
Testing Component-Based Real Time Systems∗

Rachid Bouaziz1, Ismaïl Berrada2

1 University of Toulouse - CNRS - IRIT
31062 Toulouse Cedex - France

bouaziz@irit.fr
2 L3I, Université de La Rochelle

iberrada@univ-lr.fr

Abstract

This paper focuses on studying efficient solutions for mod-
eling and deriving compositional tests for component-based
real-time systems. In this work, we propose a coherent
framework that does not require the computation of the syn-
chronous product (composition) of components, and there-
fore avoids a major bottleneck in this class of test. For
this framework, we introduce an approach and associated
algorithm. In our approach, the overall behavior of the
system is obtained by restricting free runs of components
to those involving interactions between them. This restric-
tion is achieved through the use of a particular component
called assembly controller. For the generation algorithm,
compositional test cases are derived from the assembly con-
troller model using symbolic analysis. This reduces the
state space size (a practical size) and enables the gener-
ation of sequences which cover all critical interaction sce-
narios.

1 Introduction

Model-based testing is one of the most used formal tech-
niques for the validation of software/hardware systems. It
consists in applying a set of experiments (test cases), de-
rived from the formal model of the specification, to a sys-
tem with the intent of finding errors. Model-based testing
offers the possibility of reducing the test efforts and enables
systematic selection of test cases. However, modern dy-
namically evolving systems provide challenging problem
solving activities for the testing community. In modeling
activity, the problem to solve is how to adequately model
the behavior of these complex systems in order to test them.

∗This research has been supported by the european Marie CurieRTN
TAROT project (MCRTN 505121).

Test generation and execution activity deals with the defini-
tion of efficient instantiation algorithms of test cases (based
on the system model) and test cases execution against the
system under test (SUT).
Real-time systems are computer systems in which the cor-
rectness of the systems depends not only on the logical cor-
rectness of the computation performed but also upon time
factors. So, when testing such systems, the tester must
pay attention to the correctness of outputs produced by the
SUT as well as the correctness of the corresponding timing.
Most of complex real-time systems are component-based
systems. A component is a non-trivial, nearly independent,
and replaceable part of a system that fulfills a clear func-
tion in the context of a well-defined architecture. In other
words, each component of a component-based system per-
forms some defined tasks and interacts with other compo-
nents in a specified way, to achieve a global function of the
system. The main advantage of component-based real-time
systems (CBRTS) is the possibility of reusing high-quality
components provided by professional vendors.
Analysis and testing of components developed externally
suffer from lack of information related to intra-component
interactions. Often, the overall behavior of the composite
system is given by the parallel composition of components
(the synchronous product operation). As a result, internal
communications are hidden to the tester. Besides, the state
space size of the composite system is the product of the state
space size of each component, and may grow exponentially
with the number of interacting components. Consequently,
deriving test directly from the composite system may lead
to a large and intractable number of test cases.

1.1 Contributions of the paper

The main contribution of this paper is the introduction of a
practical framework for testing CBRTS. Our framework is
based on intra-component communication modeling, dead-

lock detection, and compositional test cases generation us-
ing symbolic approaches.

• Intra-component communication modeling. In order
to avoid the computation of the composite system, we
clearly separate the description of individual behaviors
of components from the way they interact. Interactions
between system components are supervised by a par-
ticular component calledthe assembly controller. Our
idea is inspired from supervisory control theory of dis-
crete dynamical systems [15, 12, 3]. In fact, from the
behavioral point of view, intra-component communi-
cations are considered as a restriction of overall behav-
ior of the composite system. Such restriction is viewed
as a controller that forces the system to operate within
a desired region of the system’s state-space. Assembly
controller is also used to integrate the system compo-
nents and to ensure the correctness of the composed
system. Thus, as a first, contribution, we show how to
construct anoptimal andnon-blockingassembly con-
troller used to integrate components and to ensure the
correctness of the composed system.

• Deadlock detection and composability checking.
Composing a component-based application from com-
ponents that are not specifically designed for the in-
dividual application poses a number of problems.
Blocking (Deadlock) is one of the major problems in
CBRTS. It corresponds to the situation when the sys-
tem reaches a region in the state space where it can-
not exit from. Deadlock can be due to synchronization
conflicts and to temporal incoherence between shared
events. Often, detecting deadlock requires exhaustive
exploration of the system’s state space. This is obvi-
ously inefficient while dealing with complex real-time
systems. As a second contribution, we show that com-
posability and deadlock problems can be solved by
checking if there exists a non-blocking assembly con-
troller who ensures a correct interaction between real
time components.

• Compositional test cases generation. In cas there ex-
ists such a non-blocking assembly controller, then it
will cover all (critical) interaction scenarios. Thus, as
a third contribution, we show how efficient compo-
sitional test cases can be derived from the assembly
controller using symbolic analysis. Compositional test
cases are generated directly from the assembly con-
troller model or indirectly by combining test cases de-
rived from therestricted behaviorof each individual
supervised component.

Thus, the originality of our work is the proposition of a
practical framework for compositional test case generation

based on explicit modeling of intra-component interactions
though the assembly control.

1.2 Organization of the paper

The remainder of the paper is organized as follows: Section
2 presents the model of timed input/output automata. Sec-
tion 3 is related to assembly controller synthesis. Section4
shows how compositional test cases are generated and se-
lected automatically from a symbolic abstraction of TIOA.
Finally, we conclude and draw some perspectives in section
5.

2 Timed Input/Output Automata

In this section, we present the model of Timed Input/Output
Automata (TIOA) used to describe CBRTS. For reader not
familiar with TIOA notations, a short description is given
here, and more complete one can be found in [1].

Let R+ be a set of nonnegative real numbers,X be a finite
set of nonnegative real-valued variables calledclocks, and
G(X) be the set of all time guards over X defined by the
following grammarg := x ∼ c | x − y ∼ c | g ∧ g | true,
where (x, y) ∈ X2, c ∈ R

+ and∼∈ {<,≤,=, >,≥}.
Let Σ be a finite set ofactions. A timed sequencew =
(a1, d1)(a2, d2) . . . (an, dn) is an element of(Σ × R

+)∗

such thatd1 ≤ d2 ≤ · · · ≤ dn. A clock valuationis a
mappingν : X → R

+. Letd ∈ R
+, r ⊆ X, andν be a val-

uation. Then,ν + d andν[r := 0] are defined respectively
by :

• for all x ∈ X, (ν + d)(x) = ν(x) + d.

• for all x ∈ X \ r, ν[r := 0](x) = ν(x), and for all
x ∈ r, ν[r := 0](x) = 0.

Definition 1 Timed Input Output Automaton(TIOA) is a
tupleA = (L, l0, X,Σ, E, I), where

• L is a finite set of locations

• l0 ∈ L is the initial location

• X is a finite set of clocks

• Σ = Σ! ∪ Σ? is a finite set of input and output events.

• I : L → G(X) is a function that assigns an invariant
to a location.

• E ⊆ L ×G(X) × Σ × 2X × L is a set of edges.t =
(l, g, a, r, l′) ∈ E, written l

g,a,r
−−−→ l′, is a transition of

sourcel and destinationl′, associated with occurrence
of a, guarded byg ∈ G(X). r is the set of clocks to be
reset during the transition.

The semantics of a TIOAA is defined by associating a la-
beled transition systemS(A). A state ofS(A) is a couple
(l, ν) such thatl is a location andν is a valuation overX.
There are two types of transitions inS(A):

• Time transitions: for a state(l, ν) and d ∈ R
+,

(l, ν)
d
−→ (l, ν+d) if for all 0 ≤ d′ ≤ d, ν+d′ |= I(l).

• Discrete transitions: for a state(l, ν) and a transition
l

g,a,r
−−−→ l′, (l, ν)

a
−→ (l′, ν[r := 0]) if ν |= g and

ν[r := 0] |= I(l′).

A TIOA A is said to be:

• input-complete, if it accepts any input action at any
time.

• deterministic, ifS(A) is deterministic (semantics au-
tomaton)

• non-blocking, if in every state, an action transition
(output or delay) will eventually become firable. Thus,
for each states of S(A), there exists a states′ and an
eventa ∈ Σ! ∪ R

+ such thats
a
−→ s′.

Finally, A Path P in A is a finite sequence of consecu-
tive transitionsl0

g1,α1,r1
−−−−−→ l1

g2,α2,r2
−−−−−→ l2 A Run

of A over P is a sequence of the form(l0, ν0)
(α1,d1)
−−−−→

(l1, ν1)
(α2,d2)
−−−−→ (l2, ν2) . . . , wheredi ∈ R

+, andνi is a
clock valuation satisfying the following requirements:

• ν0(x) = 0, ∀x ∈ X,

• For all i ∈ [1, n], νi−1 + (di − di−1) |= gi, νi |= I(li)
(with d0 = 0)

• νi is equals to(νi−1 + (di − di−1))[ri := 0].

The timed sequence associated to this run isω =
(α1, t1)(α2, t2) . . . (αn, tn) wheret1 ≤ t2 ≤ · · · ≤ tn.
Example 1
Figure 2 illustrates an example of a CBRTS composed of
two componentsC1 andC2. Eventsi1, i2, i3 are synchro-
nization events betweenC1 andC2. In this example, we
can see some temporal incoherences betweenC1 andC2.
In fact, in locationl0, if C1 stays more than1 time unit, then

C2 well be blocked (transitionm0
z<1,!i1,{z,w}
−−−−−−−−−→ m1 in C2).

Moreover, assume thatC1 andC2 are able to synchronize
on i1. Again, in locationm3, if C2 stays more than1 time

unit, thenC1 well be blocked (transitionl2
x≤1,?i2
−−−−−→ l3 in

C1). We can notice that ifC1 andC2 synchronize with
the respect to the controller behavior defined in Figure 2, no
deadlock will occurs. The next section, we will show that
there exists an assembly controller that ensures correct in-
teraction betweenC1 andC2, and how it can be synthesized.

x:=0, y:=0

y<1 / !i1

x:=0

x<=1 / ?i2

!e4 / x:=0, y:=0

!e6 / x:=0, y:=0

z<1 / ?i1

z:=0, w:=0

w<2 / !e2

z:=0

z<=1 / ?e3

x>1 / ?i3 z>2 / ?e5

!i2 / z:=0, w:=0

!i3 / z:=0, w:=0

l0 l1 l2

l3

l4

m0 m1 m2

m3

m4

C1 C2

n1 n2

x<2 / ?e1

Controller

?i2 ?i3!i1 ?i1 !i2 !i3

Assembly

β:=0
α<1 / ι1

β>2 / ι3

β<=1 / ι2

!Trigger

Figure 1. Example of CBRTS

3 Assembly controller synthesis

Even a simple timed automaton generates a labeled tran-
sition system with infinitely many reachable states. Thus,
algorithmic verification and testing rely on the existence
of exact finite abstractions. An efficient abstraction of the
state-space for timed automata is based on the notion of
zone [1]. A zone is the solution set of a clock constraint,
that is the maximal set of clock assignments satisfying the
constraint. zones are used to denote symbolic states. It is
well-known that zones can be efficiently represented and
stored in memory as DBMs (Difference Bound Matrices)
[5]. DBMs offer the possibility of implementing operations
over symbolic states in a simple and efficient way.

Testing CBRTS requires the exploration of the entire state
space of the system. As the number of test cases gener-
ated may grow exponentially with the number of interacting
components, we clearly separate the individual behavior of
components from the way they interact (synchronizations).
Thanks to the assembly controller, only relevant behaviors
related to intra-component synchronizations will be tested.
Thereafter, we give details for synthesizing anoptimaland
non-blockingassembly controller.
Definition 2
An assembly controller is a particular TIOA used to restrict
the overall behavior of the composite system in order to en-
sure a correct interaction between components. It can:

• Authorizes or forbids the occurrence of some shared
events according to the current state of the composite
system.

l1

l0

x>5
?Int

y:=0

?Int

x:=0

w<10;?b

5<w<10;!b

!b ?b

?Int

x:=0

x>5

!b!b

?Int

!Int

w:=0

?int

m1

m0

l1

l0 n0

n1

C1 C2 C1 C3

y<10

?b
z:=0

z<3

?b

AC AC

A

!b ?b

!Int

B

AC: Assembly controller.

S0 S1

Figure 2. Checking for composability

• Forces components to follow desired paths. This
can be achieved by restricting temporal constraints in
which some shared events -output events- must be ex-
ecuted.

Example 2
Let us consider Figure 2. In this figure,C1 can produce
eventb in interval]5,∞[, andC2 can consume the same
event in interval[0, 10[. WhenC1 sendsb exactly at instant
10 after initialization, interaction betweenC1 andC2 will
fail. Thus, assembly controller must restrict the behavior
of C1 by forcing b to be sent no after10 time units. Now,
if we considerC3, we can notice that there is no controller
which can ensure a correct interaction betweenC1 andC3,
because the conjunction of temporal constraints related to
the emission and the reception ofb is empty. Next, we show
how to check the composability of components and how to
synthesize a non-blocking and optimal assembly controller.

Assembly controller synthesis

In our framework, the aim of an assembly controller
synthesis is to limit intra-component behaviors to meet
the global objective of the composite system. Restricting
intra-component behaviors consists in modifying the time
constraints associated with some shared events. The new
temporal constraints force the composite system to follow
some predefined paths in order to avoid blocking situations
and synchronization conflicts.

Assembly controller is said to be optimal if the restriction
applied to each component is the less constraining one that
achieves correctness of the composite system. To guarantee
the optimality, we compute new temporal constraints using
symbolic analysis based on zones. The main lines of the
algorithm for constructing an optimal and non blocking as-
sembly controller are the following:

1. Identification ofpotential blocking states. This can
be achieved by examining shared events. A potential

blocking state can only be reached by executing an in-
put/output shared event.

2. Computation of clock valuations from which the po-
tential blocking state can be reached by performing a
shared evente. This step can be done using backward
reachability. Lett = le

g,e,r
−−−→ lp be a transition that

leads to the potential blocking statelp, and(lp, Zp) be
a symbolic state associated tolp (Zp is a zone). Then,
the predecessor of(lp, Zp) by t is the symbolic state
(le, Ze) such that :

(le, Zp) = (le, (([r := 0]Zb ∩ g) ↓) ∩ I(le))

with,

[r := 0]Z = {ν |ν[r := 0] |= Z} Z↓ = {ν−d | ν |= Z, d

• [r := 0]Zb are clock valuations just before exe-
cuting the shared event

• [r := 0]Zb ∩ g are clock valuations from which
the shared evente can be performed.

• (([r := 0]Zb ∩ g) ↓) ∩ I(le) are clock valuations
reached by the passage of time in locationle.

3. Computation of new temporal constraints that allow
shared output events be sent while avoiding blocking
situations. This can be achieved by analyzing clock
valuations, computed in step 2, as following:

LetZ!e (resp.Z?e) be the clock valuations correspond-
ing to the emission (resp. reception) ofe. Znew

!e is the
new temporal constraints of!e.

• First, we computeZ1 = Z!e ∩ Z?e

• If Z1 = ∅ thenZnew
!e = ∅ : Blocking detection.

In this case, there is no assembly controller.

• If Z1 6= ∅ thenZnew
!e = Z1

4. Once the new temporal constraints are computed, the
assembly controller arranges events according to the
composite system architecture[2](interleaving archi-
tecture, hierarchical architecture, serial, ...). For ex-
ample, in the interleaving architecture, events are per-
formed interchangeably based on their time limits and
their priorities.

Example 3Let us consider the system of Figure 1. Recall
thati1, i2 andi3 are synchronization events (shared events).
To ensure a correct interaction between components, the as-
sembly controller given in Figure 2 restricts the behavior of
C1 andC2. For that, it uses two clocks:α, controls the
occurrence of the internal actioni1, andβ, controls the oc-
currence of the internal actionsi2 andi3. Now, to remove
deadlock in locationl0 of C2, action i1 must be emitted
within at most1 unit of time. So, action?e1 is only autho-
rized in interval[0, 1[.

4 Generating Compositional test cases from
the assembly controller

In the previous section, the overall behavior of the system is
obtained by restricting free runs of components to those in-
volving interactions between components. This restriction
is achieved by assembly controller.Thus, compositional test
cases are derived from the assembly controller model us-
ing symbolic analysis (zone-graph). This reduces the state
space size (a practical size) and enables generation of se-
quences which cover all critical interaction scenarios.

4.1 Testing architecture

Figure 3 shows our compositional testing architecture
where C1, C2, . . . Cn are real-time components and
T1, T2, . . . , Tn are local testers. Each testerTi controls and
observes the local behavior of the componentCi. The as-
sembly controller supervises interactions between compo-
nents by authorizing, forbidding or forcing the execution of
actions. It is the only component which has a global view
of the whole system. The assembly tester checks the cor-
rectness of the assembly controller.

Assembly Controller

Assembly Tester

C1 C2 Cn

CBRTS archtecture

T1 T2 Tn

INTERACTIONS

Authorize, forbid
or force the action

Shared actions

Figure 3. compositional testing architecture

In our architecture, components are assumed to be tested for
conformance.

4.2 Deriving abstract tests from the as-
sembly controller

Using symbolic analysis for generating tests is not new
[4, 6, 10, 11, 13, 16]. However, using these approaches for
CBRTS will leads to a huge number of test cases, and the
non-observability of internal communications.

In our approach, we use an abstract model called the zone-
graph to select abstract tests. Compositional tests are gener-
ateddirectly from the abstract model of the assembly con-
troller or indirectly from the restricted behavior of each su-

pervised component. Steps for generating abstract tests in
the direct method can be summarized as follows:

1. Computation of assembly controller (according to sec-
tion 3).

2. Computation of the zone-graph associated to the as-
sembly controller. The zone-graph is constructed us-
ing bounded-time reachability analysis[18]. The com-
putation of temporal successors is bounded by a delay
∆ ∈ R

+. The resulting automaton is anuntimed graph
in which delay∆ is considered as an output action and
each node is a symbolic state of the systems. Note
that, extrapolation abstractions are used to ensure that
the constructed graph remains finite.

3. Selection of abstract tests from the zone-graph accord-
ing to a coverage criterion. For that, we adapt the un-
timed initial tour coverage tree of [8] for zone-graph.
A path is aninitial tour if it starts and ends in the ini-
tial location.AnInitial tour coverage treeis a tree con-
taining all minimal initial tours such that every edge is
covered at least once and no tour is contained as a pre-
fix or suffix of another tour. The initial tour coverage
tree is constructed in two steps:

• In step 1, from a given node, we compute all cy-
cle free paths that lead to the initial node. The
resulting tree is calledHoming Tree

• In step 2, we construct the initial tour coverage
tree.

Compositional test can be also generated indirectly by com-
bining test cases derived from therestricted behavior of
each individual component. Test cases are combined ac-
cording to the way the assembly controller arranges the
shared events. Steps for generating abstract tests in this case
can be summarized as follows:

1. Computation of the restricted behavior of each compo-
nent (i.e. the new temporal constraints of shared events
(see section 3))

2. Computation of the untimed graph for each (restricted)
component.

3. Computation of the initial tour graph for each untimed
graph.

4. Combining initial tours according to the following ar-
rangement policies :

• The order of events in each initial tour is pre-
served

• Initial tours are synchronized only in∆ and in
shared actions (This ensures that the time elapses
at the same rate in all initial tours).

Figure 4 illustrates an example of combination of two
initial toursT1 andT2 where(a) is a shared event.T3

can not be combined withT1 andT2. In fact, the be-
havior described byT3 is not allowed by the assembly
controller and thus, the restricted untimed graph do not
contain such behavior.

∆ ∆

∆ ∆

T1

T2

T3

!a

?b ?a

?a∆

∆ ∆ ?b !a ?a
combine(T1,T2)

Figure 4. combining initial tours

4.3 Test cases concretization

4.3.1 Earliest and latest runs.

Initial tour tree constructed above defines a finite number of
abstract tests. However, each abstract test contains a huge
number of runs and thus of test cases. To reduce the number
of test cases, while preserving a good coverage of symbolic
states, we consider, for each abstract test, test cases derived
from theearliest (fastest) and thelatest runs respectively.
The existence of the latest run assumes that time is bounded;
this hypothesis is realistic since that testing is a finite expe-
rience. The general algorithm for computing the earliest run
can be found in [14].

!i1

?i2

!i1

?e2

!e3

!e3

?i2

?i2

?e2

!i1
!i1

?i2

?e2

!e3

!e3

?e2

?∆

?∆

?∆

?∆

?∆

?∆

?∆

?∆

?∆

?∆

?∆

?∆

?3∆

!e5
?ν∆

?i3

?ν∆

?i3

Figure 5. Untimed graph of C2

PASS

?i2

?e2

?i2

?i2

?e2

FAIL

?i2

?e2

?e2

?i2

,?e2

?e2,?i2

!e3

?∆
?e2,?i2

?∆

?∆

?∆

?∆

?∆

?∆

?∆

?∆

?3∆

?e2

?∆

?e2

?∆

!i1
?e2,?i2

?e2,?i2

?2∆

Figure 6. Test case generated for the untimed
graph of C2

4.3.2 Generating test cases

In our approach, a test case is dynamically generated, from
an abstract test of the initial tour tree, to meet either the
earliest or the latest run. The principal of construction is
as follows: from a leave nodelf in the initial tour tree,
we compute a path that reaches the root node. Then we
extend this path into a tree such as for each nodel in the
path, and for each output actionα ∈ Σ! ∪∆, we add output
transitions. For example if there is an edgel

α
−→ l′, where

α ∈ Σ ∪∆, then outgoing transitionsl
β
−→ l′′, β ∈ Σ! ∪∆

must be added. The leaves of the tree are labeled PASS ex-
cept an empty leave which is labeled FAIL. Figure 5 shows
the untimed graph of componentC2, and Figure 6 shows an
example of test case generated from the untimed graph of
C2.

5 Conclusion

In this paper, we proposed an approach to model and test
component-based real-time systems. In order to avoid the
construction of the whole system, we clearly separate the
individual behavior of components from the way they inter-
act. Interaction between components areexplicitlymodeled
by the assembly controller.
In its first stage, our method check the composability
of components. This can be achieved by synthesizing
a non-blocking and optimal assembly controller. Then,
compositional test cases are derived from the initial tours
coverage tree of the assembly controller using a symbolic
approach.

We are currently implementing a prototype tool that gener-
ate compositional tests with respect to the initial tour cover-
age criterion discussed in section 4. The prototype is written
in C++ and contains two main modules : constraints solving
module and graphs analysis module. We are also working
on reducing the size of generated tests using partial order
reduction techniques.
In this work, we have presented an approach that take into
account the timing aspects while testing component-based
systems. Other works propose methods that deal with the
data aspects. A challenging problem is how to combine
these two approaches to test component-based system with
data and time.

References

[1] R. Alur and D. Dill,A Theory of Timed Automata.Theoretical
Computer Science 126:183-235, 1994.

[2] A. Basu, M. Bosga, J. Sifakis,Modeling Heterogeneous
Real-Time Components in BIP. In 4 th IEEE International
Conference on Software Engineering and Formal Methods
(SEFM06), September 2006, pp 3-12.

[3] B. Brandin, W. M. WonhamSupervisory Control of Timed
Discrete Event Systems. IEEE Trans. Automat. Control 39 (2),
1994, pp 329-341.

[4] R. Cardell-Oliver,Conformance Tests for Real Time Systems
with Timed Automata Specification. Formal Aspect of Com-
puting Journal, 350-371. 2000.

[5] David L. Dill. Timing assumptions and verification of finite-
state concurrent systems. In Proceedings, Automatic Verifica-
tion Methods for Finite State Systems, volume 407 of Lecture
Notes in Computer Science, pages 197Ű212. Springer-Verlag,
1989.

[6] A. En-Nouaary, G. Liu,Timed Test Cases Generation Based
on MSC-2000 Test Purposes, in Workshop on Integrated-
reliability with Telecommunications and UML Languages
(WITUL’04), France, November 2004.

[7] . H. Fauchal, A. Roullet, A. TarhiniRobustness of composed
timed systems.In 31 annual conference on concurrent trends
in theory and practice of informatics, LNCS, Springer 2005.

[8] R. Gotzhein, F. Khendek,Compositional Testing of Commu-
nication Systems.IFIP TestCom06, 227-244, 2006.

[9] R. D. Nicolas, M. Hennessy,Testing equivalences for pro-
cesses. Theoretical computer science , 34: pp 83 - 133. 1984.

[10] M. Krichen, and S. Tripakis,Black-Box Conformance Test-
ing for Real-Time Systems. In SPIN 2004. Spring-Verlag Hei-
delberg, 109-126.2004.

[11] K. Larsen, M. Mikucionis, and B. Nielsen,On line Testing of
Real-Time Systems. Formal Approaches To Testing of Soft-
ware, Link2, Austria. September 2004.

[12] O. Maler, A. Puneli, J. Sifakis,On the synthesis of discrete
controllers for timed systems. Proc. STACS’95. LNCS 900,
1995, pp 229-242.

[13] B. Nielsen and A. Skou,Automated Test Generation from
Timed Automata. In TACAS’01. LNCS 2031, Springer, 2001.

[14] P. Niebert, S. Tripakis and S. Yovine. Minimum-time reach-
ability for timed automata.In Mediterranean Conference on
Control and Automation, 2000.

[15] J. G. Ramadge, W. M. Wanham,The Control of discrete
event systems. Proc. IEEE 77 (1), 1999, pp 81-97.

[16] J. Springintveld, F. Vaandrager and P. D’Argenio.Testing
Timed Automata. Theorical Computer Science. 254, 2001.

[17] T. Higashino, A. Nakata, K. Taniguchi, and A. Cavalli,Gen-
erating Test Cases for a Timed I/O Automaton Model.IFIP
(IWTCS’99) Budapest, 1999.

[18] S. Tripakis, Fault diagnostic for timed automata. In
FTRTFT’02. volume 2469 of LNCS. Spring,2002.

