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Abstract. In this work we present an analysis of the formation of multiple adiabatic shear bands in stainless steel 
304L. Using both analytical criteria and numerical calculations, we analyze instability and shear band spacing in 
simple shear problems such as under torsional loading of a thin walled-tube. The Zerilli-Armstrong model which 
successfully describes the deformation response of metals at high strain rates is used. The perturbation approach 
associated with numerical methods is used to determine the instability modes and their corresponding spacing. The 
shear band spacing is computed using Molinari’s postulate which suggests that the wavelength of the dominant 
instability mode with the maximum growth rate at a given time determines the minimum spacing between shear 
bands. The effect of grain size on shear band spacing is discussed. We show that the variation of the Taylor-
Quinney parameter as a function of shear strain�(�), is an important parameter that plays a significant role in the 
calculation of the shear band spacing.

1. INTRODUCTION

The localization of plastic deformation in narrow bands is a major damage mechanism that occurs in

ductile metals during high strain rates deformation processes. In some circumstances, many small bands

may form throughout a volume of the material [1], in which case a spread weakening occurs with

the possibility of multiple failures and a general fragmentation. In other circumstances one band may

dominate, and therefore the material failure is restricted to just that one location.

Few numerical studies of the shear band spacing are available in the literature. Grady and Kipp

[2] have obtained the shear band spacing by accounting for momentum diffusion due to unloading

within bands. Wright and Ockendon [3] have used a perturbation analysis to characterize a dominant

mode corresponding to the most probable minimum spacing of shear bands. Thus the wavelength of

the dominant instability mode with the maximum initial growth rate will determine the shear band

spacing. Molinari [4] has extended the work of Wright and Ockendon [3] to strain-hardening materials

and has estimated the error in the shear band spacing due to the finite thickness of a block deformed in

simple shear. He showed that the shear band spacing increases with an increase in the strain hardening

exponent. Chen and Batra [5, 6] have studied the effect of thermal conductivity on SBS and also showed

that it depends on the stress-strain relation used to describe the material behavior. Daridon et al. [7] have

shown that the Mechanical Threshold Stress model predicts well the value of the shear band spacing in

the case of HY100 steel and Ti-6Al-4V alloy.

Most investigators have employed phenomenological constitutive relations to describe the material

response at high strain rate. It was pointed out in the work of Zerilli-Armstrong [8, 9] that these are

valid only within the range of data used to calibrate them. These models do not account for the radically

different behavior of face-centered-cubic (FCC) and body-centered-cubic (BCC) metals and for the

effect of the grain size. In order to better understand the shear band spacing evolution in AISI 304L

under high strain rates, the Zerilli-Armstrong model [8], which is based on the physical mechanisms of

dislocation motion, is used in the present work. The system of governing equations for one-dimensional

simple shearing deformations is formulated. For a given value strain, a perturbation of the fundamental

solution is considered and the instability modes are determined. We used the method of Wright
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and Ockendon to determine the shear band spacing, assuming a progressive saturation of the stored

energy.

2. FORMULATION OF THE PROBLEM

Let us consider simple shearing deformation of a plate with a finite thickness 2h in the y-direction

whereas it is infinite in the other two rectangular cartesian directions. At the upper and lower surfaces,

constant velocities ±V are applied, parallel to the x-direction. We assume that all physical quantities

are uniform along the x and z directions so that the deformation depends only on the space coordinate

y, which leads to vanishing of the convection term in the material time derivation. The material is taken

incompressible. At large strain and high strain rate, the elastic effects can be ignored and adiabatic

conditions can be assumed at the boundaries. Therefore, the governing equations are given by:

�
�v

�t
=

��

�y
(1)

�c
�T

�t
− k

�2T

�y2
= �(�)��̇ (2)

�̇ =
�v

�y
(3)

where (1) is the momentum balance equation, (2) the heat equation and (3) the compatibility equation;

with v, �̇, � and T being respectively, the particle velocity (in the y direction), the plastic shear strain-rate,

the shear stress and absolute temperature. We note that t represents time in the above equations.

The parameters�, c, k and �(�) are the mass density, the specific heat, the Taylor-Quinney coefficient

which represents the fraction of plastic work converted into heat, respectively. To model the evolution

of the fraction of the plastic work converted into heat according to the shear deformation; we propose

an empirical formulation:

�(�) = 1 − �0e−�1� (4)

Using the experimental results of Chrysochoos [10], obtained for quasi-static loading, the constants

�0and �1 are calculated and are equal respectively to 0.55 and 10.

Among the constitutive models, the Zerilli-Armstrong model represents a more physically-based

relationship derived from dislocation mechanics [8]. They also made a distinction between f.c.c. and

b.c.c. materials. The Zerilli–Armstrong equation for f.c.c. metals was used to describe the constitutive

behaviors of 304L stainless steel:

� = C0 + kI d−1/2 + C2�
Cne(−C3T +C4T ln �̇) (5)

C0 is the athermal portion of the shear stress, Cn the work hardening exponent, d the grain size,

andC1, C2, C3, C4, andkI are material parameters. The AISI 304L parameters are given in Table 1 [11].

Table 1. Parameters of Zerilli-Armstrong equation for AISI 304L SS [11].

Parameters C0 kI C2 C3 C4 Cn

Value -76.9 0.75 2340 0.0016 0.00008 0.36

The axial stress and strain are converted to shear stress and shear strain by the von Mises relations.

For the initial conditions we take the body at rest (stress free) and at a uniform temperature Ti = 298

K. The thermal boundary conditions:

�T

�y
(y = −h, t) =

�T

�y
(y = +h, t) = 0 (6)
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3. PERTURBATION ANALYSIS

We consider a small perturbation of the homogeneous solution at time t0 (this gives the average

strain�0 = �̇0.t0) and evolving with time t:

�s(y, t , t0) = �s0e�(t−t0)ei	y , t ≥ t0 (7)

Where �s0 =
(

�v0, ��0, ��0, �T 0
)

The quantities �v0, ��0, ��0, �T 0 are small constants that characterize the initial amplitude (at time

t0) of the perturbation. 	 is the wave number of perturbation, and � is related to the initial rate of growth

(at time t0). When the real partRe(�) < 0 , this implies that the homogeneous solution is stable at time

t0, and whenRe(�) > 0, this means that it is unstable.

Substitution of the perturbed solution

s(y, t , t0) = s0(y, t) + �s(y, t , t0) (8)

into the governing equations (1)-(4) and linearization provide, at time t0, a linear equation for the

amplitude vector �s0 =
(

�v0, ��0, ��0, �T0
)

:

A(t0, �, 	).�s0
= 0 (9)

This set of equation admits a non-trivial solution only if the determinant of the matrix A is equal to zero.

This leads to a cubic equation for the growth rate � of the perturbation:

�2c�3
+ �

(

c	2 ��

��̇

∣

∣

∣

∣

s0

+ k	2
− �0�̇0 ��

�T

∣

∣

∣

∣

s0

)

�2
+

(

k	2 ��

��̇

∣

∣

∣

∣

s0

+ �c
��

��

∣

∣

∣

∣

s0

+ �0�0 ��

�T

∣

∣

∣

∣

s0

)

	2� + k	4 ��

��

∣

∣

∣

∣

s0

= 0 (10)

where partial derivatives are evaluated for the fundamental solution at time t0 and �(�0) = �0.

For given values of �0 and 	, the root �D with the largest positive real part will govern the instability

of the homogeneous solution, and is hereafter referred to as the dominant instability mode.

The fundamental solution is such that the strain rate is uniform,�̇0 = V
h

. The temperature can be

obtained by integration of the heat equation (2) where the diffusion term vanishes, and where the

constitutive law (4) is used to express the stress �.

4. RESULTS

Figure 1 shows the dominant growth rate, �D, vs. the wave number, 	, for various values of the average

strain �0. These curves have been computed for a nominal strain rate �̇0 = 6104s−1 and an initial

temperature T0 = 298 K for constant and variable (eq. 5) Taylor-Quinney coefficient. For each value

of �0 the initial growth rate �D first increases with 	, attains a maximum value �c (corresponding

to	c) and then decreases for large 	. The existence of this maximum is characteristic of the dominant

instability mode resulting from the competition of two stabilizing effects: Inertia restrains the growth

of long-wavelength modes (small 	) while heat conduction restrains the growth of small-wavelength

modes (large 	). In what follows the maximum dominant growth rate at time �0 for the perturbation is

called the critical growth rate �c, and the corresponding wave number is defined as the critical wave

number 	c.

Figure 2 shows the dependence of the critical growth rate �c and its corresponding wavelength

Lc = 2
/	c on the average strain �0 for Stainless steel 304L. These results are given in both cases
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Figure 1. Evolution of the dominant instability mode
for different values of the average shear strain.

Figure 2. Evolution of the critical growth rate and the
critical wavelength at the average shear strain.

where the Taylor-Quinney coefficient is supposed to be constant (� = 0.9) and where it evolves with

the shear strain. We observe that the curves of the critical growth rate and the critical wavelength versus

average strain have respectively a maximum �cm and a minimum Lcm. These values are obtained for two

different values of the average strain, �0
1, �0

2. In the example considered here, since the values of �0
1and�0

2

are very close, we assume �0
1

∼= �0
2. This assumption is in a good agreement with the results obtained by

Molinari [4] in the case of XC18 steel with the power law model.

According to Molinari [4], we postulate that the shear band spacing Ls is given by:

Ls = min Lc(�0) = min
2


	c(�0)
(11)

We note that the evolution of the Taylor-Quinney coefficient have an important influence on the shear

band spacing Ls . When it’s assumed to be constant, the results lead to significant underestimation of the

shear band spacing. Indeed, for the shear strain rate equal to 6.104s−1, the shear band spacing is equal

to 0.277 mm if we supposed that the coefficient of Taylor is constant whereas by taking account the

experiment results which show that the Taylor-Quinney coefficient evolves with the shear strain, Ls is

equal to 0.297 mm. We note that the average shear strain corresponding to the maximum value of �c is

equal to 3.1 for the both case.

In Figure 3, we plotted the dependence of the shear band spacing on the average shear strain-rate.

We observe that the shear band spacing decreases rapidly with an increase of the average shear strain-

rate, and show a tendency to saturate at high strain rates. We also note that the difference between

the theoretical predictions obtained by the Zerilli-Armstrong model and the experimental value is

important. But the theoretical predictions are still of the same order of magnitude as the experimental

data.

The effect of the grain size d on the shear band spacing Ls is illustrated in Figure 4 for �̇0 = 6.104s−1.

One notes that for sizes of grain ranging between 30 and 100 �mthe shear band spacing increases

monotonically with an increasing value of d , on the other hand for larger values of d Ls tends towards

a state of saturation. Therefore, it can be concluded that there is no significant effect of grain size on

the shear band spacing for a grain size more than 100 �m. This result is in good agreement with the

literature [11].
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Figure 3. The variation of the shear band spacing with
the average shear strain-rate.

Figure 4. Shear band spacing as function of grain size.

5. CONCLUSION

We studied the thermo-mechanical response of the Stainless steel 304L block deformed in simple shear.

The description of the deformation behavior is modeled using the Zerilli-Armstrong constitutive model.

The stability of the homogeneous solution is studied by using the perturbation technique.

We have showed that the fraction of plastic work converted into heat may have a significant role in

the calculation of the shear band spacing. This result points out the necessity of a fine thermomechanical

check of the constitutive equation used in dynamic loading.

We have also showed that the shear band spacing decreases rapidly, towards a saturation value, with

increasing of average shear strain-rate.

Lastly, it is shown that the grain size has a limited influence for small grain sizes and this one

disappears for grain sizes higher than 100�m.
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