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Linearization by Output Injection under Approximate Sampling

Salvatore Monaco1,� and Dorothée Normand-Cyrot2

1Dipartimento di Informatica e Sistemistica ‘Antonio Ruberti’ Università La Sapienza via Ariosto 25, 00185 Roma, Italy
2Laboratoire des Signaux et Systèmes, CNRS-ESE, Plateau de Moulon, 91190, Gif-sur-Yvette, France

Linearization by output injection has been studied in

both continuous time and discrete-time contexts. In this

paper we discuss the possible preservation of such a

property under sampling. It is shown that it can be

maintained under approximate sampling up to the order

of the system itself.

Keywords: Observer forms, nonlinear sampled-data

systems, discrete-time systems, nonlinear observer

design.

1. Introduction

Linearization by coordinates change and output

injection has been firstly studied in a continuous-time

context in [16], [17], and further extended and

developed as a basic tool for observer design (we refer

to [13] for survey on the subject). Even less popular,

the same problem has been investigated in discrete

time pursuing different approaches (see [7, 11, 15, 19,

20, 29]). While techniques and results are similar when

dealing with maps or vector fields, that is for con-

tinuous-time or discrete-time uncontrolled dynamics,

specialized studies are necessary when controlled

equations are investigated.

In this paper linearization by output injection is

revised as the dual problem of linearization under

state feedback ([5, 9, 14, 18, 21]). The geometric con-

ditions ensuring linearization through coordinates

change and feedback or output injection admit similar

formulations for both continuous-time and discrete-

time systems. Such a similarity is possible making use of

an alternate representation of controlled discrete-time

dynamics as two coupled differential/difference equa-

tions rather than a map parameterized by the control.

In this context the authors showed how results on

structural and control properties admit similar for-

mulations [23]. In this formalism, feedback linearization

was studied in [24], starting from the geometric condi-

tions to the computations of structural invariants and

controller normal forms, possibly through successive

approximations of increasing degree. Following the

same lines, normal forms associated with linearization

under coordinates change and output injection, have

been recently computed making use of successive

transformations of increasing degree in [3, 26].

These analogies in the results’ formulation legitim-

ate the question of their preservation under sampling,

i. e. when applied to the discrete-time model issued

from the sampling of the continuous system: a prob-

lem which has been widely investigated in the literat-

ure. Different sampling procedures give rise to

sampled equivalent models which may exhibit differ-

ent characteristics w. r. to the preservation of some

continuous time properties. For, multirate or higher

order holding procedures have been introduced to

maintain properties under sampling ([10], [27]). As far

as feedback linearization is concerned, the problem

has been firstly addressed starting from [1] and then

studied in an approximate context in [2] and [25].

In these papers, more strictly linked to the present
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contribution, we showed that feedback linearization

can be preserved under sampling up to the system

order making use of a new filtered output mapping.

Moreover, multirate control strategies or multirate

sampling procedures have been proposed to enlarge

the degree of approximation or to achieve exact

solutions [10].

On these bases, we show in this paper that equi-

valence through coordinates change to the observer

form can be preserved under sampling up to the

system order, say n, the result is constructive for the

coordinates change. It relies on the existence of a fic-

titious vector field with respect to which the given

output mapping has relative degree equal to n. It is

immediately understood that this result is the dual of

the one in [2] where feedback linearization is achieved

through the existence of a fictitious output mapping

which has relative degree equal to n. The effects of

sampling over the observer design have been investi-

gated in [8] and [28]; in particular in [8], the authors

proved that for systems over R2, linearization by

output injection under sampling is in fact equivalent

to linear equivalence. The present work shows that

preservation under time-sampling is in fact possible

over Rn when considering the approximate sampled

model at the order n in the sampling time �. This result
suggests to use the approximate model of order n for

designing the sampled-data observer since increasing

the accuracy of the sampled model by considering

higher order terms would only bring to additional

computational complexity even if linearization by

output injection could be assured. The present work is

based on [6] regarding geometric necessary and suffi-

cient conditions for equivalence to the linear observer

form through coordinates change and to [25] where a

complete description of the sampled equivalent to an

input-affine system is given. This paper represents an

extended version of [27].

The paper is organized as follows. Section 2 sets the

problem and recalls the geometric conditions ensuring

linearization through coordinates change and output

injection in the continuous-time and discrete-time

contexts. Linearization by output injection under

sampling is set in the differential/difference context in

section 3 where the conditions of section 2 are speci-

fied on the sampled equivalent model. In section 4 the

main result is given and a constructive procedure for

computing the coordinates change which solves the

problem is detailed for unforced and forced dynamics

with extra conditions on the output injection. The

algorithm is worked out on an example: an elementary

application in state estimation of the duffing oscil-

lator. Some conclusions end the paper.

Some standard notations : Given � , a vector field over

Rn, L� denotes the associated formal Lie derivative

which acts over real valued functions h :Rn ! R as a

first order differential operator L�h :¼ dh� ; the Lie

bracket ad�1�2 :¼ [�1, �2] between two vector fields

over Rn is described by the non commuting product

L½�1;�2� ¼ L�1L�2 � L�2L�1 ; the Lie series associated with

L� is defined by its exponential expansion

eL� :¼ 1þ
P

i�1
Li
�

i!
, usually denoted as e�, which gives

e�hðxÞ ¼ hðe�xÞ; given a diffeomorphism � on Rn,

Ad�� denotes the transport of � along � satisfying

Ad�� :¼ ð½Jx���Þ ��1 ¼ d�
dx

� �
� ��

�

�

�

��1 . All maps and

vector fields, possibly parameterized, are assumed

analytic. The manipulations performed over the

asymptotic series expansions are formal ones, no

convergence studies are performed.

2. Linearization by Output Injection

2.1. In Continuous Time

Let �c denote a SISO input-affine system

_xðtÞ ¼ fðxðtÞÞ þ gðxðtÞÞuðtÞ

yðtÞ ¼ hðxðtÞÞ ð1Þ

where x2Rn, y2R, f and g are analytic vector fields

and h an analytic mapping. Assuming, without any

loss of generality, that (0, 0) is an equilibrium pair,

f(0)¼ 0, h(0)¼ 0, linearization by output injection

stands for the equivalence under coordinates change

to the observer canonical form COF

_zðtÞ ¼ AOzðtÞ þ  ðyðtÞ; uðtÞÞ

yðtÞ ¼ COzðtÞ ð2Þ

with (AO, CO) in the Brunovsky observability form

AO ¼

0 � � � � � � � � � 0

1 . .
. ..

.

0 . .
. . .

. ..
.

..

. . .
. . .

. . .
. ..

.

0 � � � 0 1 0

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

;

CO ¼ 0 � � � 0 1ð Þ

and  ðy; uÞ : R� R�!Rn, an analytic map charac-

terizing the input-output injection: i.e. the injection on

the dynamics which should render linear the dynamics

itself.
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The problem, referred to as linearization by output

injection as opposed to feedback linearization, is of

interest in the design of nonlinear observers. It results

from (2) that

_̂zðtÞ ¼ AOẑðtÞ þ  ðyðtÞ; uðtÞÞ þ Kðy� COẑÞ

estimates the state with a linear error dynamics:

_eðtÞ ¼ ðAO � KCOÞeðtÞ:

Conditions ensuring local equivalence of �c to (2) are

well known.

Theorem 2.1: [16, 17] �c is locally equivalent to the

observer canonical form (2) if and only if

� Ac1 : � dh; dLfh . . . ; dL
n�1
f h

� �

ð0Þ ¼ n;

� Ac2 : rci; rcj
� �

¼ 0 for iþ j 2 2; 2n� 1½ �;

� Ac3 : g; rci½ � ¼ 0 for i 2 1; n� 1½ �;

where rc1 is the vector field solution of

dHrc1 :¼

dh

..

.

dLfh

dLn�1
f h

0

B

B

B

@

1

C

C

C

A

rc1 ¼

0

..

.

0

1

0

B

B

@

1

C

C

A

ð3Þ

and rci :¼ �adfrci�1 ¼ ð�1Þi�1
adi�1

f rc1 for i 2 ½2; n�:
Moreover, the coordinates change �(x) satisfies

½ Jx �� � ðrc1 . . . rcnÞ ¼ Idn

with Idn the n � n-identity matrix.

Remark: Applying the Jacobian identity, condition

Ac2 is recognized to be equivalent to [rc1, rci]¼ 0 for

i 2 [2, 2n� 2].

Remark: In the uncontrolled case (g¼ 0) in (1),

under the stronger condition A0
c2 : ½rci; rcj� ¼ 0 for iþ

j 2 ½2; 2nþ 1� (equivalently ½rc1; rci� ¼ 0 for i 2 ½2; 2n�),
one gets linear equivalence under linear output injection.

Remark: The ‘‘fictitious’’ controlled dynamics

_xðtÞ ¼ fðxÞþ urc1ðxÞ with output mapping y¼ h(x)

exhibits a relative degree equal to n, ðLrc1h ¼ 0;Lrc2h ¼
0; . . . ; Lrcn�1

h ¼ 0Þ with moreover Lrcnh ¼ 1.

2.2. In Discrete Time

A discrete-time dynamics is usually represented as a

map

xk ! xkþ1 ¼ Fðxk; ukÞ ð4Þ

where x 2 Rn; u 2 R and Fð:; uÞ is an analytic map,

analytically parameterized by u. In [22], we proposed

an alternate representation as two differential/

difference equations - DDR

xþ ¼ F0ðxÞ ð5Þ

dxþðuÞ

du
¼ GðxþðuÞ; uÞ with xþð0Þ ¼ xþ ð6Þ

where xþðuÞ indicates a curve in Rn parameterized

by u. (4) and (5–6) describe the same discrete-time

dynamics provided that G(x,u) satisfies

GðFðx; uÞ; uÞ :¼
@Fðx; uÞ

@u
: ð7Þ

Indeed, the integration of (6) with respect to u between

0 and uk with initial condition specified by (5),

xþð0Þ ¼ F0ðxkÞ :¼ Fðxk; 0Þ, returns xkþ1 in (4), i.e.

xþðukÞ¼xþð0Þþ

Z uk

0

Gðxþð�Þ; �Þd�¼Fðxk; ukÞ:

In the same way w.r. to an output mapping y ¼ hðxÞ,
one has

ykþ1 ¼ hðxþð0ÞÞ þ

Z uk

0

LGð:; �Þhðx
þð�ÞÞd�

¼ hðxþðukÞÞ ¼ hðFðxk; ukÞÞ:

The Taylor expansion of Gðx; uÞ in powers of u

Gðx; uÞ ¼ G0ðxÞ þ
X

i�1

ui

i!
GiðxÞ ð8Þ

gets the analytic vector fields GiðxÞ, i � 0, which play

a fundamental role in the geometric characterization

of the properties under study.

Let �d denote the DDR (5-6) with output map

y ¼ hðxÞ, and define the canonical observer differen-

tial/difference representation (CO-DDR) as the DDR

of the COF (2). Denoting by  i the i – th component

of  , and assuming, without loss of generality, that
@ 1ðy; uÞ

@y

�

�

�

ð0;0Þ
6¼ 0, which can be achieved through a

possible preliminary linear output injection. One has

Proposition 2.1: The discrete-time observer canonical

form

zkþ1 ¼ AOzk þ  ðyk; ukÞ

y ¼ COz ð9Þ
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admits the DDR

zþ ¼ AOzþ  ðyÞ ð10Þ

dzþðuÞ

du
¼ Gðzþ1 ðuÞ; uÞ; zþð0Þ ¼ zþ ð11Þ

y ¼ COz

with (AO, CO) in the Brunovsky form,  ðyÞ ¼  ðy; 0Þ
and

Gðzþ1 ðuÞ; uÞ ¼
@ ð:; uÞ

@u
j �1

1
ðzþ

1
ðuÞ;uÞ

where  �1
1 ð:; uÞ indicates the inverse of  1ð:; uÞ, the first

component of  ð:; uÞ.

Proof: The result is an immediate consequence of the

definition of the differential equation and the par-

ticular form of the matrix AO so getting with zþ1 ð0Þ ¼

1ðyÞ

ðy; uÞ ¼  ðyÞ þ

Z u

0

Gðzþ1 ðvÞ; vÞdv:
3

Remark: The input-output injection term (11) takes

the form

�ðy; uÞ ¼
@ ðy; uÞ

@u
¼ Gðzþ1 ðuÞ; uÞ ¼ Gð 1ðy; uÞ; uÞ:

Theorem 2.2: [6] �d is locally equivalent to the

discrete-time observer canonical form if and only if

� Ad1 : �
�

dh; dðh 	 F0Þ; � � � ; dðh 	 F
n�1
0

�

ð0Þ ¼ n;

� Ad2 : ½rd1; rdi� ¼ 0; i 2 ½2; n�
� Ad3 : ½Gp; rdi� ¼ 0 for i 2 ½2; n�; p � 0;

where the vector field rd1 satisfies

dHdrd1 :¼

dh

..

.

dh 	 Fn�2
0

dh 	 Fn�1
0

0

B

B

@

1

C

C

A

rd1 ¼

0

..

.

0

1

0

B

B

@

1

C

C

A

ð12Þ

and for i 2 ½2; n�, rdi’s are given by

rdi ¼ AdF0
rdi�1 ¼ AdFi�1

0
rd1:

Moreover the coordinates change, �d, satisfies

½Jx�d� rd1 . . . rdnð Þ ¼ Idn:

ConditionAd1 is the observability rank condition which

ensures the existence and uniqueness of rd1 satisfying

(12); Ad2 requires first order nilpotency of the distri-

bution generated by the vector fields ðrd1; � � � ; rdnÞ and
guarantees the existence of a coordinates change as well

as the specific structure of (10); Ad3 guarantees the

specific structure (11).

It is worthy to note the strict analogy between

statements of Theorem 2.1 and Theorem 2.2.

Remark: The fictitious controlled dynamics

xþð0Þ ¼ F0ðxÞ

dxþðuÞ

du
¼ rd1ðx

þðuÞÞ

with output mapping y ¼ hðxÞ has relative degree equal
to n; i.e. using the DDR formalism ðLrd1h ¼ 0;Lrd2h ¼
0; . . . ;Lrdn�1

h ¼ 0Þ with moreover Lrdnh ¼ 1 6¼ 0.

3. Linearization by Output Injection Under

Sampling

Assuming the control variable u(t) constant over small

time intervals of amplitude �, with value uk over

½k�; ðkþ 1Þ�½ for k � 0, the sampled equivalent

system,��
s , is the discrete-time system which reproduces

the state and output evolutions of �c at the sampling

instants for any x0 ¼ xðt ¼ 0Þ. As well known the dis-

crete-time dynamics is drift invertible for small �, i.e.
F�0ðxÞ ¼ e�fðxÞ and ðF�0Þ

�1ðxÞ ¼ e��fðxÞ. As a con-

sequence G�ðx; uÞ satisfying (7) exists and it is uniquely

defined by G�ðx; uÞ :¼
@F�ðx; uÞ

@u

�

�

�

x¼F��ðx;uÞ with

F�ðx; uÞ ¼ e�fþu�gðxÞ. It is a matter of computations to

verify that the DDR

xþ ¼ F�0ðxÞ ð13Þ

dxþðuÞ

du
¼ G�ðxþðuÞ; uÞ with xþð0Þ ¼ xþ ð14Þ

y ¼ hðxÞ ð15Þ

describes the sampled equivalent ��
s of �c. Its input-

state or output-state evolutions match, at the sam-

pling instants t ¼ k� those of �c. Combinatoric rela-

tions between the continuous-time model and its

sampled equivalent are detailed in [25], we just recall

what is necessary in the present context. First, G�ð:; uÞ
is described by its asymptotic expansion in �

G�ð:;uÞ¼

Z

�

0

e�sðadfþuadgÞgds¼G�
0þ

X

i�1

ui

i!
G�

i ð16Þ

as well as each G�
i ¼

P

p�iþ1
�p

p!
Gi;p for i � 0 so getting

for the first ones

G�
0 ¼

Z

�

0

e�sadfgds :¼
X

p�1

ð�1Þp�1�p

p!
ad

p�1
f g ð17Þ

G�
1 ¼

X

p�2

ð�1Þp�1�pþ1

ðpþ1Þ!

X

p�1

k¼0

Ck
p½ad

k
f g;ad

p�k�1
f g� ð18Þ

where Ck
p :¼

p!
k!ðp�kÞ! denotes the binomial.
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We note that the term in �p inG�
0 described by (17) is

the Lie bracket ad
p�1
f g which contains the vector field

g one-time and the vector field f, (p� 1)-times. G�
1 in

(18) involves Lie brackets of the first order in the ad
j
fg

of the form ½adkf g; ad
p�k�1
f g� in �pþ1 for p � 1. Such a

term contains g, two-times and f, (p� 1)-times. More

in general, G�
i can be iteratively deduced according to

a combinatoric rule; it involves Lie brackets of order i

in the ad
j
fg and it contains g, (iþ 1)-times. The trans-

port of any G�
i along F�0 is denoted by AdF�

0
G�

i and its

transport along F�0, q-times is defined as Ad
F
q�
0

G�
i

because F�0 	 . . . 	 F
�
0 ¼ F

q�
0 .

Theorem 3.1: [27] ��
s is locally equivalent to the dis-

crete-time observer canonical form (10-11) if and only

if there exists T > 0 such that for any � 2 ½0;T�, the
conditions below hold true

� As1 : �ðdh; de
�fh; � � � ; deðn�1Þ�fhÞð0Þ ¼ n;

� As2 : ½rs1; rsi� ¼ 0 for i 2 ½2; n�;
� As3 : ½G

�
p; rsi� ¼ 0 for i 2 ½2; n�; p � 0;

where the vector field rs1 satisfies:

dH�rs1 :¼

dh

..

.

deðn�2Þ�fh

deðn�1Þ�fh

0

B

B

@

1

C

C

A

rs1 ¼

0

..

.

0

�n�1

0

B

B

@

1

C

C

A

ð19Þ

and rsi is the transport of rsi�1 along F�0, rsi :¼ e��adf

rsi�1 ¼ e�ði�1Þ�adfrs1 for i 2 ½2; n�. Moreover, the co-

ordinates change �� satisfies

½Jx�
�� rs1 . . . rsnð Þ ¼ �n�1Idn:

When it is referred to a sampled model, the observer

canonical form maintains the discrete-time structure

(9-10-11) with �-dependent output injection  � and

vector field G�.

Assuming �c locally equivalent to the observer

canonical form (2), the present paper discusses the

possible preservation of such a property under

approximated sampling. The loss of linearization by

output injection under sampling, as noted in [8], is the

natural counterpart of what occurs when investigating

the dual problem of feedback linearization under

sampling. As a matter of fact, preservation of linear-

ization by feedback under sampling should imply

linear equivalence as conjectured in [1] and proved for

n¼ 2. However, some approximate result can be

proven. As proposed in [2], feedback linearization can

be maintained till an approximation order with

respect to the sampling period equal to the state

dimension. The same idea is here developed with

respect to linearization by output injection. Our result

stands in proving that the conditions above can be

maintained in an approximate meaning. More pre-

cisely, these conditions, reformulated as equalities

between asymptotic expansions in �, hold true up to a

certain degree of approximation. With this in mind the

following definition is mandatory.

Definition 3.1: Assuming �c linearizable by output-

injection, the property is maintained under sampling if

there exists T> 0 such that for any � 2 ½0;T� the sam-

pled equivalent model satisfies the property. Approx-

imate solution at order p stands for the existence of a

solution on the approximate sampled model at order p in

� ðerror in Oð�pþ1ÞÞ.

The problem has been approached in [27] where we

showed that linearization by output injection could be

maintained under sampling thanks to the computa-

tion of a ‘‘fictitious’’ �-dependent vector field with

respect to which the relative degree is maintained

equal to n at order n� 1 (i.e. up to an error in Oð�nÞ).
As a matter of fact, a stronger result can be proven.

Theorem 3.2: For �c, locally linear equivalent by

output injection, there exists T > 0 such that for any � 2
½0;T � a vector field rs1 can be computed to satisfy (19)

at any degree of approximation in �.

Proof: The proof works out showing first that

dH� ¼ Hð�ÞdHþOð�nÞ ð20Þ

with Hð�Þ 2 Rn�n, invertible by construction for any

� 2�0;T�

Hð�Þ¼

1 0 0 � � � 0

1 � �2=2 . .
. ..

.

1 2� 2�2 � � � ..
.

..

. . .
. . .

. . .
. ..

.

1 ðn�1Þ� ðn�1Þ2�2

2
� � � ðn�1Þn�1�n�1

ðn�1Þ!

0

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

A

:

Then, given r�1 satisfying (3), we set in (19)

rs1 ¼
X

n�1

i¼1

�i�1�i0rci ¼ ðrc1 . . . rcnÞ

�10

��20

..

.

�n�2�n�10

0

0

B

B

B

B

B

@

1

C

C

C

C

C

A

:

Since rs1 must solve (19) in Oð�nÞ, due to (20), we have

�10

..

.

�n�10

0

B

@

1

C

A
¼ M�1

0

0

..

.

1

0

@

1

A ¼ ðM�1
0 Þlc ð21Þ
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where ðM�1
0 Þlc is the last column ofM0 2 Rðn�1Þ�ðn�1Þ,

invertible by construction; i.e.

0

M0

�10

..

.

�n�10

0

B

B

@

1

C

C

A

0

B

B

B

B

@

1

C

C

C

C

A

¼
Hð�Þ

�n�1

0 . . . 1

..

.
1 ..

.

1 . . . 0

0

B

@

1

C

A

�10

..

.

�n�2�n�10

0

0

B

B

B

B

@

1

C

C

C

C

A

so getting

M0 :¼

1
ðn�1Þ!

1
ðn�2Þ! . . . 1

2
1

2n�1

ðn�1Þ!
2n�2

ðn�2Þ! . . . 4 2

..

. ..
.

. . . ..
. ..

.

ðn�1Þn�1

ðn�1Þ!
ðn�1Þn�2

ðn�2Þ! . . .
ðn�1Þ2

2
n� 1

0

B

B

B

B

@

1

C

C

C

C

A

:

Setting now in (19), rs1 ¼
Pn�1

i¼1 �
i�1ð�i0 þ ��i1Þrci, i. e.

rs1 ¼ rc1 . . . rcnð Þ

�10 þ ��11

��20 þ �2�21

..

.

�n�2�n�10 þ �n�1�n�11

0

0

B

B

B

B

B

@

1

C

C

C

C

C

A

and solving equality (19) in Oð�nþ1Þ,

Hð�ÞdH:rs1 þ
�10�

n

n!

0

1

2n

..

.

ðn� 1Þn

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

dLn
f h:rc1 ¼

0

..

.

0

�n�1

0

B

B

B

B

@

1

C

C

C

C

A

leads to

�11ðxÞ

..

.

�n�11ðxÞ

0

B

@

1

C

A
¼ �

dnðxÞ

n!
M�1

0

1

2n

..

.

ðnþ 1Þn

0

B

B

@

1

C

C

A

with dnðxÞ :¼ dLn
f hðxÞ:rc1 and �10 ¼ 1 computed

from (21). Iterating the procedure and setting

rs1 ¼
Pn�1

i¼1 �
i�1ð�i0 þ ��i1 þ

�2

2!
�i2 þ . . .Þrci, a solution

to (19) up to increasing approximation order in �

exists thanks to the invertibility of M0. The proof is

constructive for the successive �ip which are functions

of x for p � 1. 3

Starting from the so computed vector field rs1,

truncated at a certain approximation in �, special

assumptions on the output injection must be taken

into account to satisfy conditions As2, As3 in Theorem

3.1 so maintaining the observer canonical structure

under approximate sampling. This is the case in [27]

where the output injection is assumed piecewise con-

stant. A more general result is proposed in the sequel

where we describe a procedure for computing a

�-dependent coordinates transformation �� under

which the approximate sampled model exhibits the

sampled observer canonical form - sampled COF.

4. Approximate Sampled COF, an Algorithm

We first describe an algorithm for computing a

coordinates transformation under which the COF

structure is recovered under n-th order approximate

sampling; i.e. starting from a continuous-time COF,

an approximate sampled COF is described. The

algorithm is proposed below for unforced systems

�cð0Þ, and then extended to forced ones �cðuÞ under
some extra conditions on the output injection.

4.1. The Algorithm for �cð0Þ

Starting from the continuous-time COF over Rn

_x1 ¼ 1ðxnÞ

_x2 ¼ x1 þ 2ðxnÞ

� � �

_xn ¼ xn�1 þ nðxnÞ

y ¼ xn ð22Þ

we look for a coordinates change z ¼ T�ðxÞ such that

in the new coordinates, the sampled equivalent model,

truncated at order n in � exhibits a sampled COF. The

proof is constructive for T�.

� Initialization - set zn :¼ xn ¼ y.

� Step 1 – compute the evolution of y, truncated at

order n in � (n-th order approximation)

yðkþ 1Þ ¼ yþ � _yþ
�2

2
€yþ � � � þ

�n

n!
y
ðnÞ

6



and put in evidence in the r.h.s. the terms which

depend on y only, denoted by �nðy; �Þ, from the terms

which depend on the state variables xi; i 2 ½1; n� 1�
denoted by �nðx; �Þ. One gets

yðkþ 1Þ ¼ znðkþ 1Þ :¼ �nðzn; �Þ þ �nðx; �Þ ð23Þ

with

�nðx; �Þ ¼ ��n;1ðxÞ þ . . .þ
�n

n!
�n;nðxÞ

and by construction �n;1ðxÞ ¼ xn�1. Set

zn�1 :¼ �nðx; �Þ þ ð�1Þ1C1
n�1zn ð24Þ

with Cp
n :¼

n!
p!ðn�pÞ!. By construction, the zn-dynamics

takes the form

znðkþ 1Þ ¼ zn�1 þ C1
n�1zn þ �nðzn; �Þ

¼ zn�1 þ  �nðyÞ

so recovering the desired structure over the n-th

equation where  �nðyÞ :¼ C1
n�1yþ �nðy; �Þ specifies the

n-th component of the output injection.

� Step 2 – compute the n-th order approximate

evolution of zn�1. From (23 – 24) and dropping the

(x, �)-dependency for simplicity, one gets

zn�1ðkþ 1Þ ¼ �n þ � _�n þ � � � þ
�n�1

ðn� 1Þ!
�ðn�1Þ
n

þ ð�1Þ1C1
n�1ð�nðzn; �Þ þ �nÞ

¼ ð1� C1
n�1Þ�n þ �n�1 þ �n�1ðzn; �Þ ð25Þ

where �n�1ðzn; �Þ contains the terms in the r.h.s. which

depend onzn only; �n�1ðx; �Þ is a new term containing

all the terms in � _�nðx; �Þ þ
�2

2!
€�nðx; �Þ þ � � � þ

�n�1

ðn� 1Þ!
�
ðn�1Þ
n ðx; �Þ which do not depend on zn only,

so getting

�n�1ðx; �Þ ¼ �2�n�1;2 þ . . .þ
�n

ðn� 1Þ!
�n�1;n

with �n�1;2 ¼ xn�2. Set

zn�2 ¼ ð1� C1
n�1Þ�n þ �n�1 þ C2

n�1zn ð26Þ

so that, from (25–26), the zn�1-dynamics takes the

form

zn�1ðkþ 1Þ :¼ zn�2 � C2
n�1zn þ �n�1ðzn; �Þ

¼ zn�2 þ  �n�1ðyÞ

so recovering the desired structure with output injec-

tion term,  �n�1ðyÞ :¼ �C2
n�1yþ �n�1ðy; �Þ.

. . . Iterate the steps so characterizing the (iþ 1)-th

step as follows.

 � Step (i þ 1) – compute the n-th order approximate

evolution of zn�i

zn�iðkþ 1Þ ¼
X

i

p¼0

ð�1ÞpCp
n�1�n

þ
X

i�1

p¼0

ð�1ÞpCp
n�2�n�1 þ

X

i�2

p¼0

ð�1ÞpCp
n�3�n�2 þ � � �

þ
X

1

p¼0

ð�1ÞpCp
n�i�n�i�1 þ �n�iðx; �Þ þ �n�iðzn; �Þ

where �n�i regroups terms in the r.h.s. which depend

on zn only while �n and �n�1; . . . ; �n�i regroups terms

which do not depend on zn only. One gets

�n�iðx; �Þ ¼ �iþ1�n�i; iþ1 þ . . .þ
�n

ðn� iÞ!
�n�i; n

with �n�i; iþ1 ¼ xn�i�1. Set

zn�i�1¼
X

i

p¼0

ð�1ÞpCp
n�1�nþ

X

i�1

p¼0

ð�1ÞpCp
n�2�n�1þ...

þ
X

1

p¼0

ð�1ÞpCp
n�i�n�i�1þ�n�iþð�1ÞiCi

n�1zn

and verify that the zn�i-dynamics takes the form

zn�iðkþ 1Þ ¼ zn�i�1ðkÞ þ  �n�iðyÞ

so describing the output-injection term  �n�iðyÞ.
. . .

� Step (n – 1) – compute the approximate z2-

evolution at order n

z2ðkþ1Þ¼ð1þð�1Þ1C1
n�1þ...þð�1Þn�2

Cn�2
n�1Þ�n

þð1þð�1Þ1C1
n�2þ...þð�1Þn�3

Cn�3
n�2Þ�n�1

þ...þð1þð�1Þ1C1
2Þ�3ðx;�Þþ�2þ�2ðzn;�Þ

¼ð�1Þn�2�nþð�1Þðn�3Þ�n�1þ...þ�2þ�2ðzn;�Þ

where �2 ðzn; �Þ regroups terms in the r.h.s. which

depend on zn only and �2ðx; �Þ those which do not

depend on zn only so getting

�2 ¼ �n�1�2; n�1 þ . . .þ
�n

2!
�2; n

with �2;n�1 ¼ x1. Set

z1 ¼ ð�1Þn�2�n þ ð�1Þðn�3Þ�n�1 þ . . .

� �3 þ �2 þ ð�1Þn�1
Cn�1

n�1zn
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so computing the z1-dynamics

z1ðkþ1Þ¼ð�1Þn�2ð�nþ� _�nþ . . .þ
�n�1

ðn�1Þ!
�ðn�1Þ
n Þ

þð�1Þðn�3Þð�n�1þ� _�n�1þ . . .þ
�n�2

ðn�2Þ!
�
ðn�2Þ
n�1 Þ

þ . . .�ð�3þ� _�3þ
�2

2!
€�3Þþð�2þ� _�2Þ

þð�1Þn�1ð�nðznÞþ�nðx;�ÞÞ¼�1ðznÞþ� _�2

rewritten as z1ðkþ 1Þ ¼  �1ðyÞ with  
�
1ðyÞ :¼ �1ðznÞ þ

� _�2 because � _�2 ¼ �n _x1 ¼ �n 1ðyÞ is a function of y

only and
Pn

p¼0ð�1ÞpCp
n ¼ 0.

4.2. Approximate Sampled COF for Unforced

Dynamics

The result of the previous algorithm is summarized

below.

Theorem 4.1: Linearization by output injection of

�cð0Þ is maintained under approximate sampling at

order n through the coordinates transformation

z ¼ ��ðxÞ ¼ T�ð�ðxÞÞ ð27Þ

where � denotes the coordinates change which trans-

forms �cð0Þ into its COF (22) and T� is the coordinates

change computed through the algorithm.

Proof: Taking in mind that the algorithm has been

worked out on the approximate sampled equivalent,

Sð�ð�c0ÞÞ of the continuous-time COF, �ð�c0Þ and

that the procedures of applying a coordinates trans-

formation and sampling commute S 	 � ¼ � 	 S,
we can deduce �� from the composition (27).

More precisely, setting �� ¼ T� 	 �, one has �� 	 S ¼
T� 	 � 	 S ¼ T� 	 S 	 � so proving that �� transforms

directly the approximate sampled equivalent model

Sð�cð0ÞÞ of �cð0Þ into the sampled canonical normal

form issued from the algorithm, T�ðSð�ð�c0ÞÞ provi-
ded homogeneous approximations in � up to order

n are performed. 3

Remark: In [8], it was conjectured (proven for n¼ 2)

that preservation under sampling of linear equivalence

throughoutput-injection should imply linear equivalence

of �c0. Our result shows that preservation holds true

for any n but up to order n in �.

Example: Let us illustrate the computation over R2.

Consider the continuous-time uncontrolled COF

_x1 ¼ 1ðx2Þ

_x2 ¼ x1 þ 2ðx2Þ

y ¼ x2

and its approximate sampled equivalent at order 2 in �

x1ðkþ1Þ¼x1þ� 1þ
�2

2!

0

1ðx1þ 2Þ

x2ðkþ1Þ¼x2þ�ðx1þ 2Þþ
�2

2!
ð 1þ

0

2ðx1þ 2ÞÞ

y¼x2

which clearly does not preserve the observer structure;

ð:Þ
0

; ð:Þ
00

; . . . indicate the successive derivatives w.r.t. its
arguments of the function into the parentheses.

According to the algorithm, one sets z2 ¼ x2 and puts

in evidence in z2ðkþ 1Þ ¼ yðkþ 1Þ the parts which

depend on z2 only from the remaining ones, so getting

z2ðkþ 1Þ ¼ �2ðz2Þ þ �2ðx; �Þ

¼ x2 þ � 2 þ
�2

2!
ð 1 þ

0

2 2Þ

þ �x1 þ
�2

2!
 

0

2x1:

Setting z1 ¼ �2ðx; �Þ � z2, one recovers

z2ðkþ1Þ¼ z1ðkÞþ z2ðkÞþ�2ðz2ðkÞÞ¼ z1þ 
�
2ðyÞ

so defining  �2 as  
�
2 :¼ z2 þ � 2 þ

�2

2!
ð 1 þ

0

2 2Þ. The
z1-dynamics

z1ðkþ1Þ¼ �ðx1þ � 1Þþþ
�2

2!

0

2x1� z2ðkþ1Þ

¼�x2� � 2þ
�2

2!
1�

�2

2!

0

2 2 :¼	�1ðyÞ

depends on z2 ¼ x2 ¼ y only as  2 depends on x2 only.

In conclusion, the coordinates change, z ¼ T�ðxÞ
described by

z1 ¼ �x1 þ
�2

2!

0

2x1 � x2; z2 ¼ x2 ð28Þ

transforms the approximate sampled equivalent to the

COF into the 2nd order sampled COF over R2

z1ðkþ 1Þ ¼ �z2 � � 2 þ
�2

2!
ð 1 � 2

0

2Þ

z2ðkþ 1Þ ¼ z1 þ 2z2 þ � 2 þ
�2

2!
ð 1 þ 2

0

2Þ

y ¼ z2:
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To complete the discussion, it is a matter of compu-

tations to verify that the Jacobian of T� satisfies the

condition set in Theorem 2.3; i.e.

½JxT
�� r�1 r�2
� �

¼ �Id2 þOð�3Þ

where the vector field r�1 is computed to satisfy (19) up

to an error in Oð�3Þ and r�2 :¼ e��adfr�1 so getting up

to �2

r�1 ¼ rc1 �
�

2
d2ðxÞrc1; r�2 ¼ rc1 �

�

2
d2ðxÞrc1 þ �rc2

with d2ðxÞ ¼ Lrc3hðxÞ. In the present case, because

rc1 ¼ ð1; 0ÞT; rc2 ¼ ð1; 0ÞT and d2ðxÞ ¼
0

2, one gets in

Oð�3Þ

�þ �2

2!

0

2 �1

0 1

	 


1� �
2
 

0

2 1� �
2
 

0

2

0 �

	 


¼
� 0

0 �

	 


:

The specific structure of the n-th order sampled COF

over Rn can be described in terms of the continuous-

time COF according to the same procedure.

4.3. Approximate Sampled COF for Controlled

Dynamics

The result stated can be extended to controlled sys-

tems �cðuÞ admitting a COF (2) with output injection

satisfying the condition

@2 iðy; uÞ

@y@u
¼ 0 for i 2 ½2; n� ð29Þ

which is equivalent to assume that the derivatives
0

iðyÞ do not depend on u except
0

1ðy; uÞ. The fol-

lowing result holds true.

Theorem 4.2: Linearization by output injection of

�cðuÞ is maintained under approximate sampling at

order n through the coordinates transformation (27) if

the conditions (29) are satisfied.

Proof: It is readily understood that under (29), the

output injection in (2) takes the form

�ðy; uÞ ¼ ð 1ðy; uÞ; b2uþ  2ðyÞ; � � � ; bnuþ nðyÞÞ
T:

Linearity in u of the input-output injection  i � 2ðy; uÞ
guarantees that the algorithm proposed above works

out identically yielding to a coordinates change which

does not depend on the control variable which is

assumed constant over the sampling intervals.

Relaxing (29) yields to a coordinates change which

depends on u. 3

Remark: An interesting case is represented by con-

trolled system �cðuÞ having relative degree n,

(LgL
k
f h ¼ 0; k ¼ 0; � � � n� 2;LgL

n�1
f h 6¼ 0).

Example: Let us illustrate the procedure on the

controlled COF over R3 with input-output injection

satisfying (29)

_x1 ¼ 1ðx3; uÞ

_x2 ¼ x1 þ 2ðx3Þ

_x3 ¼ x2 þ 3ðx3Þ

y ¼ x3

with approximate sampled equivalent at order 3 in �

x1ðkþ 1Þ ¼ x1 þ � 1ðuÞ þ
�2

2!

0

1ðuÞðx2 þ  3Þ

þ
�3

3!
ð

0

1ðuÞðx1 þ  2Þ

þ
00

1ðuÞðx2 þ  3Þ
2

þ
0

1ðuÞ 
0

3ðx2 þ  3ÞÞ

x2ðkþ 1ÞÞ ¼ x2 þ �ðx1 þ  2Þ þ
�2

2!
ð 1ðuÞ

þ
0

2ðx2 þ  3ÞÞ

þ
�3

3!
ð

0

1ðuÞðx2 þ  3Þ þ
0

2ðx1 þ  2Þ

þ
0

2

0

3ðx2 þ  3Þ þ
00

2ðx2 þ  3Þ
2Þ

x3ðkþ 1Þ ¼ x3 þ �ðx2 þ  3Þ

þ
�2

2!
ðx1 þ  2 þ

0

3ðx2 þ  3ÞÞ

þ
�3

3!
ð 1ðuÞ þ

0

2ðx2 þ  3Þ

þ
00

3ðx2 þ  3Þ
2

þ
0

3ðx1 þ  2Þ þ
02
3 ðx2 þ  3ÞÞ

y ¼ x3

where the u-dependency is in  1 only. Setting z3 :¼ x3,

one deduces from z3ðkþ 1Þ

�3ðz3; �; uÞ :¼ z3 þ � 3 þ
�2

2!
ð 2 þ

0

3 3Þ

þ
�3

3!
ð 1ðuÞ þ

0

2 3 þ
00

3 
2
3

þ
0

3 2 þ
02
3 3Þ

�3ðx; �Þ :¼ �x2 þ
�2

2!
ðx1 þ

0

3x2Þ

þ
�3

3!
ð

0

2x2 þ
00

3x
2
2

þ
0

3x1 þ 2
00

3 3x2 þ
02
3 x2Þ:
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Setting z2 :¼ �3ðx; �Þ � 2z3, one computes

z3ðkþ 1Þ ¼ z2 þ 2z3 þ �3ðz3; �Þ

¼ z2 þ  �3ðz3; uÞ:

Moreover, by computing

z2ðkþ 1Þ ¼ �2�3ðz3; �; uÞ � �3ðz3; �Þ

þ � _�3ðz3; �Þ þ
�2

2!
€�3ðz3; �Þ

with

� _�3 ¼ �2ðx1 þ  2Þ þ
�3

2
ð 1ðuÞ

þ
00

3x2ðx2 þ  3Þ þ
0

3ðx1 þ  2ÞÞ

�2

2!
€�3 ¼ �32ð 1ðuÞ þ

0

2ðx2 þ  3ÞÞ

we get

z2ðkþ 1Þ ¼ �2ðz3; �; uðkÞÞ

� �3ðz3; �Þ þ �2ðz3; �Þ

with

�2ðz3; �; uÞ :¼ �2�3 þ �2 2 þ
�3

2
ð2 1ðuÞ

þ
0

2 3 þ
0

3 2Þ

�2ðx; �Þ :¼ �2x1 þ
�3

2
ð

00

3x
2
2 þ  

00

3 3x2

þ
0

2x2 þ
0

3x1Þ:

Setting z1 :¼ ��3 þ �2 þ z3, one has

z2ðkþ 1Þ ¼ z1 � z3 þ �2ðz3; �; uÞ

¼ z1 þ  �2ðz3; uÞ

with  �2ðz3; uÞ :¼ �z3 þ �2ðz3; �; uÞ and also

z1ðkþ 1Þ ¼ �3þ�3��3� � _�3

�
�2

2!
€�3þ�2þ � _�2

¼ z3þ � 3þ
�2

2
ð� 

0

2þ
0

3 3Þ

þ
�3

3!
ð 1ðuÞ� 2 

0

2 3� 2 
0

3 2þ
00

3 
2
3þ

02
3 3Þ

:¼  �1ðz3;uÞ:

In conclusion, the coordinates change, z ¼ T�ðxÞ

z1 ¼ ��x2 þ
�2

2!
ðx1 �

0

3x2Þ

þ
�3

3!
ð2 

00

3x
2
2 þ

00

3 3x2 þ 3 
0

2x2

þ 2 
0

3x1 �
02
3 x2Þ þ x3

z2 ¼ �x2 þ
�2

2!
ðx1 þ

0

3x2Þ

þ
�3

3!
ð

0

2x2 þ
00

3x
2
2 þ  

0

3x1

þ 2 
00

3 3x2 þ
02
3 x2Þ � 2x3

z3 ¼ x3 ¼ y

transforms the controlled continuous-time COF over

R3 into the controlled approximate sampled COF at

order 3 in �

z1ðkþ 1Þ ¼  �1ðz3ðkÞ; uðkÞÞ

z2ðkþ 1Þ ¼ z1ðkÞ þ  �2ðz3ðkÞ; uðkÞÞ

z3ðkþ 1Þ ¼ z2ðkÞ þ  �3ðz3ðkÞ; uðkÞÞ

y ¼ z3

with the  �i ðz3; uÞ described above for i¼ [1,3].

4.4. The Duffing Oscillator

A very simple example is the duffing oscillator which

admits the COF

_x1 ¼ �x2 � x32

_x2 ¼ x1

y ¼ x2

with  1 ¼ �x2 � x32 and  2 ¼ 0. Under approximate

sampling at order 2, the COF structure is lost

x1ðkþ 1Þ ¼ x1 þ �ð�x2 � x32Þ

þ
�2

2
ð�x1 � 3x22x1Þ

x2ðkþ 1Þ ¼ x2 þ �x1 þ
�2

2
ð�x2 � x32Þ

y ¼ x2:

It is straightforward to verify that the coordinates

change (28) takes the very simple linear form

z1 ¼ �x1 � x2

z2 ¼ x2 ¼ y

10



so getting under transformation and up to an error in

Oð�3Þ the Sampled COF

z1ðkþ 1Þ ¼ �z2 þ
�2

2
ð�z2 � z32Þ

z2ðkþ 1Þ ¼ z1 þ 2z2 þ
�2

2
ð�z2 � z32Þ

y ¼ z2:

It is a simple exercise to verify that the discrete-time

observer

ẑ1ðkþ 1Þ ¼ �yþ
�2

2
ð�y� y3Þ þ k1ðy� ẑ2Þ ð30Þ

ẑ2ðkþ 1Þ ¼ ẑ1 þ 2yþ
�2

2
ð�y� y3Þ þ k2ðy� ẑ2Þ

y ¼ z2

yields to a linear error dynamics e1ðkþ 2Þ þ k1e1ðkÞ þ
k2e1ðkþ 1Þ ¼ 0 for e1 ¼ z1 � ẑ1.

In Figs. 1–4, the behavior of the approximate

sampled observer (30) with eigenvalues at e�1 is

compared with the sampled values of the continuous-

time observer, which has linear error dynamics with

eigenvalues 
1 ¼ 
2 ¼ �1, and with the approximate

sampled observer at the first order in the output

injection with eigenvalues at zero, named emulated, i.

e. given by

~z1ðkþ 1Þ ¼ ~z1 � �y� �y3 � ~k1ðy� ~z2Þ ð31Þ

~z2ðkþ 1Þ ¼ ~z2 þ �~z1 � ~k2ðy� ~z2Þ

y ¼ z2

In all the simulations the observer dynamics is initi-

alized at zero and the evolution of x1 is represented

together with its estimates. It results from the figures

that to a fast convergence, which is typical of a discrete-

time device, the proposed observer associates very good

steady state performances. Figs 1 and 2 show how the
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performances of the emulated observer degraded with

the initial error: the system evolves starting from x0 ¼
ð0:5;�0:5ÞT and x0 ¼ ð1;�1ÞT, respectively. Figs. 3

and 4 put in light the performances of the proposed

sampled observer also when increasing the sampling

interval and the initial error x0 ¼ ð0:5;�2ÞT, while the
convergence of the emulated observer is lost even by

reducing the sampling interval.

5. Conclusions

In this paper we have shown that linearization through

coordinates change and input-output injection of un-

controlled dynamics can be preserved under sampling

up to approximations at order n, the state dimension.

The proof is constructive for the coordinates change so

exhibiting n-th order approximate sampled counter-

parts of COF over Rn. The result is extended to con-

trolled dynamics with reference to a specific structure

of the input-output injection. A global version of these

results, with respect to the x-dependency, could be

given assuming that the conditions hold globally and

assuming completeness of the vector fields describing

the continuous-time dynamics. Work is progressing to

relax the extra conditions set on the output injection by

consideringmulti-output injections; i.e. depending also

on time instants internal to the sampling intervals, a

concept some how similar to multirate control.
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