Rachid Bouaziz
email: bouaziz@irit.fr

Ismaïl Berrada
email: iberrada@univ-lr.fr

Optimal Tester Synthesis to Reduce Test Lengths for Real-Time Systems

Keywords: D.2.4 [Software Engineering]: Software/Program Verification-Formal methods, Validation; D.2.5 [Software Engineering]: Testing and Debugging-Error handling and recovery, Symbolic execution conformance testing, timed systems, optimization, symbolic analysis and control

This paper shows that an optimal selection of the initial state and the input valuation of clocks can significantly reduce test lengths. An efficient method to perform this optimization is presented. Two examples are presented to illustrate our method.

INTRODUCTION

L'évolution technologique a conduit au développement de systèmes informatiques complexes, dont l'impact socio-économique est devenu très fort, dans la mesure où ils occupent des places de plus en plus stratégiques au sein des organisations. De tels systèmes intègrent de nombreux composants logiciels et matériels et interagissent avec des environnements complexes. Ces systèmes sont devenus critiques tant par les conséquences de leur utilisation que par la complexité de leur développement et de leur évolution. Une classe importante des systèmes critiques est celle des systèmes réactifs, systèmes interagissant de façon continue avec un environnement.

Problématique.

Dans cet article, nous nous intéressons au test de conformité des systèmes temps réel. La particularité principale de ces systèmes vient du fait que la correction du système ne dépend pas exclusivement des occurrences des événements (actions) mais aussi des instants d'occurrences de ces derniers. La nature dense du temps physique implique que les systèmes temps réel soient souvent représentés par des modèles dont la sémantique est infinie. En conséquence, et en vue du test, des abstractions et des critères de sélection sont exigés afin de générer un nombre raisonnable et applicable de cas test.

Le contexte actuel du test de conformité des systèmes temps réel, offre une diversité tant au niveau du modèle de base pour la description des systèmes temps réel, qu'au niveau des techniques de dérivation. De notre point de vue, le test de conformité des systèmes temps réel a atteint une maturité au niveau des techniques de dérivation, et que l'effort aujourd'hui doit porter sur l'optimisation de la génération des cas de test couplée à la prise en compte des données dans le modèle du système (ce dernier point n'est pas abordé dans cet article).

Contributions.

Dans l'optique d'optimiser la génération de cas de test, nous proposons un cadre d'optimisation basé sur l'identification et la couverture des comportements identifiés comme critiques dans l'IUT. Notre cadre considère les éléments suivants :

• Identification des comportements critiques de l'IUT.

Cette identification est réalisée à travers des observateurs modélisant les informations quantitatives et qualitatives des comportements critiques.

• Guidage du système vers l'exécution des comportements critiques. Dans un premier temps, nous identifions les configurations qui peuvent amener le système à exécuter des comportements non critiques. Ensuite, par la modification des contraintes temporelles inspirée de la théorie de la commande par supervision des systèmes à événements discrets temporisés, nous forçons l'exécution du système vers les configurations critiques.

• Concrétisation de cas de test. Elle est réalisée en propageant les configurations temporelles suspectes le long d'une trajectoire dans l'automate d'accessibilité. Cette concrétisation peut être faite d'une façon dynamique lors de l'exécution du cas de test ou d'une façon statique dans le cas où les actions de sortie sont urgentes.

Travaux similaires.

Le principe de sélection de tests par des propriétés, exprimées sous forme d'observateurs permettant de filtrer les tests les plus pertinents, ou par la définition de critères de couverture a été appliqué avec succès aux systèmes non temporisés [START_REF] Fernandez | An experiment in automatic generation of test suites for protocols with verification technology[END_REF].

Ces techniques ont été appliquées aussi au test des systèmes temps réel. En-Nouaary et al [START_REF] En-Nouaary | A guided method for testing timed input output automata[END_REF] étendent la méthode WP pour le test des TIOA en utilisant l'automate de grilles construit à partir du graphe des régions [START_REF] Alur | A theory of timed automata[END_REF]. Cardell-Oliver [START_REF] Cardell-Oliver | Conformance testing of real-time systems with timed automata specifications[END_REF] utilise les automates temporisés d'Uppaall et la sélection par vue (observateur) pour réduire le nombre de tests générés. Khoumsi [START_REF] Khoumsi | Test cases generation for nondeterministic real-time systems[END_REF] transforme l'automate temporisé en un automate non temporisé avec deux événements sur les horloges : set et expire. La sélection des tests est basée sur l'utilisation d'un objectif de test qui modélise les comportements à tester. Springintveld et al [START_REF] Springintveld | Testing timed automata[END_REF] discrétise le graphe des régions pour obtenir un automate de grilles à partir duquel les tests sont générés. Dans leur article, les auteurs admettent que leur approche n'est pas utilisable pour des spécifications de taille importante. Dans Higashino et al [START_REF] Higashino | Generating test cases for a timed i/o automaton model[END_REF] transforme l'automate temporisé en un FSM et utilise la méthode UIOv pour dériver des tests. Krichen et al [START_REF] Krichen | Black-box conformance testing for real-time systems[END_REF] étendent la relation de conformité ioco [START_REF] Tretmans | Test generation with inputs, outputs and repetitive quiescence[END_REF] aux systèmes temporisés. Pour la génération des tests, les auteurs distinguent entre le test off-line et le test on-line. Ils proposent pour chaque cas une méthode pour les dériver. Larsen et al [START_REF] Larsen | Real-time system testing on-the-fly[END_REF] propose une approche de test on-line similaire à [START_REF] Krichen | Black-box conformance testing for real-time systems[END_REF]. Lors de la génération de tests, les hypothèses sur l'environnement sont modélisées d'une manière explicite afin d'améliorer la qualité des tests.

La sélection de cas de test temporisé par l'utilisation des observateurs n'est malheureusement pas suffisante pour générer un nombre raisonnable de cas de test pour les systèmes temps réel. En effet, à cause de la nature dense du temps physique, l'exécution de ces tests ne permet pas toujours de décider de la conformité de l'IUT par rapport à sa spécification (verdict inconclusif lors de l'exécution). Le choix naïf des instants d'émission des actions par le testeur risque de ne pas pouvoir couvrir l'objectif pour lequel le scénario de test est construit (problème d'accessibilité des états d'acceptation de l'observateur). Afin de remédier à ce problème, nous proposons dans ce papier une approche qui exploite les techniques de contrôle temporisé pour forçer l'exécution de l'IUT vers les comportements qui favorisent la couverture du critère de sélection.

Organisation de l'article.

Le reste de l'article est organisé comme suit. La section 2 est consacrée au modèle des automates temporisés. La section 3 traite des notions relatives à l'observateur temps réel. Dans la section 4, nous présentons des stratégies d'optimisation et de génération de cas de test. L'étude du protocole RTEP est présentée dans la section 5. La conclusion est présentée dans la section 6.

MOD ÉLISATION ET NOTATIONS

Par la suite, N (resp. R +) est l'ensemble des naturels (resp. des réels positifs). Une horloge est une variable dans R + qui mémorise le passage du temps. Soit un ensemble X d'horloges. G(X) est l'ensemble des contraintes d'horloges défini par la grammaire g := x ⊲⊳ n |xy ⊲⊳ m | g ∧ g, avec n, m ∈ N et ⊲⊳ ∈ {≤, <, >, ≥}. Par la suite, true est la conjonction des contraintes x ≥ 0 pour tout x ∈ X. Une valuation d'horloge est une fonction ν : X → R + associant une valeur positive à chaque horloge x de X. Pour d ∈ R + , r ⊆ X, et ν une valuation, ν + d et ν[r := 0] sont les valuations définies par :

• Pour tout x ∈ X, (ν + d)(x) = ν(x) + d. • Pour tout x ∈ X \ r, ν[r := 0](x) = ν(x), et pour tout x ∈ r, ν[r := 0](x) = 0. Pour g ∈ G(X) et ν ∈ R + , on note par ν |= g ssi ν satisfait g et g représente l'ensemble {ν ∈ R + | ν |= g}.
Une séquence temporisée w = (a1, d1)(a2, d2) . . . (an, dn)

est un élément de (Σ × R +) * avec d1 ≤ d2 ≤ • • • ≤ dn et Σ un alphabet d'actions.
Nous utilisons les automates temporisés à entrée/sortie inspiré de [START_REF] Alur | A theory of timed automata[END_REF] pour modéliser un système temps réel. Définition 1. Un automate temporisé à entrée/sortie (TIOA) est un 6-uplet A = (L, l0, Σ, X, Inv, →), avec :

• L un ensemble de localités,

• l0 la localité initiale,

• Σ = Σo ∪ Σi un alphabet fini d'actions d'entrée (ou de réception)et de sortie (ou d'émission),

• X un ensemble d'horlges,

• Inv : L → G une fonction qui associe un invariant à chaque localité

• →⊆ L × G(X) × Σ × 2 X × L un ensemble des transi-
tions. Une transition t est définie par un quintuplet de la forme (l, g, a, r, l ′) notée l g,a,r ---→ l ′ : les localités l et l ′ sont les localités source et destination respectivement de la transition, g est la garde que doivent satisfaire les valuations des horloges pour pouvoir franchir la transition, a ∈ Σo ∪ Σi est l'action qui peut être reçu ou généré lors du franchissement, r ∈ X est l'ensemble des horloges à réinitialiser lors du franchissement de la transition.

Soit A un TIOA. Un chemin de A est une séquence finie de transitions consécutives de l'état initial de A. La sémantique de A est définie par un système de transitions étiquetées S(A). Un état (ou encore une configuration) s ∈ S est un couple (l, ν), avec l une localité et ν une valuation. On distingue deux types de transitions :

• Transitions temporisées : Pour un état (l, ν) et d ∈ R + , (l, ν) d -→ (l, ν +d) si pour tout 0 ≤ d ′ ≤ d, ν +d ′ |= I(l).
• Transitions discrètes : Pour un état (l, ν) et une transition l g,a,r

---→ l ′ , (l, ν) a -→ (l ′ , ν[r := 0]) si ν |= g et ν[r := 0] |= I(l ′).
Soit A un TIOA et S(A) sa sémantique. A est dit :

• Déterministe si S(A) est déterministe.

• Complet en entrée, s'il accepte toute entrée à tout instant.

• Urgent s'il ne laisse pas le temps s'écouler dans un état lorsqu'une action est possible 1

Soit l f un état de A. Une exécution ρ de A de destination l f est une séquence de transitions de S(A) de la forme ρ = (l0, ν0)

a 0 -→ (l1, ν1) • • • an --→ (l f , νn) tel que ai ∈ Σ ∪ R + pour tout i ∈ [1, n]. On définit time(ρ) = P j∈J aj tel que J = {j | aj ∈ R + , j ∈ [1, n]}.
Une exécution ρ d'un chemin p = l0

g 1 ,a 1 ,r 1 -----→ l1 • • • gn,an,rn
------→ ln de A, est dite :

• au plus tôt si ρ est une exécution de Ap de destination ln tel que pour toute exécution ρ ′ de p :

time(ρ) ≤ time(ρ ′)
• au plus tard si ρ est une exécution de Ap de destination ln tel que pour toute exécution ρ ′ de p :

time(ρ) ≥ time(ρ ′)
Avec Ap, l'automate défini par le chemin ρ (le sous automate de A restreint aux transitions de p).

Exemple 1. La Figure 1 illustre un exemple d'un TIOA modélisant le comportement d'un processus de contrôle/commande de température d'un four. Le contrôleur reçoit la valeur de la température t au plus tard après 4 unités de temps (horloge x), suivie de la valeur de la pression p au plus tard 5 unités de temps après la réinitialisation. Il envoie le signal de commande dans les 5 premières unités de temps après la réinitialisation. Les politiques de sûreté de fonctionnement suivantes ont été définies : un signal d'avertissement e1 peut être envoyé à l'environnement si le contrôleur ne reçoit pas le signal de la pression après 3 unités de temps. Un deuxième signal d'avertissement e2 peut être envoyé si le calcul de la valeur de la commande est effectué dans un temps inférieur à 2 unités de temps après réinitialisation (comportement indéterministe).

OBSERVATEUR TEMPORIS É

Un observateur modélise les comportements critiques à tester de l'IUT. Il est exprimé sous forme d'un automate temporisé à entrée/sortie avec deux localités puits : Accept et Reject. Les chemins partant de l'état initial vers l'état Accept représentent des comportements à tester. Si cette localité est atteinte lors de l'exécution du test, nous concluons que la fonctionnalité modélisée par l'observateur est satisfaite. Reject est la localité finale des chemins que le testeur ne souhaite pas tester. Ces chemins devraient être évités lors de l'exécution de tests.

Dans notre exemple de système de contrôle/commande de température (Figure 1), une fonctionnalité que nous voulons vérifier sur l'IUT peut être la suivante : dans les conditions normales de fonctionnement, un cycle de calcul de la commande dure entre 2 et 5 unité de temps. En conséquence, seuls les instants d'émission et de réception des trois signaux t, p, et c sont mis en jeu et les signaux d'avertissement e1 et e2 doivent être écartés lors de la génération de tests.

Afin d'automatiser la construction de l'observateur, on peut l'exprimer par une formule MITL et puis la traduire en un automate temporisé [START_REF] Maler | From mitl to timed automata[END_REF]. Notre propriété peut être exprimée comme suit :

(3 1≤x≤5 ?c) ∧ 2¬(?e1∨?e2) Dans notre approche, nous supposons que l'observateur rend explicite tous les comportements possibles de l'IUT (complétude des comportements) lors de son test. A partir d'un simple automate modélisant un comportement partiel (appelé objectif de test) de l'IUT, la procédure suivante peut être appliquée pour obtenir l'observateur complet : Pour chaque localité l de l'automate et chaque action a ∈ Σ :

1. Les transitions Accept true,a,- -----→ Accept, Reject true,a,- -----→ Reject sont ajoutées.
2. Si a est spécifiée dans l'une des transitions sortantes de l, la transition l ¬g,a,-

----→ Reject est ajoutée, tel que g = W i gi, avec l
Afin de marquer les comportements (désirables et indésirables) de l'observateur dans la spécification, le produit synchrone entre les deux automates doit être effectué :

Définition 2. Soient AS(LS, l0S, XS, Σ, IS, →S) une spécification et AO(LO, l0O, XO, Σ, IO, →O) un observateur. Le produit synchrone entre AS et AO est l'automate temporisé ASP (LSP , l0SP , XSP , Σ, ISP , →SP) défini par:

• LSP = LS × LO est l'ensemble des localités. Les états Accept et Reject sont définis par :

-AcceptSP = LS × {Accept}, -RejectSP = LS × {Reject}.
• l0SP = l0S × l0O est la localité initiale

• XSP = XS ∪ XO est l'ensemble des horloges ;

• →SP est l'ensemble des transitions défini par : si lS ----→ F AIL} sont ajoutés , avec l, une localité de GT , a, une action de réception de GT , g = W i∈Ψ gi et {l

g S ,a,r S -----→ l ′ S et lO g O ,a,r O -----→ l ′ O alors (lS, lO) g S ∧g O ,a,r S ∪r O -----------→ (l ′ S , l ′ O) et I((lS, lO)) = I(lS) ∧ I(lO).

OPTIMISATION DE LA G ÉN ÉRATION DE CAS DE TEST

g i ,a,r i ----→ l ′ | i ∈ Ψ} représentant l'
ensemble des transitions sortantes de l par l'action a du produit synchrone SP . Si a n'est pas spcifiée dans les transitions sortantes de l, la transition l a,true,------→ F AIL est ajoutée au graphe de test. L'introduction des transitions qui amènent vers la localité F AIL rend le graphe de test complet en entrée.

Une transition est dite contrôlable ssi elle est étiquetée par une action d'émission dans le graphe de test. Les contraintes temporelles associées à ce type de transitions définissent l'intervalle de temps dans lequel cette transition doit être tirée . Une transition est dite incontrôlable si elle est étiquetée par une action de réception dans le graphe de test. Les contraintes temporelles associées à une transition incontrôlable modélisent l'incertitude sur l'instant d'arriver de son action.

Exemple 2. La Figure 2 illustre un testeur du comportement de notre système de contrôle/commande dans les conditions normales de fonctionnement3 . Dans ces conditions, il n'est pas nécessaire de tester les politiques de sûreté de fonctionnement et on doit alors éviter l'occurrence des signaux d'avertissements e1 et e2 lors de la génération et de l'exécution de cas de test.

Pour couvrir cet objectif de test, considérons les exécutions au plus tôt et au plus tard du chemin qui amènent vers P ASS. Due à la non contrôlabilité de la transition l1

T cmax = (l 0 , x = 0) 4 -→ (l 0 , x = 4) !t -→ (l 1 , x = 4) 0.9 --→ (l 1 , x = 4.9) ?e 1 --→
De la même façon, au lieu d'avoir l'exécution au plus tôt, on risque d'avoir l'exécution suivante :

T c min = (l 0 , x = 0) !t -→ (l 1 , x = 0) !p -→ (l 2 , x = 0) ?e 2 --→
On remarque qu'aucun des deux tests précédents ne peut couvrir le comportement de l'observateur. Ainsi, dans les localités l1 et l2, selon ce qu'on reçoit de l'IUT l'état peut être Inconclusif ou P ASS (problème de contrôlabilité des transitions).

L'exemple précédent montre que le problème d'identification des traces suspectes est un défi réel. Par la suite, nous proposons une approche d'identification de ces traces. Cette approche est basée principalement sur la théorie de la commande par supervision des systèmes à événements discrets temporisés [START_REF] Brandin | Supervisory control of timed discrete event systems[END_REF][START_REF] Sava | Sur la synthèse de la commande des systèmes á evenement discrets temporisés[END_REF] et qui permet de :

• Forcer l'IUT (lorsque c'est possible) vers les exécutions souhaitées.

• Ecarter la génération de cas de test non pertinents.

Le forçage temporel d'exécution

Le

(l, Z) = {(l, v) | v ∈ Z}.
Pour un état symbolique S = {(l, v) | v |= Inv(l)} nous dfinissons les oprateurs suivants : ----→ n une transition étiquetée par une action d'émission et t ′ = l G ′ ,?a,r ′ -----→ q une transition qui peut amener le système vers une localité indésirable (état Inconclusif du graphe de test). La nouvelle contrainte d'émission Gn qui garantit le franchissement de t avant que t ′ ne soit franchissable est donnée par l'expression suivante

• dsucc(S, a) = {(l ′ , v ′) | ∃(l, v) ∈ S • (l, v) a -→ (l ′ , v ′) ∧ v ′ ∈ Inv(l ′) }. • dpred(S, a) = {(l ′ , v ′) | ∃(l, v) ∈ S • (l ′ , v ′) a -→ (l, v)} • tsucc(S) = {(l, v ′) | ∃δ ∈ R + • v ′ = v + δ ∧ v ′ ∈ Inv(l) }. • tpred(S) = {(l, v ′) | ∃δ ∈ R + •v = v ′ +δ∧v ′ ∈ Inv(l) } où a ∈ Σ. dsucc(S,
Gn = G ∧ ¬G ′
Ce changement de contraintes ne peut être validé que si Gn est atteignable à partir de l : tpred(l, Gn) ∩ S l = ∅ L'espace d'état initial à l'entrée de l, qui garantit le franchissement de la transition t = l Gn,!b,r -----→ n avant que la transition t ′ = l G ′ ,?a ′ ,r ′ ------→ q ne soit franchissable est:

Int r l = dsucc(Sm, ?c) ∩ tpred(tpred(l, Gn) ∩ S l) où Sm est l'espace d'états atteignable dans la localité m et ?c, l'action de la transition qui mène vers l. On distingue trois cas :

• Int r l = ∅, dans ce cas les nouvelles contraintes pour franchir la transition t = l G,!b,r ----→ n ne sont pas atteignables et on ne peut donc pas forcer l'exécution du système sous test vers les états qui favorisent la détection des erreurs(les états qui couvrent l'objectif de test). La génération de test inconclusif est inévitable dans ce cas.

• Int r l = dpred(S l , c), dans ce cas les nouvelles contraintes calculées garantissent que les évolutions indésirables ne sont plus atteignable depuis l. Pour éviter les test inconclusifs, le testeur doit donc forcer l'envoie des actions d'émission dans ces nouvelles contraintes. l dans lequel, l'évolution vers q est impossible. Remarque. Dans le cas général (le cas où il existe plusieurs transitions de sortie à partir de l et qui mènent vers des états souhaitables) l'espace initial désiré de l est l'union de tout les espaces initiaux désirés pour les franchissements des transitions de sortie.

Opération 2. Cette opération est utilisée dans le cas où toutes les transitions sortantes de l sont incontrôlables (i.e. étiquetées par des actions de réceptions dans le graphe de test). Dans ce cas le testeur ne peut pas forçer l'exécution de ces actions. Une restriction de l'espace atteignable dans la localité doit être effectuée. L'objectif est d'éviter l'évolution du système vers la localité inconclusif pendant le passage par la localité l. La restriction de l'espace atteignable de l ne peut s'effectuer que par le changement de l'espace d'entrée dans cette localité.

Soit l ∈ M et S l = {(l, v) | v |= Inv(l)} l'ensemble des états concrets accessibles associé à l • t1 = m g 1 ,!a,r 1
-----→ l, une transition qui mène vers l.

• t2 = l g 2 ,?b,r 2 -----→ n une transition étiquetée par une action de réception (une action désirable mais pas contrôlable.).

• t2 = l g 3 ,?c,r 3 -----→ q une transition qui peut amener le système vers la localité inconclusif (action non désirable et non contrôlable). L'espace d'états de l qui favorise l'exécution de ?b sans que la transition l g 3 ,?c,r 3 -----→ q soit tirable est : L'espace d'états de l qui permet de franchir la transition étiquetée par ?b sans que la transition l g 3 ,?c,r 3 -----→ q soit tirable est4 : Exemple 3. Prenons le système de contrôle/commande de la Figure 2. Pour cet exemple, l'ensemble des états où le système peut diverger est M = {l1, l2}. Pour éviter l'occurrence de l'action e1, nous calculons les nouveaux intervalles d'émission de l'action t (première opération de la Figure 3): L'action !t doit être envoyée dans les 3 premières unités de temps après réinitialisation au lieu de 4 unités de temps.

S f l = (S l ∩ g2) ∩ ¬(tpred(S l ∩ g3) L'évitement
Pour éviter l'occurrence de l'action e2, nous changeons les conditions temporelles d'entrée dans la localité l2 (deuxième opération faite dans la Figure 4): Le testeur ne doit pas envoyer l'action !p dans les deux premières unités de temps après réinitialisation.

La Figure 5 montre le testeur optimal de notre système de contrôle/commande. Les cas de test concrets extraits à partir de ce testeur sont efficaces dans le sens où l'exécution de chacun d'eux ne peut mener le système à réaliser les actions e1 et e2. représentable comme une conjonction de contraintes simples. La représentation de ce type d'ensemble exige un ensemble de DBM, ce qui rend le calcul des zones forçables coûteux.

Nous avons effectué et implémenté le calcul des zones forçable

Génération de cas de test concrets

Pour générer des cas de test sous forme de séquences, le testeur doit connaître les instants précis des actions de sortie de l'IUT pour pouvoir calculer les instants des prochaines émissions. Ce calcul n'est possible que dans deux cas : Le cas où toutes les actions de sortie sont urgentes, et le cas ou le test est généré dynamiquement lors de l'exécution. Dans les autres cas, un cas de test concret peut être représenté par un arbre.

Cas de test sous forme de séquence. Les actions urgentes sont réalisées dès que les conditions temporelles sont satisfaites. La concrétisation de cas de test est effectuée en choisissant des points temporels suspects dans les nouveaux intervalles temporels d'émissions, et en calculant leurs propagations dans le graphe optimal de test (graphe d'accessibilité). Exemple 4. À partir du testeur de la figure 5, si on suppose que l'action ?c est urgente, les deux cas de test qui correspondent aux exécutions au plus tôt et au plus tard sont

• tcmin = l0 0 -→ l ′ 0 !t -→ l1 2 -→ l ′ 1 !p -→ l2 0 -→ l ′ 2 ?c
-→ P ASS.

• tcmax = l0 3 -→ l ′ 0 !t -→ l1 0 -→ l ′ 1 !p -→ l2 2 -→ l ′

ETUDE DE CAS DU PROTOCOLE ETH-ERNET TEMPS R ÉEL

RTEP (Real Time Ethernet Protocol) [START_REF] Martinez | Real-time ethernet for analyzable distributed application an a minimum real-time poxis-kernel[END_REF] est une méthode d'accès au média conçue pour éviter les collisions dans les réseaux Ethernet par l'utilisation des jetons (token). Pour gérer les collisions, chaque station du réseau possède une file d'attente d'émission, dans laquelle les paquets à transmettre sont stockés par ordre de priorité, et un ensemble de files d'attente de réception. Chaque application possède sa propre file d'attente de réception. L'application doit assigner un numéro et un canal ID à chaque tâche qui demande une communication par le protocole.

Le réseau est organisé en anneau logique. Il y a deux phases : La phase d'attribution des priorités et la phase de transmission du message d'une application. Pour la transmission d'un message, une station arbitraire est désignée comme le master token. Pendant la phase d'attribution de priorité, le jeton traverse tout l'anneau en visitant toutes les stations. Chaque station vérifie les informations contenues dans le jeton afin de déterminer si un de ses propres paquets a une priorité supérieure à celle portée par le jeton. Si c'est le cas, le jeton est changé avec l'adresse de la station la plus prioritaire et la valeur de sa priorité, sinon il continue à circuler de proche en proche.

Dans la phase de transmission de message, la station master token envoie un message à la station qui possède le message le plus prioritaire afin de lui donner la permission d'envoyer son message. La station réceptrice devient dans ce cas le master token.

Politiques de tolérance aux fautes

Trois types de fautes sont considérés :

• La défaillance d'une station : une reconfiguration de l'anneau est exigée.

• La perte d'un paquet : une retransmission est exigée.

• Station occupée (temps de réponse long) : les paquets dupliqués sont détruits.

Le comportement temps réel est assuré dans le cas de perte des paquets. Les autres fautes sont la conséquence d'une mauvaise configuration ou d'une erreur matérielle dans le système. La méthode de recouvrement d'erreurs est basée sur l'écoute simultanée du réseau par toutes les stations. Chaque station après la transmission d'un paquet, doit recevoir un acquittement (ack) qui est le prochain signal de sortie de la station réceptrice. Si aucun acquittement n'est reçu après un délai timeout, la station émettrice suppose que le message est perdu et le retransmet. La station répète cette procédure jusqu'à la réception d'un acquittement ou l'atteinte du nombre maximal de retransmission. Dans ce cas la station réceptrice est considérée comme défaillante et doit être exclue de l'anneau. La Figure 7 montre les différentes actions d'entrées et de sorties dans le réseau.

Modélisation formelle

Nous modélisons formellement les aspects temporels du protocole RTEP en utilisant les automates temporisés à entrées sorties. En se basant sur les résultats expérimentaux de [START_REF] Martinez | Real-time ethernet for analyzable distributed application an a minimum real-time poxis-kernel[END_REF], le temps minimal αmin et maximal αmax pour envoyer un jeton initial (modélisé par l'action !Initoken) est de 30.85 µs et 41.16 µs respectivement. Une station doit rester dans la localité de transmission au minimum βmin = 24.30 µs avant de transmettre le jeton régulier!RegToken. Ce temps d'attente ne doit pas dépasser les βmax = 41.39 µs. Le temps λ pour envoyer une permission de la station master token vers la station qui possède l'action la plus prioritaire (modélisé par l'action !transToken) est entre 24.

Test de comportements critiques

Dans le protocole RTEP, une station est considérée comme défaillante, si elle ne répond pas après 4 retransmissions d'un paquet. Si le paquet retransmis est une information, le temps nécessaire pour faire 4 retransmissions est t = 4•γmin. Ce temps correspond à l'occurrence de l'action !dk qui signifie que la station de destination est défaillante. On note que cette hypothèse n'est valable que si xmin ≤ (xmaxxmin) où x est le temps d'exécution d'une action.

Si on s'intéresse aux politiques de recouvrement d'erreurs, on peut considérer les exemples suivants :

• Une station ne doit être exclue du réseau que si elle ne répond pas après 4 retransmissions.

• Quand une station reçoit un paquet de type information, elle doit envoyer un acquittement dans les premiers 18.51 ms après la réception.

Les Figure 9 et Figure 10 montrent les comportements basinoindent ques de ces propriétés et leurs observateurs.

Si on suppose que toutes les actions de sortie du RTEP sont urgentes, nous pouvons générer à partir des modules de transmission et de réception du protocole et des deux observateurs, les séquences de test suivantes :

T c1 = (S1, L1) !Init ---→ y:=0 (S3, L1) y=18.51,!T r-T oken -------------→ y:=0 (S6, L1) y=37.44,?Inf os -----------→ x:=0,w:=0,m:=0 (S9, L2) • • • • • • (S9, L2) w:=11374,m:=11374,?dk ---------------→ P ASS. T c2 = (N 1, F 1) !Init ---→ m:=0 (N 2, F 1) y=21.19,!Inf os ----------→ m:=0 (N 2, F 2)
k<18.51,m<18.51,?ack ---------------→ Accept.

Le premier cas de test est généré pour tester les fonctionnalités de l'observateur de la Figure 9. Nous avons choisi les valuations maximales des horloges dans les zones atteignables des localités de transmission. Ce test signifie qu'après l'initialisation, le testeur envoie l'action tr-Token à l'IUT à l'instant 9.30 µs, et devrait observer le paquet d'information à exactement 37.44 µs après la transmission de l'action tr-token. Il attend 113.74µs et doit observer l'action dk. Pour recevoir cette dernière action, le testeur ne doit pas envoyer l'action ack. Le deuxième cas de test est généré à partir du module de réception du protocole (qui n'a pas été présenté dans cet article) et de l'observateur de la Figure 10.

DISCUSSION

Nous avons présenté une méthode de génération et d'optimisation de cas de test pour les protocoles temps réel. Les stratégies d'optimisation, en termes de temps et de nombre de tests générés, sont inspirées des techniques de contrôle des systèmes temps réel modélisés par les automates temporisés. Nous avons défini les cas où les tests peuvent tre représentés par des séquences ou par des arbres. Deux algorithmes de concrétisation de cas de test sont présentés. Le premier dans le cas où le système sous test est urgent et le deuxième, plus pratique, dans le cas général.

Les résultats présentés dans cet article n'ont pas la prétention d'être applicables à tous les systèmes temporisés. En effet, selon l'indéterminisme présent dans le système, il n'est pas toujours possible de construire un testeur qui forcera l'exécution du système vers les comportements critiques.

1Figure 1 :

 1 Figure 1: Exemple d'un TIOA.

e 1 ,

 1 x>3,-------→ Inconclusif , au lieu d'avoir l'exécution au plus tard, on risque d'avoir l'exécution suivante :

 a) contient tous les états accessibles par un ensemble d'états de S en exécutant l'action a. dpred(S, a) contient les états à partir desquelles on peut atteindre S on franchissant la transition étiqueté par l'action a. tsucc(S) contient tous les états accessibles par un ensemble d'états de S en laissant passer δ unités de temps. Et enfin, tpred(S) contient tous les états concrets à partir desquelles S peut être atteint après δ unités de temps. Soit l ∈ M et S l = {(l, v) | v |= Inv(l)} l'ensemble des états concrets accessibles associé à l. Soit t = l G,!b,r

•Figure 3 :

 3 Figure 3: Nouvelles contraintes de franchissement d'une action d'émission

Figure 4 :

 4 Figure 4: Nouvelles contraintes d'entrées dans une localité suspecte

Figure 5 :

 5 Figure 5: Le testeur optimal

Exemple 5 .Figure 6 :

 56 Figure 6: un exemple de cas de test sous forme d'arbre

 40 µs et 25.93 µs. Le temps d'exécution d'une action d'envoi d'un message complet noté par γ est 37.44 µs et 41.63 µs, et le temps d'exécution d'une action de recouvrement d'erreur δ est entre 10.8 ms et 11.16 µs. Enfin le temps de vérification d'un jeton ε est entre 9.32 et 18.51 µs. La Figure 8 montre le module de transmission du protocole RTEP.

Figure 7 :

 7 Figure 7: Fonctionnement de RTEP

Figure 8 :

 8 Figure 8: Le module de transmission du protocole RTEP

Figure 9 :

 9 Figure 9: La première propriété: (A) son comportement basique, (B) l'observateur avec la variable (v') qui correspond aux nombre de retransmission, et (C) l'interprétation temporelle du variable (v') par l'horloge (m)

Figure 10 :

 10 Figure 10: La deuxième propriété: (A) comportement basique, et (B) l'observateur correspondant à (A)

 La sélection de cas de test par l'utilisation des observateurs n'est malheureusement pas suffisante pour générer un nombre convenable de cas de test. Cette technique doit être complétée par le choix des instants d'occurrence des actions. Le testeur doit choisir, parmi les configurations atteignables, celles qui favorisent l'apparition d'erreurs (i.e. les configurations suspectes). Une possibilité (qui est raisonnable à notre avis) est de prendre toutes les traces d'exécution au plus tôt et au plus tard. Cependant, ces dernières peuvent amener l'IUT vers des situations non souhaitables (états Reject de l'observateur), ce qui conduit à la génération de tests qui n'ont aucune chance à révéler les erreurs. Dans cette section, nous montrons qu'une sélection optimal de l'état initial et des instants d'émission des actions d'entrée peut réduire considérablement le nombre de cas de test générées pour couvrir un objectif de test donnée. Définition 3. Soit SP le produit synchrone construit à partir de l'automate temporisé A et de l'observateur O. Un graphe de test complet GT est un automate temporisé construit á partir de SP en transformant toute localité Acceptsp dans SP en localité P ASS,et toute localité RejetSP en localité Inconclusif . Il est important de noter que, dans ce graphe, l'ensemble des actions sont inversés : les actions d'émission de l'IUT doivent être considérées comme des actions de réception du graphe de test, et les actions de réception de l'IUT doivent être interprétées comme des actions d'émission du graphe de test. Une localité F AIL et un ensemble de transitions {l

a,¬g,-

 forçage temporel consiste à calculer de nouveaux intervalles temporels dans lesquels le testeur doit envoyer les actions d'entrées de façon à ce que les exécutions non désirables soient écartées. Ces changements sont effectués sur le graphe de test. Pour effectuer ce calcul, nous identifions dans un premier temps l'ensemble M des localités du graphe de test qui amènent vers la localité Inconclusif : M = {l | l Inconlusif est une transition du graphe de test}. Nous effectuons ensuite, selon le type de transitions sortantes de chaque localité l ∈ M , l'une des deux opérations suivantes : Cette opération est utilisée ssi il existe au moins une transition contrôlable sortante de la localité l de M . Nous calculons dans une premier temps les nouvelles contraintes temporelles des transitions contrôlables, qui favorisent leur franchissement avant qu'une transition qui amène l'IUT vers la localité inconclusif soit franchissable. Nous vérifions ensuite l'accessibilité à ces nouvelles contraintes à partir de l.Nous utilisons les techniques symboliques de résolution de contraintes pour effectuer ces calculs. Les ensembles des valuations d'horloges sont représentés d'une manière compacte par ce qu'on appelle les zones.Une zone sur un ensemble d'horloge X est une conjonction de contraintes sur les horloges de la forme xixj ≺ xi,j, xi ≺ ciu, et c il ≺ xi, où ≺∈ {<, ≤}, xi, xj ∈ X, et ci,j, c li , cui des entiers. Un état symbolique est une paire (l, Z) avec l, une localité de l'automate temporisé et Z, une zone. Z représente un ensemble de valuation d'horloges, i.e., un état symbolique représente un ensemble d'états concrets :

	0<x<4	x<=4, !t	0<x<5
	l0		l1
			x>3, ?e1
			!p
		?c	x<2, ?e2
	PASS		l2	Inconclusif
			0<x<5
		Figure 2: Graphe de test
	Opération 1.		
				g,a,r ---→

g i ,a,r i ----→ l ′ est une transition de l'objectif de test 2 .3. Si a n'est pas spécifiée dans les transitions sortantes de l, la boucle l true,a,------→ l est ajoutée.2 ¬g est la négation de la contrainte g. Cette négation peut être une disjonction d'une conjonction de contraintes élémentaires et dans ce cas, un ensemble de transitions est ajouté, une transition par conjonction de contraintes élémentaires.

Pour ne pas surcharger la figure, les transitions qui amènent vers F AIL n'ont pas été représentées.

L'espace d'états de l qui favorise l'exécution de ?b et non ?c est : S ′ l = tpred(S l ∩ g2) ∩ ¬(tpred(S l ∩ g3)

les nouvelles contraintes temporelles dans lesquelles le testeur doit forcer l'exécution des actions contrôlables

REMERCIEMENT

Nous remercions Jean-Paul Bodeveix, Mamoun Filali et Pierre Michel pour leur aides et pour leurs commentaires constructifs.

* This research has been supported by the european Marie Curie RTN TAROT project (MCRTN 505121).