
using the pre-processor developed by (Taboada et al., 2005). A state equilibrium is
reached by a stabilisation phase under gravity forces. By this way no initial contact
anisotropy is introduced in the media before the simulation. This process has been
used both for the creation of fault propagation and forced-fold evolution samples.
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5.1.2. Macroscopic quantities

In granular material analysis is seems difficult to analyse the behaviour of each
particle especially when the number is large. Macroscopic variables such as compacity
or fabric tensor (Troadec et al., 2002) are very important to describe the media.

For a sub-domain Ω of a domain E , for a collection of spherical rigid bodies, the
stress tensor, denoted σ, is defined as:

σ =
1

vol(Ω)

∑
α∈Ω

rα ⊗ lα [7]

where r refers to the contact forces, l the inter-centre vector equal to (ri + rj)n for
spherical shape (n is the normal contact vector and ri and rj the respective radius of
particles i and j involved in the contact). Using the stress tensor, the pressure and the
deviatoric part are defined as:

{
p = 1

2
(σ1 + σ2)

q = 1

2
(σ1 − σ2)

[8]

where σ1 and σ2 are the eigenvalues of σ. In the same way, the fabric tensor f is
defined as:

f =
1

vol(Ω)

∑
α∈Ω

nα ⊗ nα [9]

The anisotropy of Ω involves the eigenvalues of f , f1 and f2, and is defined as:

a =
1

2
(f1 − f2) [10]

Contrary to the stress tensor it is difficult to define the strain tensor especially for
system where large deformations and localisation are expected. Nevertheless, a notion
of strain can be considered by tracking the evolution of some characteristic lengths in
the sample. Here the dilatation in the two space direction is given by:

λ∗(ti) =
max(q∗(ti)) − min(q∗(ti))

max(q∗(t0)) − min(q∗(t0))
[11]

where ∗ is the X- or Y- component of the position of each particle.

5.1.3. Trishear model

The model has been introduced by Erslev (1991) to characterise fault evolution.
The model decomposes the fault region in three parts as shown in the Figure 4.

Part I has a rigid body motion and its velocity is equal to the velocity of the fault.
Part III does not move and its velocity field stays equal to zero. The hypothesis made
on part II are: a constant volume (ρ = cte) which leads to div(q̇) = 0, the velocity
along the left side is constant and equal to the fault velocity, and the velocity along the
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I

III

II

III

q=0

q=cte
.

.

.
div(q)=0

III

Figure 4. Tri-shear model: geometric decomposition of the fault. Part I has a rigid
body motion (the velocity is equal to the velocity of the fault), part III does not move
and part II satisfies continuity conditions on both boundaries

right side vanishes. The initial hypothesis can be extended, see for example (Hardy et
al., 1999). This model is relevant for the first step of the evolution of a fault and thus
can be used in finite element approach (Cardozo et al., 2003). The granular simula-
tions can permit to determine what assumptions stay valid when large deformations
occur.

5.2. Forced-fold evolution

5.2.1. Simulation parameter

The sample used for the forced-fold simulation is composed of 43 000 hard cylin-
ders. Their radius range from 0.42 to 0.56m. Their density is equal to 2 800 kg.m−3.
The characteristic lengths (in meter) of the sample presented in the Figure 5a are:
L = 1000, D = 300, d = 75, H = 80 and h = 30.

W2 W4 W5

h
H

d D

L

W3 W6

(a)

W1 (b)

Figure 5. (a) Initial state of the sample used for forced-fold evolution, (b) definition
of the different cells used for the structure analysis during the whole process
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A constant velocity equal to 0.5m.s−1 is imposed on the left wall during the
whole process. The contact law is a frictional contact law (μ = 0.4) with inelastic
quasi-shocks (Jean, 1999) and each layer has the same mechanical properties. Due
to the fact that in analogue sandbox, the cohesion between particles is avoided, for
this first study, the cohesion is not considered in the numerical model. The simu-
lation is decomposed in 20 000 time steps of 2.5 10−2s. For the NSGS algorithm,
a minimal number of iterations equal to 100 is imposed to ensure the quality of the
solution (Renouf, 2004). To analyze the evolution of the structure, six cells are de-
fined and tracked during the simulation process (Figure 5b). The characteristics of
each cell (initial centre position and radius) are: W1=(100,45,20), W2=(200,25,20),
W3=(300,15,12), W4=(400,15,12), W5=(500,15,12) and W6=(600,15,12). Then for
a given set all inside particles are tracked to observe the set deformation.

5.2.2. Fold observations

The sample is decomposed arbitrarily in layers of different height to analyse what
kind of fold and internal geological structures can be observed during the simulation
process. The Figure 6a gives the nine reference layers in the initial configuration.

(d)

(c)

(b)

(a)accretionary wedge layer : 1,2,3,4,5,6,7,8,9

avalanches

avalanches

fault

fault

(a)

(b)

(c)

(d)

Figure 6. Different snapshots of the forced-fold evolution: (a) the initial configura-
tion, (b) t = 200 s, (c) t = 350 s and (d) the final state at t = 500 s
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An accretionary wedge is located on the left to reproduce the external structure
used to constraint the evolution of the structure. In the Figure 6b appear similar folds
which correspond to folds with similar deformation (layers 5,6,7 for example). This
formation is due to a vertical propagation of deformation initiated by the deforma-
tion of the first layer. This last one is submitted to hard constraints: the contact with
the rigid plan, the force generated by the whole structure and the constant velocity
imposed by the lateral wall. The force exerted by the accretionary wedge minimises
the amplitude of deformations such buckling which occur during the process and are
transmitted to the upper layers. On the front, the force decreases and larger deforma-
tions occur.

The Figure 6c shows the formation of a fault near the front of the wedge. The fault
initiates a shear band clearly visible on the layer 3 for example. Consequently, the
deformation of the first layer is not extended in the abscissa direction. The Figure 7
represents the evolution of the wedge front compared with the evolution of the lateral
wall.
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Figure 7. Evolution of the front of the accretionary wedge as a function of the evolu-
tion of the rear (black curve)

Its evolution does not match with the linear one (red line). It is due to the plastic
deformation of the wedge and to internal faults and avalanches generated by the struc-
ture evolution. Faults generate vertical motions with few incidence on the evolution of
the front while avalanches affect the position of the front in the abscissa direction. Be-
fore the fault, similar folds are always present but their orientation changes to match
the internal fault direction. In the heads of the wedge, high deformations occur. Dif-
ferent faults and located avalanches appear but the mixing of different layers yields to
a difficult analysis. The composition of the whole free surface changes. It is charac-
terised by surface flows and the emergence of lower layers generated by the internal
fault.

This last observation is verified in the Figure 6d. As the angle of the free surface
increases avalanches occur (layer 9). Similar folds are concentrated under the left part
of the wedge where vertical deformations are constrained. On the front of the wedge,
after the fault localisation, the deformation of the first layers starts. It generates similar
folds as the ones observed in the Figure 6b. The shear band created by the fault is not
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sufficient to support the whole deformation. Then the fault region starts to move with
the evolution of the lateral wall and initiated deformations on its right.

5.2.3. Mechanical analysis

To complete fold observations, a short mechanical analysis is proposed through the
evolution of the pressure and the deviatoric stress. The evolution of both quantities is
represented in the Figure 9. The evolution of different cel, located in the Figure 5,
is represented starting from their initial configuration given in the column (a) of the
Figure 8. During the process, the stress tensor of a cell is computed from particles
initially located in the corresponding cell. Consequently, as it can be observed in the
Figure 8, there is no reason for the shape of the cell to stay circular.

W5

W6

W4

W3

W2

W1

(a) (b) (c) (d)(a) (b) (c) (d)

Figure 8. Shape evolution of the different cells defined in the Figure 5: (a) initial time,
(b) t = 200s, (c) t = 350 and (d) final time t = 500s
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In addition to the stress evolution in the Figure 9, the length variations along the
X-axis and Y-axis are plotted in the Figure 10. It is then possible to obtain a kind of
stress-strain relation quantifying the geometric informations on the shape evolution
of the cells in the Figure 8.
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Figure 9. Evolution of the pressure and the deviatoric stress for the different sets of
particles presented in the Figure 5
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Figure 10. Evolution of λx and λy for the different set of particles presented in the
Figure 5

Inside the accretionary wedge (W1), the pressure and the deviatoric stress have
low variations. Since the wedge is not submitted to large deformations, the stress
exerted on (W1) increases slowly. The increase is due both to the deformation of
the interface between the wedge and the layer 9 and the pressure exerted by the lateral
wall and the gravity. Contrary to cell (W1), the stress of the cell (W2) decreases during
the whole process while its deformation increases and reaches a factor two along the
abscissa direction. The cell (W3) and next cells are smaller than the first ones. As they
are located in the lower part of the sample, parameters of the cell have been chosen to
avoid both wall and surface effects. The front of the accretionary wedge appears as the
most stressed region according to the deformation of (W3) and (W4) and the evolution
of the pressure and the deviatoric stress in both cells. Both cells are submitted to large
hydrostatic pressures and high shears which induce large dilatations along the axis.
During the first half process the efforts exerted on the last cell (W5) are constant.
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The cell stays out of the influence of the wedge. When (W5) enter in the influence
of the wedge, pressure and deviatoric stress start to grow and reach values equal to
the one of (W1). The deformations have a small delay with the constraints. The cell
supports the efforts during a short time interval before deformations occur. The efforts
exerted on the last cell (W6) are constant. This last one is not really concerned by the
displacement of the accretionary wedge.

5.3. Fault propagations

5.3.1. Simulation parameter

The sample used for the simulation of fault propagation is composed of 15 000
hard cylinders. Their radius range from 0.13 to 0.26m. Their density is equal to
2 800 kg.m−3. The characteristic length (in meter) of the sample presented in the
Figure 11 are: D = 300, h = 30 and θ = 30˚. The lower plate of the sample
is composed of two block. The first one is fixed and the second one has a constant
velocity V 0 equal to 0.325m.s−1 in the fault direction e during the whole process.
The contact law is a cohesive frictional contact law (μ = 0.4) with inelastic quasi-
shocks and as in the fold simulation, each layer has the same mechanical properties.
The value of γ range from 0 N (cohesionless) to 105N. Values of γ have been chosen
according to the gravity force on a particle. The simulation is decomposed in 4 000
time step of 1 10−2s. Precautionary measures for the NSGS algorithm are equivalent
to the ones used for fold simulation.

h

V=V0 θ
D

W1

Figure 11. Initial state of the sample used for fault-propagation

A circular cells is defined and tracked during the simulation process (Figure 11).
Its characteristics are W1=(85,7.5,6) respectively its centre (x,y) and its radius.

5.3.2. Internal cohesion effects

The influence of the internal cohesion γ on the profiles of both free surface and
layers is studied. Four simulations have been performed for different values of γ: (a)
0 N, (b) 103 N, (c) 104 N and (d) 105 N. The final profile of each simulation is repre-
sented in the Figures 12 and 13 which represents respectively the layer deformations
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and the velocity field. The front of the free surface is represented by the arrow, the
fault direction by a continuous line, the left and right limits by dashed lines. The
left limit separates the structure governed by a rigid motion from the other part. The
right limit separates the undeformed structure from the other part. A fault area is then
defined between the two limits as developed in the trishear model.

fault direction

left limit
right limit

front

surface profile (a) (b)

(c) (d)

θl

θ

Figure 12. Free surface profiles for different values of γ: (a) 0 N, (b) 103 N, (c) 104 N
and (d) 105 N

Different aspects are related to the value of γ. The first one is the front of the
free surface. With small values of γ, the fault propagation generates surface flows on
long distance. When γ increases, the region of surface flow propagation decreases.
For the larger value of γ, the flows do not occur and are replaced by the detachment
of blocks composed of several particles. To summarise, the distance between the
front and the fault decreases when γ increases. The second aspect is the left and
right limit orientation which can be reduced to the angle θl (Figure 12a). The angle,
initially larger than θ, decreases when when γ increases to become smaller than θ for
the higher value of γ. The layer deformation is reduced for cohesive sample and the
deformation fault is concentrated near its core. Moreover the Figure 12d underlines
the fragility of the structure for strong internal cohesion. The last aspect concerns the
free surface slope. For small values of γ its radius is infinite (Figures 12a and 12b)
and when γ increases the radius decreases.

In complement of an analysis of the geometric deformation of the structure, a
superposition of the velocity field is done (Figure 13). All reference marks defined
previously stay unchanged. The good approximation of the trishear model is clearly
underlined, especially for the cohesionless case. For each case of the Figure 13, the
trishear model defined in the Figure 4 corresponds to an area. Nevertheless, two points
must be highlighted. First, the surface area depends strongly on the internal cohesion.
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(a) (b)

(c) (d)

Figure 13. Velocity fields for different values of γ: (a) 0 N, (b) 103 N, (c) 104 N and
(d) 105 N

It decreases when γ increases. Secondly, if the continuity of velocity fields seems
correct for cohesionless simulations, when γ do not vanishes, the continuity imposed
by the model is no more observed. Internal cohesion and fault propagation generate
shear between particles assemblies inside the fault area. Consequently, for cohesive
sample, the continuity condition can not be conserved.

5.3.3. Stress and strain analysis

For the different values of γ, the pressure and the deviatoric stress in the cell W1
are tracked (Figure 14) as well as the evolution of λx and λy (Figure 15).
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Figure 14. Evolution of the pressure and the deviatoric stress in the cell W1 for dif-
ferent values of γ
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For each case, both pressure and deviatoric stress have a similar evolution due to
the fact that the fault is controlled by a constant velocity. Their evolution seems de-
composed in two phases. The first phase corresponds to the interval of time [0, 10].
During this period, the pressure increases quickly whereas the deviatoric stress stays
constant. Then on the time interval of time [10, 40], the pressure has a constant evo-
lution while the deviatoric stress increases slowly. Note that the amount of pressure
is similar, except for the highest value of γ for which the pressure is twice as high.
For this last ones, the second time interval is decomposed in two phases where the
evolution of the pressure is constant for each phase.
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Figure 15. Evolution of λx and λy for cell W1 and different values of γ

The evolution of deformations observed in the Figure 15 corresponds to the defor-
mation near the fault. As stress components, their evolution can be decomposed in two
phases. During the first phase corresponds, for each case λy has the same evolution
(a slow increase). Then λy continue to increase but with different gradient (high for
high value of γ). It is more difficult to decompose the evolution of λx in two phases
defined previously. Its evolution is clearly in two phases. During the first one, λx de-
creases which corresponds to a compression exerted by the fault-propagation. During
the second one, λx increases which corresponds to the shear initiation inside the cell
to reach the final state of the simulation represented in the Figure 16. This last figure
illustrated the viscosity aspect induced by the cohesion.

(a) (b) (c) (d)

Figure 16. Final deformation state of the cell (W1) for different values of γ: (a) 0 N,
(b) 103 N, (c) 104 N and (d) 105 N
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6. Ending discussion

There is a good agreement between geophysical observation and the mechani-
cal analysis. For the forced-fold evolution, the internal stresses and the deformation
have a good correlation with the numerical geological structures. The case of the
internal fault is the more relevant. The time of it formation correspond to the high
pressure and high shear exerted on the cells (W3) and (W4). Consequently the cells
are crushed in a direction orthogonal to the shear motion generated by the fault. As
a perspective of these first observations, it should be interesting to determine in fur-
ther studies, mechanical models correlated to the formation of geological structures.
For fault propagation, the influence of the internal cohesion has been strongly under-
lined by geometric, kinematic and mechanical aspects. It is interesting to see that the
trishear model is the more relevant for cohesionless simulation. With a complete para-
metric study (angle of propagation, high of the sample), it seems possible to determine
an extension to the model which takes into account the internal cohesion.

Although, evolution of mechanical properties agree with geophysical observations
(fault and fold formations can be related to the deviatoric stress and the pressure ex-
erted in the media), the notion of deformation in this kind of structure is not so clear.
During large displacement, mixing induced by fold, fault and avalanches do not match
with a continuous description of the media. Thus the choice of DEM is justified. The
outstanding question is: is it necessary to represent the whole media as discontinuous
when phenomena are local?. If an answer exist, it depends strongly on the study it-
self. Nevertheless combined approach should be a good solution to face this kind of
problem but to be efficient the combination should be evolutive during the simulation
process to switch from a continuous model to a discontinuous one.
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