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The simultaneous existence of photonic and phononic band gaps opens up many possibilities for

enhancing acousto-optical interactions at a common wavelength scale. We term such structures

phoxonic crystals. By computing the existence and dependence of phoxonic band gaps on the choice

of lattice and unit cell, we obtain a hierarchy of two-dimensional phoxonic crystal structures. The

single-atom hexagonal and square lattices, and some multiple-atom hexagonal lattices, including

honeycomb and heterometric lattices, are investigated. For definiteness, arrays of air holes in lithium

niobate are considered in the computations. It is observed that decreasing the symmetry of the lattice

by adding atoms of different sizes inside the unit cell leads to larger phoxonic band gaps. Examples

of designs for operation at an optical wavelength of 1550 nm are given. The corresponding phononic

frequencies are in the gigahertz range. © 2009 American Institute of Physics.

�doi:10.1063/1.3243276�

I. INTRODUCTION

It is well established that band gap effects for the propa-

gation of both light or sound waves can be obtained in arti-

ficially engineered periodic materials. In the case of photonic

crystals,
1,2

the propagation medium exhibits a periodic

modulation of the refractive index, which can prohibit elec-

tromagnetic wave propagation in a specific wavelength

range, giving rise to photonic band gaps and allowing to

tailor the dispersion properties of light. Phononic crystals,
3

for their part, are periodic composites made of two or more

materials with different elastic constants and densities. They

also can prevent elastic wave propagation in given frequency

ranges and offer new possibilities of controlling sound

propagation. Up to now, the two research fields have been

mainly explored in quite an independent fashion. Yet, the

possibility of designing and fabricating hypersonic phononic

crystals operating in the radio-frequency regime �and there-

fore presenting lattice parameters smaller than 1 �m�
4

has

shown that photonic and phononic crystals of comparable

dimensions can be made.

A recent trend has emerged, which aims at designing

periodic materials capable of controlling simultaneously

photon and phonon propagation and jointly confining sound

and light. Much similarly to what has occurred with

phononic and photonic crystals independently, these “phox-

onic” crystals, in addition to an enhancement of the acousto-

optical interactions through localization or slow-wave

effects,
5

could be the seat of other unexpected phenomena.

Control of photon-phonon interaction at a fundamental level

is a most appealing possibility and has already been at the

core of some studies in one-dimensional superlattices.
6,7

Works related to two-dimensional �2D� or three-dimensional

�3D� structures, however, remain scarce, except for a grow-

ing interest toward light-induced phonons and their manage-

ment in photonic crystal fibers.
8–10

Maldovan and Thomas
11,12

have shown theoretically that

phoxonic band gaps can be obtained in 2D square or hexago-

nal lattice crystals made of air holes in a silicon matrix.

Experimental evidence of such a band gap phenomenon has

been reported recently in a 3D phoxonic crystal of amor-

phous silica spheres.
13

However, these works have focused

on simple lattice geometries and there is no guaranty that

phoxonic band gaps might be obtained with other materials.

There is thus an interest in looking into more complex ge-

ometries, e.g., multiple-atom/heterometric structures, is order

to tailor phoxonic band gaps.

Some of the most relevant and routinely used materials

in conventional optics and high frequency acoustics are quite

often anisotropic. Lithium niobate is one of the most striking

examples. This material lies at the basis of a significant num-

ber of optoelectronic active and passive devices, while re-

maining a rich playing field for the implementation of proof-

of-concept optical experiments thanks to its almost

unmatched combination of high nonlinear, electro-optical, or

acousto-optical coefficients. These intrinsic properties can be

allied to the possibilities it offers in terms of waveguiding

using well-assessed techniques such as proton exchange or

titanium indiffusion. Lithium niobate is also a key material in

high frequency acoustics owing to its high piezoelectric co-

efficients and is frequently used as a substrate for the real-

ization of passive radio-frequency telecommunication filters.

Linear photonic and phononic band gap effects were evi-

denced experimentally in artificial crystals made of air holes

in lithium niobate,
14,15

as well as nonlinear photonic band

gaps in a structure made by 2D periodic poling.
16

There is

however no work reporting on a phoxonic band gap in this

particular material. The conditions for the existence of a full

photonic band gap in lithium niobate are indeed demanding,a�
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due to the relatively low refractive index in the near infrared,

2.3 as compared with 3.6 for silicon, for example.

In this paper, we investigate theoretically the existence

of phoxonic band gaps in a 2D structure made of air holes in

lithium niobate. The most commonly used single-atom lat-

tices, i.e., square and hexagonal, as well as multiple-atom

hexagonal lattices, in particular honeycomb and heterometric

hexagonal lattices, are considered. In each case, photonic and

phononic band structures are computed independently. The

entire study remains restricted to cylindrically shaped inclu-

sions. It is observed that true complete phoxonic band gaps,

i.e., for all polarizations, are difficult to obtain due to the

limited contrast in refractive index. However, complete band

gaps for either the transverse electric �TE� or the transverse

magnetic �TM� optical polarization can generally be found.

As a general rule, it is observed that decreasing the symme-

try of the lattice by adding atoms of different sizes inside the

unit cell leads to larger phoxonic band gaps. Examples of

designs for operation at an optical wavelength of 1550 nm

are given and practically feasible structures are highlighted.

II. METHODS

In what follows, we consider 2D photonic and phononic

crystal structures composed of air holes in lithium niobate.

Holes are considered instead of pillars, since elastic waves

could obviously not propagate in vacuum between solid pil-

lars. Moreover, when air is considered as the propagation

medium instead of a vacuum, arrays of silicon pillars were

found to be inefficient for obtaining phoxonic band gaps.
11

As compared with other shapes of the scatterers, circular

cylindrical holes were found to lead to larger band gaps in all

the cases we considered. We then report only results obtained

with circular air holes.

Lithium niobate, LiNbO3, is a piezoelectric and aniso-

tropic solid material considered here in its single crystal form

�3m crystalline symmetry�. Holes are supposed to be aligned

along the Z crystallographic axis, as depicted in Fig. 1.

Propagation then occurs in the �X ,Y� plane. Material con-

stants �optical, elastic, dielectric, and piezoelectric� are taken

from Refs. 17 and 18.

The occurrence of phoxonic band gaps is dictated by the

simultaneous existence of a complete band gap for phonons

and photons. More precisely, we determine and compare

photonic and phononic gap maps giving the existence of

complete band gaps as a function of the geometry of the

periodic structure �usually measured by the hole diameter to

pitch ratio�.

A number of numerical models are available in the lit-

erature to compute photonic and phononic band structures.

The computation of band structures in piezoelectric phononic

crystals can for instance be achieved by the plane wave ex-

pansion �PWE� method
19–21

or the finite element method

with periodic boundary conditions.
15,22

Phononic band struc-

tures in this paper were computed using a homemade PWE

code. In the case of photonic crystals, we have used both the

PWE method
23,24

as implemented in the BANDSOLVE code
25

and a homemade finite difference time domain �FDTD�

code.
26

The PWE photonic code was limited to single-atom

and honeycomb lattices while the FDTD photonic code

could handle all the lattices considered in this paper. We

initially checked that both codes gave consistent results.

III. SINGLE-ATOM LATTICES

Figure 1 depicts the square and the hexagonal lattices for

2D arrays of holes in a solid matrix. Figure 2 shows the

corresponding photonic and phononic band gaps as a func-

tion of d1 /a, being d1 the hole diameter and a the period. In

the case of photonic crystals, band gaps are represented as a

FIG. 1. 2D periodic array of cylindrical holes in lithium niobate arranged

along �a� a square and �b� a hexagonal lattice. The pitch is a and the diam-

eter of the cylinder is d1. The crystallographic axes of lithium niobate are

shown �the Z axis is aligned with the rod axis�. For the TM polarization of

light �respectively, TE�, the electric field vector �respectively, the magnetic

field vector� is aligned with the rod axis.

0 0.2 0.4 0.6 0.8 1

TM

(d)

(c)

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

ω
a

/2
π
c

0

500

1000

1500

2000

2500

3000

(b)

(a)

TE

d1/a d1/a

fa
(m

/s
)

FIG. 2. Phononic �a� and photonic �b� gap maps for a square lattice array of circular air holes in lithium niobate as a function of the ratio d1 /a. Phononic �c�

and photonic �d� gap maps for a hexagonal lattice array of circular air holes in lithium niobate. Photonic gap maps for the TM polarization �black� and TE
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in units of the product fa, with f the acoustic frequency.
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function of the normalized frequency �a /2�c, with � the

optical angular frequency and c the speed of light in a

vacuum. For phononic crystals, band gaps are expressed as a

function of fa, the product of the acoustic frequency f with

the pitch of the crystal. We observe that for both the square

and the hexagonal lattice there is no complete photonic band

gap simultaneously valid for the TE and the TM polariza-

tions. This is not necessarily a drawback since phoxonic

crystals can be fabricated on a lithium niobate waveguide

produced by annealed proton exchange.
14

This fabrication

method modifies only the ordinary refractive index of the

lithium niobate substrate and, as a consequence, there is only

one guided light polarization �TE for an X-cut substrate and

TM for a Z-cut substrate�. Therefore, as far as the 2D pho-

tonic crystal is concerned, we only need to look for photonic

band gaps corresponding to one polarization.

In the square lattice case, a phoxonic band gap is found

only for the TE polarization. Figures 2�a� and 2�b� show that

both the phononic and photonic gap maps width decrease as

d1 /a decreases, disappearing for d1 /a=0.884 in the photonic

case and d1 /a=0.837 in the phononic case, which corre-

sponds to a filling fraction of 61% and 55% respectively.

Since there is a superposition of both band gaps, the square

lattice can be chosen for phoxonic crystal fabrication. In par-

ticular, for d1 /a=0.962, the photonic and phononic gap

widths are calculated to be 6.9% and 53%, respectively. At

this operating point, the photonic band gap is found for nor-

malized electromagnetic frequencies between 0.381 and

0.408 and the phononic band gap from fa=1381 m /s to

2353 m/s. Choosing the telecommunication wavelength of

1550 nm, the lattice period is then fixed to 612 nm and the

hole diameter to 589 nm resulting in a phononic band gap

centered at 3.1 GHz. Unfortunately, this phoxonic crystal

geometry could be technologically difficult to fabricate due

to the fact that holes are very close to each other �the sepa-

ration is only 23 nm�.

In the hexagonal lattice case, a phoxonic band gap is

found only for the TM polarization. Figures 2�c� and 2�d�

show that the phoxonic band gap exists for ratios 0.84

�d1 /a�0.97. In particular, for d1 /a=0.92, the photonic and

phononic gap widths are calculated to be both around 15%.

For the telecommunication wavelength of 1550 nm, the lat-

tice period is 770 nm, the hole diameter is 709 nm and the

acoustic band gap is centered at 2.5 GHz. The separation

between holes is then 61 nm, which relaxes fabrication tol-

erance as compared with the square lattice example consid-

ered above.

Comparing with the results of Maldovan and Thomas for

silicon,
11,12

it can be observed that photonic band gaps are

smaller for lithium niobate. Due to the different elastic ve-

locities in these materials, the phononic band gaps are shifted

in frequency, but the phononic gap maps are rather similar in

relative extent. This significant difference between photonic

and phononic crystal properties can be understood as fol-

lows. As is well known, the width of photonic band gaps is

conditioned by the contrast in the refractive index between

the holes �n=1� and the substrate. A material such as lithium

niobate is in this respect obviously less advantageous than

silicon. The case of phononic crystals is different, since by

neglecting the presence of air it can be assumed that there are

no elastic waves inside the holes. The scattering of phonons

is then provided by the traction-free boundary conditions at

the holes, not by a contrast in the material constants of the

substrate and the inclusions. Such boundary conditions are

independent of the choice of the substrate. Hence, although

differences between lithium niobate and silicon will be intro-

duced by their different crystalline symmetry and different

distribution of the elastic tensor coefficients, the lattice

choice and the unit cell geometry are definitely the dominant

parameters.

From a technological point of view, geometries with well

separated holes are desirable to increase the fabrication tol-

erances. Furthermore, the period of the phoxonic crystal is

directly governed by the optical wavelength, which in turn

indirectly determines the acoustic frequency. Low acoustic

frequencies should be privileged for the realization of the

phonon sources, for instance based on interdigital

transducers,
15

to be used in conjunction with phoxonic crys-

tals. As we have seen, the square and the hexagonal lattices

do not completely meet this objective and we need to look

for alternative geometries that provide both high values of

the normalized electromagnetic frequencies �e.g., around

0.6� and low phononic frequency band gaps.

IV. MULTIPLE-ATOM HEXAGONAL LATTICES

From the results of Sec. III, it can be inferred that

simple, single-atom lattices are not ideal for the opening of

phoxonic band gap in a highly acoustically anisotropic, low

refractive index material such as lithium niobate. The idea is

then to move to more complex geometries. It has indeed

been demonstrated that both photonic and phononic band

gaps can be enlarged by breaking or reducing the lattice

symmetry.
27–30

Symmetry breaking can be achieved either by

introducing or removing an inclusion in the initial unit cell,

or by varying the size of one or some of the inclusions, as in

the case of the so-called boron nitride structure.
29,31

The

same principle can hence be applied to ensure the occurrence

or the increase in width of phoxonic band gaps. In this sec-

tion, we investigate lattice geometries based on the honey-

comb structure that can itself be seen as a hexagonal lattice

with a missing central inclusion and on other modified hex-

agonal geometries.

Figure 3 displays the gap map obtained in the case of a

regular honeycomb structure. A phononic band gap opens for

diameter to pitch ratios larger than 0.8 and its width in-

creases with the filling fraction to reach a fractional band-

width as large as 70% for d1 /a=0.96. The photonic band

gaps, on the other hand, present much lower fractional band-

widths, whatever the polarization, with a maximum of 10%

for the second TE band. Here again, there is no full photonic

band gap, as the gap maps for the TE and TM polarization do

not overlap for any value of d1 /a. Phoxonic band gaps for

TE polarized waves can anyway be observed and some of

them are completely exploitable from a practical point of

view. First, at a fixed wavelength, the higher the photonic

band gap central frequency is, the larger the pitch of the

structure can be, which allows to relieve quite significantly
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the constraints related to the crystal fabrication. As an ex-

ample, the band centered at �a /2�c=0.371 is obtained for a

crystal exhibiting a pitch of 575 nm at a 1550 nm wave-

length. Second, the phononic band gap remains at a quite

low normalized frequency value. For the 575 nm pitch pre-

viously worked out, the operating frequency of the phononic

crystal would be around 2.1 GHz, which is very reasonable

given the available technologies for acoustic transducer fab-

rication. However, despite these interesting features, the very

low fractional bandwidth of the phoxonic band gap can be a

pretty limiting factor, as it will probably make it difficult to

observe experimentally. We must then focus on more com-

plicated geometries based on the honeycomb lattice that can

provide larger photonic band gaps. The idea is then to take

this honeycomb lattice as a starting point and to apply the

previously mentioned methods of symmetry breaking to en-

large the phoxonic band gap.

Figure 4�a� illustrates the method we have adopted to

this aim. Starting from a honeycomb lattice symmetry, one of

the two atoms constituting the unit cell was kept with a fixed

diameter at all time, while the diameter of the second atom

was varied. The filling factor of the obtained boron nitride

structure was therefore not kept constant, conversely to what

was applied in,
28,29

for instance, but the pitch was kept the

same. We call � the ratio between the fixed hole diameter d1

and the pitch of the crystal a which is defined as the distance

between two neighboring inclusions ��=d1 /a�. Band dia-

grams were first computed and the optimum structure deter-

mined before applying further modification to the resulting

boron nitride lattice by adding another hole with a variable

hole at the center of the hexagonal cell. In what follows, this

last geometry, depicted in Fig. 4�b�, will be referred to as

“heterometric hexagonal lattice.”

Gap maps for boron nitridelike structures are reported in

Fig. 5. Two values for the parameter � were chosen, 1 and

1.2, and the gap maps are plotted as a function of d2 /a,

where d2 is the diameter of the variable hole and ranges from

0 to a−d1. As a general rule, the symmetry breaking induced

by varying the diameter of one hole out of two results in the

opening of photonic band gaps for the TM polarization as

can be seen in Figs. 5�b� and 5�d� �for 0.55�d2 /a�0.90

when �=1 and for 0.47�d2 /a�0.80 when �=1.2�. For �

=1, no significant impact can be observed for the phononic

band diagram. The advantage of the boron nitride structure

over a standard honeycomb geometry from an elastic wave

point of view becomes more evident when parameter � is

varied. When �=1.2 �Fig. 5�d��, wide phononic band gaps

centered around fa=1129 m /s open for d2 /a larger than 0.5.

The range of existence of photonic band gaps for TE polar-

FIG. 4. 2D periodic array of air holes in lithium niobate arranged according

to �a� a boron nitride and �b� a heterometric hexagonal lattice. In �a�, the

diameter of the black holes, d1, is held constant while the diameter of the

light gray holes d2 is modified to optimize band gap properties. The geom-

etry illustrated in �b� is obtained by adding an additional air hole of diameter

d3 �hatched gray� at the center of the optimum boron nitride geometry de-

fined by alternating holes of diameters d1 �black� and d2 �light gray�,

respectively.
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ized waves is however drastically reduced, by almost a factor

of 2, as they range from d2 /a=0.44 to d2 /a=0.8, versus 0.33

to 1 for �=1. A slight increase in the TM gap width can also

be observed �2.3% versus 4.5%�. These structures hence al-

low for the opening of several phoxonic band gaps for both

TE and TM polarized waves, though independently. If some

of these bands do comply with the technological constraints

previously mentioned for the usual honeycomb lattice crys-

tal, the consideration of rather large a /� is found to conflict

with the enlargement of photonic band gaps. For instance, if

a /��0.6 is chosen, the maximum photonic fractional band-

width remains quite small, of the order of 4% in the best

case, i.e., for �=1.2 and d2 /a=0.7.

The boron nitridelike geometry was therefore further

modified through the addition of an inclusion with varying

diameter d3 at the center of the hexagonal unit cell to form a

so-called heterometric hexagonal lattice, as illustrated in Fig.

4�b�. The diameters d1 and d2 of the holes constituting the

boron nitride structure were fixed at the optimum values of

1.2 and 0.7 deduced from the previous set of simulations and

gap maps were computed as a function of the diameter d3 of

the central inclusion. The obtained results are reported in

Fig. 6. At d3 /a=0, the band gaps correspond to those ob-

tained for the simple boron nitride lattice with the same hole

diameters. This operating point is marked by a solid line in

Figs. 5�c� and 5�d� and corresponds to d2 /a=0.7. For d3 /a

=0.3, a phononic fractional bandwidth of 39.2% is obtained,

while the photonic fractional bandwidth is at the same time

12.7% for TE polarization and 4.5% for TM polarization.

Though of smaller extent, the TM band gap is located at

higher optical frequencies, so that larger holes can be em-

ployed for a fixed optical wavelength. With �=1550 nm, the

pitch is a=981 nm, and the holes diameters are d1

=1177 nm, d2=687 nm, and d3=294 nm. In turn, the

phononic band gap is found as low as f =1.1 GHz at its

center.

Tables I and II summarize, when applicable, reasonable

geometrical parameters resulting in the opening of phoxonic

band gaps for TE and TM polarized waves, respectively. Pri-

ority has been given to structures exhibiting photonic band

gaps at high optical frequencies and phononic band gaps at

low acoustic frequencies, as previously mentioned. Numeri-

cal examples have been taken for a wavelength �

=1550 nm. None of the presented structures actually exhib-

its a full photonic band gap, i.e., a simultaneous band gap for

both TE and TM electromagnetic waves. Phoxonic band gaps

with high fractional bandwidth can however be obtained for

each particular polarization, especially with complex hex-

agonal geometries. In all cases, the elastic frequencies in-

volved remain below 3 GHz and the hole diameters are of

the order of a few hundreds of nanometers Interhole spacing

can be made larger than 50 nm. These values indicate that

such lithium niobate phoxonic crystals are feasible.

V. CONCLUSION

The possibility to open phoxonic, i.e., simultaneously

phononic and photonic, band gaps in lithium niobate has

been theoretically demonstrated. This piezoelectric material

is highly acoustically anisotropic, but has low refractive in-

dices as compared with silicon, for instance. Both photonic

and phononic gap maps of 2D crystals made of cylindrical

air holes were computed and compared for different lattice
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TABLE I. Summary of the best phoxonic crystal configurations identified for the various lattice and unit cell geometries considered in this paper. Photonic

band gaps are given for the TE polarization only, while phononic band gaps are valid for all polarization components. � is the optical wavelength. a is the pitch

of the structure. d1, d2, and d3 are the diameters of the various inclusions. Center frequencies of phononic band gaps are given for �=1550 nm.

Lattice a /� d1 /� d2 /� d3 /�

Relative photonic band gap

�%�

Relative phononic

band gap @

center frequency

1 Square 0.395 0.380 ¯ ¯ 6.9 53.5%@3.4 GHz

2 Hexagonal No simultaneous photonic and phononic band gap.

3 Honeycomb 0.371 0.356 ¯ ¯ 10.1 69.9%@2.1 GHz

4 Boron nitride 0.527 0.422 0.59 ¯ 5.1 64.3%@1.4 GHz

5 Boron nitride 0.354 0.354 0.276 ¯ 7.4 36.8%@2.2 GHz

6 Boron nitride 0.531 0.637 0.372 ¯ 2.4 51%@1.4 GHz

7 Boron nitride 0.62 0.868 0.335 ¯ 4.6 18.4%@1.0 GHz

8 Heterometric hexagonal 0.678 0.542 0.678 0.271 2.2 20.8%@1.1 GHz

9 Heterometric hexagonal 0.354 0.354 0.255 0.071 7.4 19.4%@2.2 GHz

10 Heterometric hexagonal 0.388 0.466 0.272 0.116 12.7 39.2%@1.8 GHz

11 Heterometric hexagonal 0.616 0.862 0.246 0.123 5.5 6.3%@2.0 GHz
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geometries. In particular, single-atom hexagonal and square

lattices, as well as multiple-atom lattices based on the hon-

eycomb geometry were considered. We have observed that

the larger photonic and phononic band gaps are generally not

obtained for the same choice of structure. The best compro-

mise has been reached by considering a hexagonal symmetry

with three different atoms in the unit cell, i.e., by decreasing

the symmetry of the periodic structure. The low refractive

index of the material however prevents from opening com-

plete phoxonic band gaps, as the gap maps for the optical TE

and TM polarizations do not overlap in any of the considered

structures. The simultaneous confinement of both elastic and

electromagnetic energy in a same volume and at common

wavelength scale remains however possible, provided that

the incident light is polarized. These results are independent

of the scale of the structure, provided optical and acoustic

wavelengths are scaled proportionally with the pitch of the

array. For an optical wavelength of 1550 nm, holes in the

hexagonal lattice with three atoms are of sub micrometer

diameter. The smallest separation between them can be kept

larger than 50 nm, well within the range of nanoscale fabri-

cation techniques, and the acoustic frequencies are in the

gigahertz range. Phoxonic crystals hold promises for the si-

multaneous confinement and tailoring of sound and light

waves in very tiny volumes, with potential applications to

acousto-optical devices and highly controllable photon-

phonon interactions.
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