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Abstract. In this article, we are concerned with the numerical simulation of
granular media, characterized as a large scale discrete system, involving non
smooth interactions. For such problems, domain decomposition approaches
are potential interesting alternative solvers. Herein, two robust and generic
monoscale approaches are formulated and compared. The first numerical re-
sults reveal a non standard behavior in term of numerical scalability.
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Résumé. Dans cet article, nous nous intéressons à la simulation numérique
des milieux granulaires, caractérisés comme des systèmes discrets de grande
taille, avec des interactions non régulières. Pour de tels problèmes, les méthodes
de décomposition de domaine sont des candidats intéressants comme solveurs
alternatifs. Ici, deux approches monoéchelles robustes et génériques sont for-
mulées et comparées. Les premiers résultats montrent un comportement non
standard en terme d’extensibilité numérique.
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1 Introduction

The simulation of granular media behavior at small scale (i.e. the size of the
grains) leads to the modelling of each individual grain, as well as each interac-
tion between them. Such numerical tests allow to estimate a large number of
information (grain movements, chains of forces...) but they also require a huge
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amount of computational resources. Indeed the number of grains may be large,
and the number of interactions is even larger.

Classical approaches embed a rigid model for each grain, and a non smooth
unilateral contact, with or without friction, cohesion... as a model of interac-
tion. The resulting problem at small scale is therefore belonging to non smooth
dynamics.

A wide range of practical engineering applications (monuments, masonry,
blocky rocks, geomaterial, ballasts, powders) concerns quasi-static evolutions of
dense granulates and slow flows in which the forces network is the main me-
chanical feature [25, 27]. The numerical simulations have to be performed using
contact dynamic methods based on a fully implicit resolution of the contact
forces. At a given step of evolution, all the kinematic constraints within the
packing are simultaneously taken into account together with the equations of
motions to determine all the contact forces in the packing. This allows to deal
properly with nonlocal momentum transfers implied in multiple collisions, con-
trary to molecular dynamics schemes traditionally used that reduce the system
evolution to a succession of binary collisions [6].

To be able to use classical numerical schemes such as molecular dynamics
(MD), this non smoothness is often alleviated using penalization techniques
(for instance using a contact stiffness). These approaches are usually justified
by invocation of physical arguments (grains exhibit a small flexibility, therefore
the contact behavior is better described with a Hertzian model, or even with
a simplified apparent stiffness). The main counter argument is the following:
If the physical contact indeed exhibits a certain stiffness amount, the stiffness
is sufficiently high that if used with classical solvers, the physically regularized
problem is often stiff enough to impair the convergence and/or the stability of
the numerical scheme, and eventually requires drastically reduced time steps.
In such cases, the penalizing term has to be artificially reduced to cope with
the solver requirements. As a consequence, if one can use a solver suited to
non smooth evolutions, the stiff contact (with an infinite rigidity) is therefore a
better model than an artificially under-stiffened regularized model.

In this article, we focus on using two non smooth solvers. The first one is
derived from the Large Time Increment method (LATIN) initiated by Ladevèze
(1999); the second one, developed by Moreau (1999) in the framework of Non
Smooth Contact Dynamics (NSCD), may be interpreted as a Non Linear Gauss-
Seidel (NLGS) algorithm. For frictionless problems these methods are not the
more efficient in comparison with Projected Conjugate Gradient algorithms eas-
ily extended from the linear case [8, 22, 29]. The Conjugate Gradient schemes
are also used by the Domain Decomposition Methods for linear problems (BDD
[21], FETI [13]). These methods are difficult to extend to frictional problems —
and more yet to more general interactions (adhesion, capillarity) — and the per-
formances are not so good; indeed the conjugate gradient approach in this case
exhibits convergence difficulties [29]. This is the reason why we develop here
a Domain Decomposition strategy using only robust and generic incremental
solvers based on LATIN and NLGS.

The ‘direct’ extension of FETI-like methods (using an active set approach)
for frictionless [12, 4, 3] or frictional contact problems [28], as well as the ap-
proaches of Dostál for frictionless [9, 10], or frictional contact problems [15, 11],
exhibited their efficiencies for ‘assembling’-like problems (with a few number
of contact interfaces), but have the same limitations as the previous ones for
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diffuse contact conditions (with a large number of frictional contact conditions).

2 Non smooth dynamics model for granular me-
dia without friction

We consider interactions between grains, that constitute a system which can
be viewed as a rigid multibody collection of particles. For sake of simplicity,
unilateral contact without friction is considered herein.

2.1 The grain dynamics

We assume that each grain denoted with i interacts with its neighbors via a finite
collection of punctual contacts. Its mass is denoted with mi, and its center of
mass with Gi. Its inertial operator at point Gi is JiG. At the contact labelled
α and located at point Mα, the two contacting bodies are conventionally called
the candidate contactor and the antagonist one. At the point Mα the common
normal unit vector nα is directed toward the candidate body.

The body kinematics is described with 6 parameters in 3D: 3 are the elements
of the celerity vector of the mass center Ui, the others are the elements of the
rotation rate Ωi.

In order to compute the evolution in time, an integration scheme is needed.
Since the behavior of a granular medium involves non smooth effects in velocity
jumps, a scheme which is not built on the derivability and continuity of velocity
equations is used. Because of the very high number of contacts involved in dense
granular media, a Time-Stepping scheme is chosen rather than an Event-Driven
one, which would lead to a too small time step. In particular, the Event-Driven
scheme is unable to take into account simultaneous contacts [14, 19, 20].

A Time-Stepping scheme provides a discretized equation of dynamics involv-
ing impulses in its right-hand side, i.e. the integral over ]t−, t+[ of the force and
moment quantities. The kinematic quantities have to be determined at the end
of the step t+,{

mi

(
U+
i − U

−
i

)
JiG

(
Ω+
i − Ω−

i

) }
G

=

{
Pi + P di
Ki +Kd

i

}
G

(1)

where the external actions applied on the system are: the contact impulse re-

sultant Pi, the non contact impulse resultant P di =
∫ t+
t−
F di dt (where F di is the

non contact resultant), the contact impulse moment at Gi, Ki, the non contact

impulse moment at Gi, K
d
i =

∫ t+
t−
Md
i dt (where Md

i is the non contact moment
at Gi).

Assembling mass and inertia in a small local matrix Mi, the kinematic pa-
rameters Ui and Ωi in a small local vector Vi, the impulse quantities Pi and Ki

in a vector Ri, and finally the given quantities P di and Kd
i into a vector Rdi , the

dynamical admissibility reads:

MiV
+
i = Ri +Rdi +MiV

−
i (2)

For simplicity the upperscript + is omitted in the following. These vectors,
associated to each grain, may be concatenated in global vectors, in such a way
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the dynamics of the granular medium is rewritten as the following vector equa-
tion where the matrix M is diagonal, provided that the global coordinates of
rotation vectors are expressed in the inertia eigen basis of each grain.

MV = R+Rd +MV − (3)

2.2 Grain to contact mapping and reverse

The relative velocity of the candidate body with regards to the antagonist one
equals the vector difference of the normal velocities of the respective contacting
particles, say vα = HαtV , where Hαt denotes a linear mapping from the particle
level to the contact one. In a view of the definition of generalized components,
the normal contact force rα exerted by antagonist body upon the candidate one
contributes in the element R: R = Hαrα.

The relative velocities of all contacts and the contact impulses are concate-
nated in v = HtV and R = Hr.

2.3 Constitutive relation of an interaction

We focus in this article on simple unilateral contact which is naturally expressed
as a complementary condition linking contact force to gap. For dynamics,
Moreau (1999) proved via a viability lemme that we can use a velocity-impulse
complementary law.

The unilaterality of interaction is written :{
If up > 0, r = 0
If up ≤ 0, 0 ≤ v⊥ r ≥ 0

(4)

where up is the gap prediction (positive if no contact is detected); we use here
the classical ‘leapfrog’ predictor [24]: up = u− + h

2 v
−, with h = t+ − t− as the

time step. Such a relation is summarized in the following formal equation,

R(v, r) = 0 (5)

2.4 Reference problem

Taking into account the grain dynamics (3) and the contact to grain map-
ping, the impulse-oriented formulation of the reference problem can be obtained
(called reduced dynamics equation):

v −Wr = vd + v− (6)

where W is the Delassus operator W = HtM−1H, and the given quantities are
vd = HtM−1Rd and v− = HtV −.

When velocities are prescribed on a part Ω1 of the grains: V |Ω1
= Vd, the

grain degrees of freedom can be splitted into two sets: with the subscript u the
unknown values, and with the subscript p the prescribed values. The reduced
dynamics equation (6) then reads:

v −Wur = ṽd + ṽ− (7)

with Wu = Ht
uM

−1
u Hu, ṽd = Ht

uM
−1
u Rdu + Ht

pVp, and ṽ− = Ht
uV

−
u . Since this

problem has the same structure as (6), and to simplify the notations, (6) will
be used in the following. To close the problem, one has to add the constitutive
relation (5).
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3 Domain splitting

The suited splitting of a structure for using a domain decomposition approach is
a geometrical partitioning of the domain occupied by this structure. In the case
of a discrete structure, there are two common ways to partition it: (i) distribute
the elements, the links, or the interactions among substructures, or (ii) distribute
the nodes or the grains among substructures. Both strategies were used in the
literature. For a topological point of view, they correspond to the splitting of
two different graphs: the connectivity graph or its dual graph. The node or
grain distribution if often considered in algebraic partitioning where the left
hand side matrix of the velocity formulation is splitted according to its columns
(degrees of freedom). In our case, since the non smoothness may occur in the
interactions between grains, we choose to distribute these interactions among the
substructures (we proceed by distributing the middle points between the centers
of mass of interacting grains, according to their coordinates, with the help of an
arbitrary regular underlying grid, Figure 1). Indeed, with such a choice, some
of the ‘boundary’ grains are splitted themselves in the data structures arising
for the subdomains. Note that for dynamical evolutions, contrary to [1], the
mass located in such a grain has to be splitted in two contributions, one for
each duplicated grain, see Figure 1. The interface between two subdomains
is defined to be the set of these grains, joining a substructure to the other.
The nonsmoothness is therefore localized within the substructures only. This
modeling choice is identical to [5] and somehow the dual of the one proposed in
[18] where the non-linearities (contact of crack lips) are isolated in the interfaces.

Introducing such a splitting leads to have additional unknown fields to
emerge: on each interface between a subdomain ΩE and a subdomain ΩE′ ,
a discrete repartition of impulsion FEE′ expressing the actions of the subdo-
main ΩE′ onto the subdomain ΩE . A discrete velocity field VEE′ is the trace of
the velocity field in the subdomain ΩE on its local interface with the neighbor-
ing subdomain ΩE′ . With the previous choice of splitting, the behavior of the
interface is perfect, i.e. it transfers both impulse (the splitted grains interforce)
and velocity (of centers of mass):

FEE′ + FE′E = 0 (8)

VEE′ = VE′E (9)

The data structure of the dynamical reference problem is therefore complex-
ified with the additional interface quantities. In particular, for a subdomain E
among nSD subdomains, the subscript EΓ will denote the collection of its local
interfaces (i.e. its neighboring interfaces). FEΓ will therefore be a vector that
collects the impulse on these local interfaces, and VEΓ will collect the velocity
on the same local interfaces. Moreover, one needs a Boolean matrix that maps
the local interfaces degrees of freedom to the subdomain degrees of freedom;
this will be denoted with CEΓ in the following.

4 Domain decomposition solvers

Two numerical strategies, using the same database structure issued from the
decomposition of Section 3, are detailed and compared in the following.
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Figure 1: Geometrical partitioning of the domain

4.1 Monoscale LATIN method

In the present case of an incremental approach, and for non evolutionary prob-
lems, the Large Time Increment method [17] is close to an Augmented La-
grangian approach [2]. It is an iterative method, which at each iteration requires
two different steps, namely the local stage, dealing with local constitutive rela-
tions, and the linear stage, dealing with admissibility conditions. This iterative
scheme successively builds approximations of the solution, i.e. the normal rel-
ative velocity and the impulse (vE , rE), E = 1, ..., nSD, and the nodal velocity
and impulse on each interface (VEE′ , FEE′).

4.1.1 Local stage

Once (vE , rE) and (VEE′ , FEE′) are known, the local stage consists in finding

(v̂E , r̂E) and (V̂EE′ , F̂EE′) satisfying:

• for each interface, the interface behavior:{
F̂EE′ + F̂E′E = 0

V̂EE′ = V̂E′E
(10)

• the interface search direction:

(F̂EE′ − FEE′)− d+(V̂EE′ − VEE′) = 0 (11)

• for each interaction of each subdomain, the constitutive relationR(v̂E , r̂E) =
0;

• and the interaction search direction:

(r̂E − rE)− l+(v̂E − vE) = 0 (12)

d+ and l+ are two positive parameters of the method. For perfect interfaces
and frictionless contact interactions, the solution of the local stage is explicit:{

F̂E′E = −F̂EE′ = 1
2 [(FE′E − FEE′)− d+(VE′E − VEE′)]

V̂EE′ = V̂E′E = 1
2 [(VE′E + VEE′)− d+(FE′E + FEE′)]

(13)
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 If up > 0, r̂E = 0 and v̂E = vE − (l+)−1rE
If up ≤ 0, r̂E =< rE − l+vE >+ and

v̂E = −(l+)−1 < rE − l+vE >−

(14)

4.1.2 Linear stage

Once (v̂E , r̂E) and (V̂EE′ , F̂EE′) are known, the linear stage consists in finding
(vE , rE) and (VEE′ , FEE′) satisfying:

• for each subdomain, its dynamical evolution:

MEVE = RE + FE +RdE +MEV
−
E (15)

and the remaining admissibility equations: vE = Ht
EVE , RE = HErE ,

FE = CtEΓFEΓ, VEΓ = CEΓVE .

• for each subdomain, and its local interfaces, the search directions:{
(rE − r̂E) + l−(vE − v̂E) = 0

(FEΓ − F̂EΓ) + d−(VEΓ − V̂EΓ) = 0
(16)

d− and l− are also two positive parameters of the method. Using the search
directions, the linear global problem reads on each subdomain:

(ME +HEl
−Ht

E + CtEΓd
−CEΓ)VE = R̂E +RdE +MEV

−
E (17)

where R̂E = HE(r̂E + l−v̂E) + CtEΓ(F̂EΓ + d−V̂EΓ) is a given quantity at
this stage. Once VE is obtained, the other quantities are obtained in a post-
processing step:

vE = Ht
EVE (18)

rE = r̂E + l−v̂E − l−Ht
EVE (19)

FEΓ = F̂EΓ + d−V̂EΓ − d−VEΓ (20)

4.2 Monoscale NLGS method

The continuity condition of the velocity field on the global interface Γ requires
Boolean signed operators AEΓ that extract from a subdomain vector VE its
signed restriction to the interface,∑

E

AEΓVE = 0 (21)

We define FΓ as the multiplier associated to this constraint. The dynamics
of each subdomain according to (6) is described by

WErE − vE −Ht
EM

−1
E AtEΓFΓ = −vdE − v−E (22)

The combination of the dynamics (22), the continuity condition (21) and the
constitutive relations of the interactions restricted to subdomains (5) gives,

WErE − vE −Ht
EM

−1
E AtEΓFΓ = −vdE − v

−
E

R(vE , rE) = 0

}
E = 1, ..., nSD∑

E

AEΓVE = 0
(23)

7



Using directly the dynamics equation (3) per subdomain the last equa-
tion may be replaced by an equation with FΓ as the main unknown (X =∑
E AEΓM

−1
E AtEΓ),
WErE − vE −Ht

EM
−1
E AtEΓFΓ = −vdE − v

−
E

R(vE , rE) = 0

}
E = 1, ..., nSD

XFΓ −
∑
E

AEΓM
−1
E RE =

∑
E

AEΓM
−1
E RdE

(24)

A Gauss-Seidel like algorithm applied to this last system consists of two
steps. The first one performs one Gauss-Seidel iteration for each subdomain
indiced by E,{

WL
E rE − vE = Ht

EM
−1
E AtEΓF̃Γ − vdE − (WE −WL

E )r̃E − v−E
R(vE , rE) = 0

(25)

The classical Gauss-Seidel splitting of WE uses the lower triangular part WL
E

(including the diagonal part WD
E ): WE = WL

E + (WE −WL
E ). This first step is

then performed subdomain per subdomain and may be easily parallelized. The
non linear problem 25 is easily solved, progressing whith each unknown couple
(vαE ,rαE , one after the other, for which a graph intersection technique provide
the result explicitely (for the frictionless case).

After updating the impulse quantities grain per grain RE the second step
consists in solving the last equation of the system (24),

XFΓ =
∑
E

AEΓM
−1
E (RE +RdE) (26)

This second step benefits from the diagonal feature of the X matrix, that is
a specific issue of the dynamics of rigid grains.

4.3 Algorithmic connection of the two methods

To compare the two previous methods, one has to specialize each of them (with
respect to the free choices that have been made during their design). Moreover,
concerning notations, the Boolean mapping matrices are linked with CEΓ =
|AEΓ| and the subdomain impulse arising from the global interface are FE =
CtEΓFEΓ = AtEΓFΓ whenever the impulse equilibrium of interfaces is enforced.

First, one has to consider a Jacobi version of the previous Gauss-Seidel ap-
proach, i.e. choosing the diagonal part WD

E in the splitting: WE = WD
E +(WE−

WD
E ). In such a way, shifting from Gauss-Seidel to Jacobi, the convergence of

NLGS is expected to decrease.
Second, a degenerated choice of search direction parameters of the LATIN

method has to be selected in order to identify the two resulting algorithms: the
search directions of the local stage should be d+ = 1

2X
−1 and l+ = (WD

E )−1,
and the search directions of the linear stage should be ‘vertical’, i.e. d− = l− =
0. With these choices, the convergence of the LATIN method is expected to
decrease also.

The unification of the two previous algorithms is therefore subjected to a
degeneracy of both of them.
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5 Basic behaviors in linear case

To test the scalability of the methods we deal here with a linear model ex-
ample without realistic relevance, but considered as an intermediate problem
before tackling granular systems. A granular sample is performed using the
numerical plateform LMGC901 dedicated to multicontact problems [16]. The
contact interactions, originally written with a velocity-impulse formulation, are
replaced by linear viscous-like links between the centers of the grains. In this
way, the example may be viewed as a truss composed of massive nodes and
damped links. The only adaptation to the reference problem is the constitutive
relation R(v, r) = 0 that is now: r = −kv (k is the viscosity term multiplied
by the time step). The tested sample is composed of 5191 grains, Figure 2, the
velocity of bottom grains is prescribed to zero, while left and right sides are
subjected to a global rotation to mimic a global shearing. In such a case, the
reference problem can be further simplified into a single equation, that reads:
(W +k−1)r = −vd−v−. The left hand side is therefore composed of a diagonal,
regular, viscous-like part, and the Delassus operator, which is singular (in most
cases: indeed, imagine replacing the contact interactions with bars of a truss,
the size of the kernel of the Delassus operator is the number of self-stress states).
To check the influence of this singular character, two different values of k will
be tested: a reference value k0 selected as the mean value of (WD)−1, and a
value k1 reducing the regularizing contribution of viscosity: k1 = 50k0.

Figure 2: Test case with 5191 nodes and 10177 interactions, and the grid used
to split the domain into 16 subdomains

Several convergence curves are plotted in each case, for a single time step
increment of the problem, see Figures 3 and 4: for each method, and for different
numbers of subdomains, i.e. nSD = 1, 2, 4, 8, 16 or 32. For this linear test
problem, and contrary to the granular one, the solution is unique in terms of
impulses rref. Consequently, a relative error is used to check the convergence:

η =

√
(r − rref)t(r − rref)

(r + rref)t(r + rref)
(27)

For the LATIN method, the search direction parameters are chosen as l+ =
l− = k and d+ = d− = k.

As a general trend, the convergence rates of both methods decrease when the
influence of the regular viscosity part decreases. On this test, NLGS exhibits a
higher convergence rate than the LATIN, though it is less obvious for the less
regular case (Figure 4).

1http://www.lmgc.univ-montp2.fr/˜dubois/LMGC90/
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Figure 3: Results with k = k0

Figure 4: Results with k = k1 = 50k0

The numerical scalability is lost (when the number of subdomain increases)
but it is not systematic (contrary to the known results for a continuum media
case). Indeed, for the LATIN method, for k = k0, the 4, 8, 16 and 32 subdomain
cases are very similar; for k = k1, the 1, 2, 4 and 8 subdomain cases on one
hand, and the 16 and 32 subdomain cases on the other hand are similar.

6 First results for granular media

A smaller problem with 991 grains and 1679 non smooth interactions (Figure 5)
issued from LMGC90 platform is this time considered with frictionless contact
interactions (4). Since the solution is not unique in this case, the relative error
is replaced with a relative error indicator to check the convergence: at iteration
i,

ζi =

√
(ri − ri−1)t(ri − ri−1)

rtiri
(28)

10



Figure 6 plots its evolution along iterations, for a single time step increment
of the problem, for both methods and 1 to 8 subdomains. At least for this test
case, all the convergences are similar.

Figure 5: Test case with 991 nodes and 1679 interactions

Figure 6: Results for non linear case

7 Conclusion

The proposed methods developed in this article seem to be more and more scal-
able when the interaction behavior exhibits more and more non linearities/non
smoothness, even without using a multilevel enrichment. This could be at-
tributed for one part to the simplicity of the non linear solvers (based on a fixed
point technique) when compared to conjugate gradient algorithms [29, 12]. For
the other part, this may arise from the simultaneous treatment of the non lin-
earities and the domain decomposition, since the most efficient methods embed
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a domain decomposition for the linear resolutions in outer Newton iterations
[7, 5]. Notice that this last approach is not suited to the problem we wish to
tackle here, where the non smoothness is diffuse (everywhere in the domain)
[26].

Using multiscale versions of the present approaches would nevertheless present
several advantages. The first one is to get access to a numerically homogenized
behavior of the subdomains, a useful feature to be able to couple two models at
two different scales [23]. The second one is the possibility to initialize successive
steps in a problem of evolution with a coarse solution provided by the previous
time step, in order to accelerate the resolution. The main outlook of this work
is nevertheless to tackle the frictional contact case.
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