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Abstract. This article considers a mechanism based on rebates that aims at reducing congestion

in urban networks. The framework helps select rebate levels so that enough commuters switch to

modes that are under-utilized. Indeed, getting a relative small number of drivers to switch to public

transportation can significantly improve congestion. This mechanism is modeled by a Stackelberg

game in which the transportation authority offers rebates, and participants factor them into the

costs of each mode. A new Wardrop equilibrium arises when participants selfishly select one of

the modes of transportation with the lowest updated costs. Rebate levels are chosen taking into

account not only the potential reduction of the participants’ cost, but also the cost of providing

those rebates. Part of the budget for rebates may come from the savings that arise from the more

efficient utilization of capacity. We characterize the Stackelberg equilibria of the game, and describe

a polynomial-time algorithm to compute the optimal rebates for each mode. In addition, we provide

tight results on the worst-case inefficiency of the resulting Wardrop equilibrium, measured by the

so-called price of anarchy. Specifically, we describe the tradeoff between the sensitivity of the owner

towards rebate costs and the worst-case inefficiency of the system.

Keywords. Network Pricing, Subsidies as Incentives, Wardrop Equilibrium, Stackelberg Games,

Price of Anarchy.

1. Introduction

Congestion in most large cities in the world is prevalent. The Urban Mobility Study, a survey

conducted by the Texas Transportation Institute (Schrank and Lomax 2007), estimated that the

congestion bill related to automobile traffic, in the U.S. alone, amounts to $78.2 billion in 2005.

This cost estimate is based on the following two components: 4.2 billion hours of delay that people

lose to highway congestion plus 2.9 billion gallons worth of fuel. Given those figures, even a small

improvement in the efficiency of the road traffic system implies that a large sum of money and

time could be saved. Furthermore, a recent study by the Partnership for New York City (2006)

concluded that “traffic delays add to logistical, inventory and personnel costs that annually amount

Date: March 2007; revised March 2009.
This research was done while the first author was visiting Columbia Business School.

1



to an estimated $1.9 billion in additional costs of doing business and $4.6 billion in unrealized

business revenue.”

In most urban transportation networks, commuters do not have to pay the cost they impose to

others by a particular choice of mode and route. Because of these under-payments, decisions—

which are mostly influenced by a desire to get to the destination as fast as possible and as cheap

as possible—lead to choices that do not utilize the available capacity of the network well. Since

congestion increases sharply with road utilization, having relatively few drivers switch to other

modes significantly improves commute times. Starting with the seminal idea of Vickrey (1955,

1969), many transportation economists have advocated the use of congestion pricing to achieve

this goal. The scheme forces drivers to pay a toll when entering congested areas as an incentive

to switch to other modes of transportation (operational details differ according to the concrete

implementation). The underlying idea is to charge drivers the externality they impose to others

because when commuters internalize these externalities, the corresponding choices maximize the

system welfare.

Singapore introduced congestion pricing in 1975, London in 2003 (Santos 2005; Santos and

Fraser 2006), and Stockholm in 2007. Increasingly, many large cities have been debating whether a

congestion pricing scheme should be adopted, New York City being the most prominent example in

the United States. Nevertheless, it has been very hard to implement congestion pricing because of

technical, economical and political problems (e.g., the proposal in New York was not implemented

after the State Assembly blocked it in 2008). Even though proponents claim it will decrease the

delay costs generated by congestion, will curb harmful emissions and will reduce the dependence on

oil, the main concern that opponents raise comes from the perspective of social equity. Opponents

favor other alternatives such as restricting some cars from driving to congested areas on some days

of the week, increasing the taxes for parking, and offering incentives for tele-commuting, among

many others.

Introducing congestion pricing is not likely to have a large impact among the better-positioned

segment of society. They will continue to drive because they can afford to pay the corresponding

charge. In contrast, the not-as-well positioned segment will be relegated to the less-desirable

options because they cannot afford to pay the tolls. Some articles suggest different measures

to alleviate problems of inequity raised by this type of mechanisms (e.g., Starkie 1986, and Button

and Verhoef 1998).

The most important practical questions are which incentives to offer, at what level, how much

they will improve social welfare, and who will be affected. Most cities that do use congestion pricing,

use a second-best approach because charging tolls on each arc is not feasible or practical, even with

electronic toll collection systems.1 Besides the implementation cost, charging (potentially variable)

tolls everywhere makes it more complicated for the driver to select a route. In the future, this may

be less of a problem because the market penetration of route guidance devices is likely to be larger,

1Electronic toll collection systems—currently in use in cities that implement congestion pricing and in many tolled
highways—eliminate the need to stop at a toll plaza. In general, these systems have three components: a toll tag,
which is placed inside the vehicle; an overhead antenna, which reads the toll tag and collects the toll; and video
cameras to identify toll evaders.
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and it is technologically feasible that these devices receive broadcasts with the current values of

tolls. Most cities that have adopted congestion pricing decided to charge a flat daily fee that has

to be payed on each day a driver wants to access the central business district of the city. Although

a flat fee does not elicit the most efficient choices, it is conducive to increase the social welfare.

Indeed, the high cost of the charge is enough to provide a detriment to some drivers who will

switch to other modes of transportation. Unfortunately, an implementation of a congestion pricing

scheme is not likely to allow for much room for experimentation. If not done right initially, expected

benefits may not be realized, thereby invalidating the whole effort and potentially jeopardizing the

political viability of a second try. Quantitative models can be used upfront to help policymakers

make decisions and compare proposals.

This article initiates the study of an approach that complements congestion pricing. Although

congestion pricing considers only (positive) tolls, there is no reason not to use negative tolls, which

we refer to as rebates or subsidies. Often, the proceeds of congestion pricing are used to fund

improvements in public transportation, but very rarely are they used to reduce operating costs by

subsidizing fares. On the contrary, it has been documented that in some cases public transportation

fares increased after the introduction of congestion pricing (Wichiensin, Bell, and Yang 2007).

In the context of the debate around the introduction of congestion pricing in New York City,

Kheel (2008) recently proposed to completely eliminate the fare for public transportation by paying

operating costs with the congestion charges. His own words, “[t]his more balanced plan will result

in the equivalent of a $20 after-tax pay raise for every transit-using worker in the city. Automobile

drivers will benefit too, as traffic is vastly reduced” (p. 4), capture why rebates provide a more

equitable solution than congestion pricing alone. Because having no fare may or may not be

optimal from a system welfare perspective, we focus on finding the optimal level of subsidies. We

assume that if congestion pricing is used, toll charges are already fixed. Specifically, we concentrate

on mode decisions in the case of linear congestion costs and homogeneous demand. The main

assumption of this article is that a city can set apart some funds that it will use to subsidize

users of certain modes by offering a rebate on part of the fare. As Kheel said, rebates go to the

population segment that selects the least-desirable modes, thus compensating users that switched

out from their preferred choices. The fact that most public transportation systems in the world are

subsidized provides anecdotal evidence that a mechanism based on subsidies is easier to accept by

the constituents than congestion pricing. Well-chosen rebates lead to more efficient choices. Less

people will drive, congestion will be reduced, and the total commute time will decrease. Eventually,

some of the benefits will be transferred back to the provider of subsidies in the form of additional

taxes, reduced CO2 emissions, reduced health-care costs, etc. For example, operating expenses of

companies that do deliveries will be reduced, thereby improving their bottom line. The additional

taxes can be used to recover a fraction of the money that was set aside initially.

Cities do not have unlimited resources and, thus, will not be able to offer large rebates if they

do not also implement congestion pricing. For that reason, we look at the problem of finding

rebates that maximize user welfare, taking into account a limited budget. This budget relates to

the value placed on the reduction of commute times. In the extreme case when commute times
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are all that matters and the budget is large, rebates will be set to make experienced costs equal to

zero. (Compare this to the costs experienced by commuters under Kheel’s proposal, which are not

zero because commuters still face the disutility arising from the time invested to complete the trip.)

On the other extreme, when the reduction in commute time is not deemed important or when the

budget for rebates is small, rebates will not be offered and users will experience the full cost arising

from the time and the fare or toll.

Even with optimal rebates, the coordination generated by this approach may not be enough to

achieve a significant increase in welfare. Henceforth, we want to quantify the coordinating power

of rebates. Koutsoupias and Papadimitriou (1999) defined the price of anarchy as the worst-case

ratio of the social welfare under a user equilibrium attained without coordination to that with

socially-optimal choices. This indicator has been used to estimate the potential increase in welfare

provided by a given mechanism, and to gauge whether the opportunity cost is large enough to

outweight the implementation cost and justify its use. To answer this question, we compare the

total welfare generated by optimal rebates to that when rebates are set to zero. We show that

when the budget is large enough, one can have a transportation pattern that is significantly more

efficient than the status-quo.

Main Contributions and Structure of the Paper. Although others considered rebates im-

plicitly (as negative taxes), to our knowledge, this is the first article that formally studies the

computation of optimal rebates with the goal of coordinating a congestion game. Our main contri-

bution is a mechanism that provides incentives for coordination that does not penalize participants,

but instead rewards those that were worse-off without such a mechanism by offering them a rebate.

Our social cost function explicitly considers the transfer payments to capture the cost of providing

rebates, and the mechanism aims to minimize this more general expression of cost. Instead, most

of the earlier articles that studied the coordinating power of tolls and taxes consider a social cost

equal to the sum of costs for all participants, thus ignoring the costs and benefits of payments

because they are transfers that stay in the system (see Beckmann, McGuire, and Winsten (1956),

Bergendorff, Hearn, and Ramana (1997), and Labbé, Marcotte, and Savard (1998) for classical

references; Cole, Dodis, and Roughgarden (2006) is a notable exception that considers transfer

payments as part of the social cost).

We consider a Stackelberg game in which the system owner (e.g., the city or the transportation

authority) is the leader and the participants are followers (von Stackelberg 1934). In a first stage, the

leader offers rebates in each arc; in a second stage, participants selfishly select arcs that have minimal

cost, taking rebates into consideration. Focusing on the modal choice problem, we characterize the

optimal rebates in the case of affine cost functions and networks with multiple arcs that connect two

nodes (the alternative modes of transportation are substitutes). Many examples of recent work in

this area such as Engel, Fischer, and Galetovic (2004), Xiao, Yang, and Han (2007), Acemoglu and

Ozdaglar (2007), and Wichiensin, Bell, and Yang (2007), also consider this type of simple networks.

Although Labbé et al. (1998) present results for general networks, they do it for a simplified model

that ignores congestion effects, which is an important feature of our model.
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We first prove that if the system owner values the perceived cost more than rebates, then an

optimal strategy for the leader is to refund each participant the perceived cost at each arc under

a system optimal solution. When the system owner is more sensitive to the investment in rebates

than to the perceived cost, it will offer rebates in the modes that are under-utilized. We also

establish an upper bound on the proportion of participants that receive a positive rebate. Using

our characterization of Stackelberg equilibria, we provide a polynomial-time algorithm that selects

the arcs where rebates should be offered, and computes the optimal rebates for those arcs. This

enables us to derive an explicit formula for the resulting social cost, from where we compute the

price of anarchy, expressed as a function of the predisposition of the system owner to offer rebates.

The main conclusion is that when the system owner is willing to offer rebates, the resulting solution

has low social cost. Conversely, when the system owner cannot afford to provide significant rebates,

the resulting outcome is close to a Wardrop equilibrium.

This paper is organized as follows. First, we review the literature in Section 2. In Section 3, we

introduce the model and the performance measures of interest. Section 4 offers some results for

general network topologies, while Section 5 focuses on instances with parallel arcs (substitutes) and

characterizes the optimal rebates. In Section 6, we compute the price of anarchy for instances with

affine cost functions. Finally, we offer some concluding remarks and open questions in Section 7.

2. Connections to the Literature

We work under the setting first described by Wardrop (1952). The corresponding equilibrium

concept has been called a Wardrop equilibrium, which under mild conditions coincides with a

Nash equilibrium (Haurie and Marcotte 1985). Although in some cases a system may be better

off without a coordination mechanism because the overall implementation and operating costs

may outweigh the potential benefits, equilibria have been found to be too inefficient in many

applications of interest. This makes it necessary to coordinate participants to mitigate the adverse

effects of the misalignment of incentives. As imposing decisions to users is not an option in most

real-world situations, equilibria can be improved by system (re)design (Roughgarden 2006), by

considering routing part of the flow preemptively (Korilis, Lazar, and Orda 1995), or by using

pricing mechanisms to create incentives (Bergendorff et al. 1997; Labbé et al. 1998). This article

considers the third approach.

Even before the work of Vickrey (1955), economists such as Dupuit (1849), Pigou (1920) and

Knight (1924) proposed to use pricing so participants internalize the externalities, defined as the

additional cost they impose to others. If implemented properly, this results in equilibria that are

efficient from a social welfare perspective. For a complete treatment of network pricing and many

additional references, see, e.g., the book by Yang and Huang (2005).

We study a mechanism based on rebates. Rebates are used in logistics, supply chain management,

and marketing, with the objective of revenue maximization as well as to create incentives for

coordination (Gerstner and Hess 1991; Ali, Jolson, and Darmon 1994; Taylor 2002; Chen, Li, and

Simchi-Levi 2007). We find the optimal rebates by solving a Stackelberg equilibrium problem,

which structurally is a mathematical program with equilibrium constraints (MPEC). There are
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relatively standard optimization techniques to compute solutions to this type of problems. For

a background on MPECs and solution methods, we refer the interested reader to the book by

Luo, Pang, and Ralph (1996). One could get the optimal rebates and the corresponding modal

choices from a Stackelberg equilibrium computed numerically; actually, computational studies are

routinely used to analyze congestion-charging systems. In our case, though, finding the optimal

rebates numerically is not enough for our purposes because such an analysis does not provide the

structure needed to understand how much benefit the mechanism provides.

Recently, many authors have studied the maximum efficiency-loss under an equilibrium, using

social welfare to measure the quality of solutions. Koutsoupias and Papadimitriou (1999) defined

the price of anarchy as the largest possible ratio of the social cost at an equilibrium to the minimum

attainable social cost (the term itself was coined by Papadimitriou 2001). Starting from the work

of Roughgarden and Tardos (2002), the price of anarchy in transportation networks (the setting

suggested by Wardrop 1952) has been characterized by Roughgarden (2003), Correa, Schulz, and

Stier-Moses (2004), Chau and Sim (2003), and Perakis (2007), who successively considered more

general assumptions. It turns out that equilibria of these games are reasonably efficient; for ex-

ample, when congestion costs increase linearly with flow, the extra total cost of an equilibrium

does not exceed 33% more than that of a system optimum. For other typical classes of func-

tions, the inefficiency is somewhat larger but bounded. Nevertheless, for practical purposes these

inefficiencies are too high; even smaller improvements translate to big savings for societies and

governments (recall the figures provided by the Urban Mobility Study). Hence, some researchers

looked for improved measures of inefficiency (Friedman 2004; Qiu et al. 2006; Schulz and Stier-

Moses 2006; Correa et al. 2008), while others focused on mechanisms to improve the inefficiency

itself. Some references that look at pricing mechanisms from the perspective of the price of anarchy

are Koutsoupias (2004), Yang, Xu, and Heydecker (2005), Karakostas and Kolliopoulos (2005),

Cole et al. (2006), Wichiensin, Bell, and Yang (2007) and Xiao, Yang, and Han (2007).

The study of the inefficiency of equilibria has recently received increased attention from re-

searchers in various communities such as Transportation, Operations Research, Operations Man-

agement, Economics, and Computer Science. Consequently, there is a growing amount of inter-

disciplinary literature on the price of anarchy. For example, some additional references in the

application domains of telecommunication and distribution networks are the articles by Johari

and Tsitsiklis (2004), Golany and Rothblum (2006), Perakis and Roels (2007), Acemoglu and

Ozdaglar (2007), and Weintraub, Johari, and Van Roy (2008).

3. Description of the Model

In this section, we introduce the model and its necessary notation. We consider the framework of

network games, originally introduced by Wardrop (1952) and first analyzed formally by Beckmann

et al. (1956). An instance of our problem is given by a network, cost functions, a system owner and

participants. The network encodes the modal and route choices, and the cost functions associated

to each arc model congestion and charges. The system owner defines the level of rebates, and
6



participants—who are infinitesimally small—select a route from their origin to their destination

with minimum cost.

The network is represented by a directed graph (V,A), where V is a set of vertices and A is a

set of arcs. In general the graph may be arbitrary, but we will concentrate on the case where A

is a set of parallel links that represent each of the modes. When possible, we will present results

for general graphs to allow for route choice. For a total flow of xi in an arc i ∈ A, the cost of

traversing it is ci(xi). Functions ci, referred to as cost functions, are assumed to be affine on xi

for the main results of this study. When possible, we will also consider more general cost functions

that are nonnegative, nondecreasing, differentiable and convex. Furthermore, we assume that cost

functions are separable, meaning that the only argument of a cost function is the flow along that

arc.

As we described in the introduction, the most typical example of this model is given by a urban

network in which commuters have to decide between driving their cars, walking or taking one form

of public transportation. Cost functions encode commute time, delays and fares, all of which are

assumed to be expressed in monetary units, and indicate the overall equivalent cost perceived by

users for traversing a link. Although we do not explicitly model congestion pricing, it can be

partially incorporated in our model by adding the corresponding charges to the cost functions.

The system owner offers rebates to elicit coordination. We denote the rebate for arc i by si ≥ 0.

As participants will not be reimbursed more than their cost, we restrict the actual reimbursement

to not exceed ci(xi). Hence, as the rebates are announced before participants make their selections,

participants receive a rebate up to the cost of the arc. Indeed, the experienced cost is

cs
i (xi) := [ci(xi) − si]

+ ,

where [y]+ denotes the positive part of y. Equivalently, the actual rebate equals min(si, ci(xi)).

Collectively, we denote the vector of all rebates with s ∈ R
A
+.

Each participant selects the arc in A that corresponds to the mode of choice. For the results in

which we also consider route selection, participants are associated with a pair of nodes, called an

origin-destination pair (OD-pair), and have to select a path from their origins to their destinations.

Let us denote the set of OD-pairs by K, the demand corresponding to OD-pair k ∈ K by rk,

and the total demand
∑

k∈K rk by r. In addition, we refer to all the possible paths connecting an

OD-pair k ∈ K by Pk and we let P := ∪k∈K Pk. For the mode-choice model, there is a single OD

pair that consists of the only two nodes.

We use flows to encode all participants’ decisions, as specific identities are irrelevant. A flow

x is feasible if it is nonnegative and it satisfies all demand constraints. Mathematically, this is

represented by the set {x ∈ R
P
+ :
∑

P∈Pk
xP = rk for all k ∈ K}. The flow on an arc xi is given by

the sum over the paths
∑

P∈P:P∋i xP .

Competition leads participants from the same OD-pair to select paths of cheapest equal cost

because otherwise they would have an incentive to change their selection. This is the basis of the

traditional solution concept called Wardrop equilibrium (Wardrop 1952).
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Definition 3.1. A flow xWE is a Wardrop equilibrium of a network game (without rebates) if

it is feasible, and for all k and all P,Q ∈ Pk such that xWE
P > 0, cP (xWE) ≤ cQ(xWE), where

cP (x) :=
∑

i∈P ci(xi).

The previous definition provides us with a solution concept that models the behavior of the

second stage players:

Definition 3.2. If the system owner selects the rebate vector s, participants select a solution xs,

which is a Wardrop equilibrium with respect to cost functions [ci(·) − si]
+.

For a given rebate vector s, the corresponding Wardrop equilibrium xs always exists because

the modified cost functions [ci(·) − si]
+ are continuous (Beckmann et al. 1956). In general, the

equilibrium xs need not be unique but if there are more than one, the prevailing costs under different

equilibria are equal. Because any equilibrium can arise in practice, we consider an arbitrary one.

We now focus on the best strategy for the system owner. Since it is the leader of the Stackelberg

game and it fixes the rebates knowing that participants are going to select a Wardrop equilibrium,

its optimal strategy is to select the vector s that minimizes the social cost, defined as the sum

of the costs of all parties in the game (Mas-Colell, Whinston, and Green 1995). This objective

function includes the perceived cost experienced by each participant and the amount the system

owner invests in rebates. As the system owner may be more sensitive to one of the terms than to

the other, we consider a parameter ρ ≥ 0 that transforms the rebate investment into social cost

units. Section 6.1 provides further justification for this choice of social cost functions. (Note that

we can alternatively define the social cost as the sum of the real costs that participants face by

using a modified coefficient as shown in (1b).)

Definition 3.3. The strategy (s, xs) is a Stackelberg equilibrium if the vector of rebates s minimizes

the social cost, defined as

Cρ(s) :=
∑

i∈A

xs
i [ci(x

s
i ) − si]

+

︸ ︷︷ ︸

participants’ perceived cost

+ρ
∑

i∈A

xs
i min(ci(x

s
i ), si)

︸ ︷︷ ︸

cost of rebates

, (1a)

which can also be expressed as

∑

i∈A

xs
i ci(x

s
i )

︸ ︷︷ ︸

participants’ real cost

+(ρ − 1)
∑

i∈A

xs
i min(ci(x

s
i ), si)

︸ ︷︷ ︸

cost of rebates

. (1b)

In this case, we refer to s as an optimal rebate vector.

The parameter ρ allows the system owner to control the tradeoff between the social cost of the

solution and its investment. Alternatively, it can be viewed as the Lagrangian multiplier of the

system owner’s budget constraint. In fact, 1/ρ represents the investment the system owner is willing

to commit to make the participants’ perceived cost decrease by one unit:

• ρ = 1 corresponds to the situation in which the system owner is only interested in minimizing

the participants’ real cost
∑

i∈A xici(xi), regardless of the rebate cost (see (1b)).
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• ρ = +∞ corresponds to the situation in which the system owner does not want to spend any

money on rebates. Here, the outcome will be a Wardrop equilibrium, as without rebates.

• Values of ρ < 1 correspond to the case where the network planner values the participants’

perceived cost more than its own investments.

As we said in Section 2, the Stackelberg equilibrium can be found by solving an MPEC. If the

leader wants to compute optimal rebates for a particular instance, there are relatively standard

optimization techniques to solve this problem, even if more constraints are added to the problem

(e.g., restrict rebates to a subset of arcs, or impose that rebates may not exceed monetary charges

such as tolls or fares). Instead, we will work with the optimality conditions of this problem to

explicitly characterize the Stackelberg equilibrium. This will allow us to design an efficient algorithm

and to find the worst-case inefficiency of the corresponding equilibrium.

Not only do we want to compare the social cost of different solutions with rebates, but we also

want to compare using rebates to not using them. Therefore, another measure of interest is the

participants’ real cost, represented by the objective function C(x) :=
∑

i∈A xici(xi). The following

definition captures the situation when the system owner controls the whole system.

Definition 3.4. A flow xSO is a system optimum if it is feasible and minimizes C(·).

The following proposition draws on the first-order optimality conditions to the mathematical

program that defines a system optimum.

Proposition 3.5 (Beckmann et al. 1956). For instances with differentiable and convex cost func-

tions, a flow xSO is a system optimum if and only if it is a Wardrop equilibrium with respect to the

modified cost functions c∗i (xi) := ci(xi)+ xic
′
i(xi), where c′i(x) is the derivative of ci(x) with respect

to x.

Notice that if ρ ≥ 1, the social cost of a Stackelberg equilibrium (s, xs) satisfies

C(xSO) ≤ Cρ(s) ≤ C(xWE). (2)

The lower bound follows from (1b) because its second term is non-negative, and the upper bound

comes from the feasibility of s = 0 because C(xWE) = Cρ(0).

3.1. Examples. In this section we introduce two concrete instances that will be the running ex-

amples for the rest of the article. These instances will be used to illustrate the different concepts

and calculations along the way.

Instance 1 (Roughgarden and Tardos 2002). The first instance represents a competitive situation

first described by Pigou (1920). As illustrated in Figure 1, participants must select one of two

available modes: the first is expensive but its cost is not influenced by demand, while the second

one is cheap under low demand but becomes expensive if it attracts many participants. This

instance models a decision that commuters make daily in many cities. A person can use mass

transit and experience an almost constant but large commute time, or can drive to (hopefully)

experience a short commute while being exposed to the possibility of congestion.
9
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Figure 1. Pigou’s example. Arcs are labeled with their cost functions.

The total demand in this instance is equal to 1, composed of an infinite number of price-taking

users. The Wardrop equilibrium routes all flow in the lower arc because all participants take

lowest-cost routes. Under this solution, C(xWE) = 1. To exploit the effects of congestion, the

system optimum assigns half of the participants to each mode, implying that C(xSO) = 3/4.

If ρ ≤ 1, the system owner will propose rebates equal to (1, 1/2), which is the vector of prevailing

costs under the system optimum. This results in an equilibrium that matches the system optimum.

Actually, Section 4.1 shows that, for arbitrary instances, rebates lead to the system optimum when

ρ ≤ 1 because experienced costs are zero. Let us now consider the case ρ > 1. It does not make

sense to offer a rebate in both arcs because subtracting a constant everywhere will not change the

equilibrium. Therefore, the system owner should only consider giving a rebate in the upper arc

(the lower one is always cheaper so it should not be subsidized). Denoting this rebate by s ∈ [0, 1],

the perceived cost on this arc equals 1 − s. Therefore, the corresponding Wardrop equilibrium xs

is the flow that routes s units in the upper arc. After some algebra, Cρ(s) = 1 − s + ρs2. The

minimum, which provides the Stackelberg equilibrium, is s = 1/(2ρ) and achieves a social cost of

1 − 1/(4ρ).

Instance 2. The second network is similar to Pigou’s but contains an extra mode. As depicted

in Figure 2, the three modes, numbered from 1 to 3 for simplicity, have cost functions equal to

ci(xi) := (i − 1) + xi. At the Wardrop equilibrium, all participants select the first mode, and

therefore C(xWE) = 1. The system optimum is given by the flow (3/4, 1/4, 0), with total cost

C(xSO) = 7/8. Finally, an optimal rebate vector for ρ > 1 is s = (0, 1/(2ρ), y), with 0 ≤ y ≤

1+ 1/(4ρ). The corresponding Wardrop equilibrium xs is (1− 1/(4ρ), 1/(4ρ), 0), and its social cost

equals Cρ(s) = 1 − 1/(8ρ).

3.2. An Application to Logistics. The framework that we consider can readily be used to model

competition in other settings such as telecommunication and distribution networks. This section

briefly comments on an application in the area of logistics.

We consider a freight company that sends goods across a network. The system owner models

the corporate headquarters while participants model business units that manage different markets.

The system is not controlled centrally; units make their own decisions regarding how goods are

transshipped across the network, considering their individual costs. This network is composed of

resources, which may represent different carriers that transport freight or facilities that process it.
10
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Figure 2. Our running example. Arcs are labeled with their cost functions.

Resources include sorting facilities, warehouses, flight legs, airports, ship routes, ports, canals, etc.

Some of this resources belong to the unit, others belong to the company and are shared between

units, and some are controlled by third parties. Resources that are not controlled directly by the

unit will be priced according to the laws of offer and demand. Hence, competition for a resource will

drive its price up, which can be represented by cost functions (in this case cost-demand curves). We

assume that units are not big enough to influence prices independently (i.e., they are price-taking).

Units select a set of resources to transship their goods at minimum cost, and are rewarded by the

profits they generate.2 Cost-demand curves create externalities between units, which is what causes

competition among them. If nothing is done, the stable situation would be an equilibrium among

the business units that is generally inefficient in terms of the company’s total profit. Realizing the

problem, the company can compute the system optimum ignoring the goals of the individual busi-

ness units, and find the rebates that it should offer for each resource. In this way, the headquarters

will be offering incentives that help align business units into maximizing the company’s profits.

4. General Network Topologies

We start our study of the structural characteristics of Stackelberg equilibria. In this section,

we consider general network topologies, with possibly several OD-pairs. We start by considering

the case of the system owner assigning more value to the participants’ perceived cost than to its

own rebate investment, and characterize the optimal strategy when setting the rebates. Later, we

turn into the opposite case and provide some properties that will be used to characterize optimal

rebates.

4.1. Small ρ. This section focuses on achieving a fully efficient coordinated solution for the case

of ρ ≤ 1 and networks with arbitrary topology. As suggested in Section 3.1, let us consider the

rebate vector given by si = ci(x
SO
i ) for all i ∈ A. With those rebates, the system optimum xSO is

an equilibrium for the participants’ game since participants experience a cost equal to zero (which

is the absolute minimum because of the non-negativity of modified cost functions).

2All of the results valid for arbitrary networks are also valid in the more general setting of nonatomic congestion

games (Rosenthal 1973). In this case, business units will select one set of resources from a list of feasible sets, without
insisting that these sets have to be paths. This more general competitive situation is called nonatomic because
participants are price taking, and a congestion game because participants are anonymous and costs of resources
depend only on the number of participants selecting them.

11



Beckmann et al. (1956) proved that payments equal to marginal costs at the system optimum

also lead to a system optimum (see Proposition 3.5); recalling that c∗i (xi) = ci(xi) + xic
′
i(xi), this

corresponds to negative rebates si = −xSO
i c′i(x

SO
i ). Moreover, any convex combination of optimal

transfers payments (tolls or rebates) is also optimal (Bergendorff et al. 1997), which implies that

the set of transfers payments that lead to system optimality is a polyhedron. We summarize these

claims in the following remark.

Remark 4.1. When rebates equal s = [(1−κ)ci(x
SO)−κ(xSO

i c′i(x
SO
i ))]i∈A with 0 ≤ κ ≤ 1, a system

optimal solution xSO is at equilibrium. Here, positive values of si represent rebates and negative

values represent payments. Moreover, if cost functions are strictly increasing, the corresponding

equilibrium xs is unique.

The next proposition shows that the previously-mentioned rebates are optimal when cost func-

tions are strictly increasing. It turns out that this is the only optimal vector and leads to a unique

second-stage equilibrium, which matches the system optimum. If we only consider weakly increas-

ing functions, then a system optimum is always at equilibrium for that rebate vector but there may

be other equilibria. In that case, though, an optimal rebate vector may not exist.

Proposition 4.2. Assume that ρ ≤ 1 and that cost functions are strictly increasing. For arbitrary

networks, a Stackelberg equilibrium (s, xs) satisfies that s = (ci(x
SO
i ))i∈A and xs = xSO. This

equilibrium achieves a social cost of Cρ(s) = ρC(xSO).

Proof. Considering s as described in the proposition, let us prove that xs has to be equal to xSO.

The Stackelberg flow xs is a Wardrop equilibrium under the modified cost functions. The variational

inequality characterization of Wardrop equilibria (Smith 1979) and the choice of s implies that for

a feasible flow x,
∑

i∈A(xi − xs
i )
[
ci(x

s
i ) − ci(x

SO
i )
]+

≥ 0. Since the optimal flow xSO is feasible,

we have
∑

i∈A(xSO
i − xs

i )
[
ci(x

s
i ) − ci(x

SO
i )
]+

≥ 0. The summands vanish on arcs i such that

xs
i ≤ xSO

i , and are strictly negative on arcs i for which xs
i > xSO

i . Consequently, xs
i ≤ xSO

i for all

i ∈ A, resulting in xs = xSO because xSO is a feasible flow without cycles (since it minimizes the

participants’ real cost and link cost functions are strictly increasing). Evaluating the social cost,

we compute that Cρ(s) = ρC(xSO).

Let us now show that this choice of s provides the same social cost as an optimal rebate vec-

tor s∗. Using the nonnegativity of the first term of (1a) and the feasibility of s, respectively,

ρ
∑

i∈A xs∗
i min(ci(x

s∗
i ), s∗i ) ≤ Cρ(s

∗) ≤ Cρ(s), from where
∑

i∈A xs∗
i min(ci(x

s∗
i ), s∗i ) ≤ C(xSO).

Bounding each of the terms in (1b) separately, Cρ(s
∗) ≥ C(xSO)+(ρ−1)C(xSO) = ρC(xSO), where

we used that xSO minimizes C(·) and that ρ ≤ 1. Hence, ρC(xSO) is a lower bound for the optimal

social objective that is attained at s, which establishes the proposition. �

4.2. Large ρ. In this section we consider that ρ > 1. For constant cost functions, it is optimal

to offer no rebates. Indeed, when s = 0, the participants’ real cost under a Nash equilibrium

equals that of a system optimum and the cost of rebates is zero. Since both terms of (1b) equal

a lower bound, this choice of s is optimal for the leader. Rebates are useful only in the presence

of congestion. (Note that we get to a similar conclusion in the model of Labbé et al. (1998), who

assumed that there is no congestion and that the leader is a revenue-maximizer.)
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We will characterize the benefits of offering rebates by studying the structure of Stackelberg

equilibria. We start by proving that under an optimal rebate vector there is always at least one

used arc with positive experienced cost, and one used arc in which no rebate is offered. We let

I ⊆ A be the set of arcs with positive flow under the equilibrium, which we partition into sets Is,

containing arcs with positive rebates, and I0, containing arcs with no rebates.

Definition 4.3. For a given rebate vector s, define I := {i ∈ A | xs
i > 0} = Is ∪ I0, where

Is := {i ∈ I | si > 0} and I0 := {i ∈ I | si = 0}.

Without loss of generality, we will sometimes assume that rebates for arcs in A\I are zero. Indeed,

if an unused arc has a positive rebate, it will still be unused without the rebate. Consequently, the

corresponding Wardrop equilibrium and all the aggregate measures we considered do not change

when the rebate is removed. For example, for the Stackelberg equilibrium of Instance 2, we have

that I0 = {1} and Is = {2}. The third arc does not belong to I because its flow is zero.

Lemma 4.4. Assume that ρ > 1 and that all cost functions are strictly increasing. For an arbitrary

network, if (s, xs) is a Stackelberg equilibrium, then there exists an arc i ∈ I such that si < ci(x
s
i ).

Proof. Assume that all perceived costs are zero, i.e., si ≥ ci(x
s
i ) for all i ∈ I. Without loss of

generality, it is enough that si = ci(x
s
i ) for all those arcs. Then the social cost equals Cρ(s) =

ρC(xs) ≥ ρC(xSO). As stated in Section 4.1, the social cost ρC(xSO) can be attained with rebates

(ci(x
SO
i ))i∈A. Since s was assumed to be an optimal rebate vector, we must have that C(xs) =

C(xSO), from where we see that xs is a system optimum. Because of Proposition 3.5, xs is at

equilibrium with respect to modified costs ci(x
s
i ) + xs

i c
′
i(x

s
i ).

As perceived costs are zero and cost functions are strictly increasing, si > 0 for all i ∈ I, or

equivalently I0 = ∅. Hence, there exists a small enough ǫ > 0 such that s̃ ≥ 0, where

s̃i :=







si − ǫ (ci(x
s
i ) + xs

i c
′
i(x

s
i )) i ∈ I

0 i ∈ A \ I .

Under rebates s̃ and flow xs, the perceived cost on each arc is [ci(x
s
i )− s̃i]

+ = ǫ (ci(x
s
i ) + xs

i c
′
i(x

s
i ))

for i ∈ I. Similarly, [ci(x
s
i ) − s̃i]

+ = ci(x
s
i ) ≥ ǫci(x

s
i ) = ǫ (ci(x

s
i ) + xs

i c
′
i(x

s
i )) for i ∈ A \ I. The last

two equations imply that xs is at equilibrium under rebates s̃, and the perceived cost on each used

arc is strictly positive. Finally, xs is the unique equilibrium under s̃ since the potential function

F (x) :=
∑

i∈A

∫ xi

0 [ci(zi)− s̃i]
+dzi is convex in general, strictly convex in a vicinity of xs as the cost

functions are strictly increasing, and achieves a minimum at xs. (We refer the reader to Beckmann

et al. (1956) for details on the characterization of Wardrop equilibria with this type of potential

function.) Consequently,

Cρ(s̃) =
∑

i∈A

(
xs

i ci(x
s
i ) + (ρ − 1)xs

i s̃i

)
= Cρ(s) − ǫ(ρ − 1)

∑

i∈I

xs
i

(
ci(x

s
i ) + xs

i c
′
i(x

s
i )
)

︸ ︷︷ ︸

>0

< Cρ(s),

which is a contradiction to the optimality of s. �

When we presented the examples in Section 3.1, we mentioned that it cannot be optimal to offer

rebates in all arcs. The next lemma generalizes this observation to any network topology. It shows
13



that, if all arcs are used, then I0 is necessarily nonempty. In Section 5, we will further generalize

this lemma to instances in which not all arcs are used, but under the restriction that the network

has parallel links. Notice that in the case of a general network without the restriction that all

arcs are used, we do not know if I0 could be empty. If such generalization were valid, Lemma 4.4

would not be necessary because it would be implied by this result. Indeed, since cost functions are

non-negative and strictly increasing, any arc in I0 would experience a positive cost because it is

used and has no rebate.

Lemma 4.5. Assume that ρ > 1 and that all cost functions are strictly increasing. For an arbitrary

network, if (s, xs) is a Stackelberg equilibrium and all arcs are used, then there exists an arc i ∈ I

such that si = 0.

Proof. With the purpose of deriving a contradiction, let us assume that s is an optimal vector

of rebates such that si > 0 for all i ∈ I. We will show that we can decrease the rebates while

maintaining the same user equilibrium. Note that, unless the network only consists of parallel

links, subtracting a constant from all rebates may change the user equilibrium because it would

make longer paths more attractive to users. Instead, the proposed rebates are such that the resulting

perceived cost on all links is a multiple of the original perceived costs. Let us therefore consider

new rebates s̃ = [ci(x
s
i ) − η(ci(x

s
i ) − si)

+]i∈A, where

η := min
i∈I

ci(x
s
i )

(ci(xs
i ) − si)+

.

The definition implies that s̃ ≥ 0 and Lemma 4.4 implies that η < ∞, so the new rebates are well-

defined. The perceived cost for arc i under the new rebates equals (ci(x
s
i )− s̃i)

+ = η(ci(x
s
i )− si)

+,

meaning that xs is also at equilibrium under s̃. Furthermore, as s > 0, we have that η > 1 and

s̃ ≤ s. Hence, looking at (1b), the participants’ real cost is unchanged, whereas the cost of rebates

strictly decreases because s̃i = 0 for the argument i achieving the minimum. This contradicts the

optimality of s. �

5. Networks with Parallel Links

Equipped with the structural results of the previous section, we now embark in the design of an

efficient algorithm for computing Stackelberg equilibria. The outline of the procedure described in

this section is as follows. First, we will partition arcs into those in which rebates must be offered,

those in which no rebates must be offered and those that are not used in an equilibrium. With this

partition, we will be able to compute the actual rebates for the corresponding arcs.

We focus on networks in which participants have to select exactly one out of many possible

arcs. This primarily models the mode choice problem but one can also use it for other applications

in which users choose among substitutes. The network topology that corresponds to this situa-

tion comprises two nodes joined by several parallel arcs (see Figure 3). Networks with parallel

arcs extend the classic two-route network introduced by Pigou (1920). They have been widely

used because of its relevance in practical applications—such as transportation, telecommunica-

tion, scheduling and resource allocation problems—and because of its tractability (see, e.g., Korilis
14



et al. 1995; Koutsoupias and Papadimitriou 1999; Roughgarden 2004; Engel et al. 2004; de Palma

and Picard 2006; de Palma et al. 2007; Wichiensin et al. 2007; Xiao et al. 2007; Acemoglu and

Ozdaglar 2007; Weintraub et al. 2008). Note that the restriction to simple topologies seems nec-

essary if we hope to find the optimal rebates in polynomial time because Cole et al. (2006) proved

that finding optimal taxes in general networks with affine cost functions is hard.3 Finally, we only

consider the case of ρ > 1, since the optimal rebates for ρ ≤ 1 were already found in Section 4.1.

We can assume without loss of generality that si ≤ ci(x
s
i ), as it is never beneficial to offer more.

cn(x)

c1(x)

c2(x)

c3(x)

rr

Figure 3. A network with parallel arcs

Consider a Stackelberg equilibrium (s, xs) of an instance in which cost functions are strictly

increasing. The equilibrium conditions imply that there is a constant Lρ ≥ 0 such that

Lρ = ci(x
s
i ) − si ∀ i ∈ I (3a)

Lρ ≤ ci(0) − si ∀ i ∈ A \ I. (3b)

Moreover, Lemma 4.4 implies that Lρ has to be strictly positive. Hence, ci(x
s
i ) > si for all i ∈ A.

For networks with parallel arcs, then, we do not need to enforce the constraint that the system

owner cannot offer rebates that are larger than the cost of arcs. In this case (1) simplifies to

Cρ(s) =
∑

i∈A xs
i [ci(x

s
i ) + (ρ − 1)si].

Remark 5.1. The positivity of Lρ also implies that when cost functions are strictly increasing

there is a unique Wardrop equilibrium corresponding to the optimal s since the potential function

F (x) =
∑

i∈A

∫ xi

0 [ci(z) − si]
+dz is strictly convex in a vicinity of xs. Later, we shall prove that in

this case the optimal s is also unique.

Going back to the examples of Section 3.1, it is not hard to check that Lρ for Instances 1 and 2

equals 1 − 1/(2ρ) and 1 − 1/(4ρ), respectively.

3Cole et al. (2006, Theorem 6.2) prove that an approximation algorithm with guarantee better than 4/3 − ǫ cannot
exist unless P=NP. Although their reduction does not work for our problem, we conjecture that finding the optimal
rebates in a general network with affine cost functions is also NP-hard because of the similarity between their social
cost function and (1b) (see also Section 6.1). Another evidence in this direction is given by Labbé et al. (1998), who
prove that computing taxes and rebates that maximize the leader’s profit is an NP-hard problem, even when the
network is not subject to congestion effects.
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5.1. General Cost Functions. We start with general cost functions and then, in the next section,

switch to the particular case of affine cost functions. This section proves a result that will allow

us to decide for which arcs we must offer positive rebates. To get there, we first have to present a

series of lemmas. The first one establishes that a rebate vector that is optimal for a given network

is also optimal when some unused arcs are taken out. In other words, removing i ∈ A \ I does not

affect the optimality of s. Missing proofs are given in the appendix.

Lemma 5.2. Consider a network with parallel arcs and an optimal rebate vector s. If l is an arc in

A \ I, then the vector s with the entry corresponding to l removed is optimal for a similar instance

with arc l removed.

Notice that the previous lemma generalizes Lemma 4.5 to an arbitrary instance with parallel

arcs. Indeed, Lemma 5.2 implies that an optimal rebate vector s is still optimal for the network

consisting only of arcs in I. Because that instance makes use of all arcs, it must contain at least

one arc without rebate.

In the following propositions, we derive necessary conditions for a rebate vector s to be optimal.

The next proposition shows that the optimal rebates satisfy the following equilibrium conditions:

rebates are offered only in arcs for which the expression c∗i (·) is minimal. This is implied by the

first-order optimality conditions of the MPEC that characterizes the optimal rebates. Contrast this

to Proposition 3.5 that states that in a system optimum, participants are assigned only to arcs for

which the expression c∗i (·) is minimal.

Proposition 5.3. Consider a network with parallel arcs and strictly increasing and differentiable

cost functions, and let (s, xs) be the Stackelberg equilibrium. There exists Vρ > 0 such that

Vρ =ci(x
s
i ) + xs

i c
′
i(x

s
i ) ∀ i ∈ Is (4a)

Vρ ≤ci(x
s
i ) + xs

i c
′
i(x

s
i ) ∀ i ∈ A \ Is . (4b)

From (3a) and (4), we get that there exists a constant Dρ := 2Lρ − Vρ such that

Dρ =ci(x
s
i ) − xs

i c
′
i(x

s
i ) − 2si ∀ i ∈ Is (5a)

Dρ ≥ci(x
s
i ) − xs

i c
′
i(x

s
i ) − 2si ∀ i ∈ I0 . (5b)

The common perceived cost at equilibrium therefore equals Lρ = (Vρ + Dρ)/2. Comparing the

expressions, it is clear that Dρ < Lρ < Vρ. For example, looking at the Stackelberg equilibrium of

Instance 2, the constants are Vρ = 1 + 1/(2ρ) and Dρ = 1 − 1/ρ.

In the sequel, we will make extensive use of the following definition to characterize and to compute

optimal rebates:

Definition 5.4. For X ⊆ A, let K(X) :=
∑

i∈X c′i(x
s
i )

−1. For the special case of an empty set, it

is assumed that K(∅) := 0.

The following technical lemma provides a formula that will be useful later. Its proof considers

another feasible direction from the optimal rebate vector.
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Lemma 5.5. Consider a network with parallel arcs and strictly increasing and differentiable cost

functions. Letting (s, xs) be the Stackelberg equilibrium, then

∑

i∈Is

(

xs
iK(I) +

si

c′i(x
s
i )

K(I0)

)

=
r

ρ
K(Is). (6)

Using the previous results, we can characterize the sets I0 and Is, which will allow us to compute

the optimal rebates.

Proposition 5.6. Consider a network with parallel arcs and strictly increasing and differentiable

cost functions. Letting (s, xs) be the Stackelberg equilibrium, for all i ∈ A we have that

i ∈ I0 ⇔ Dρ ≥ ci(x
s
i ) − xs

i c
′
i(x

s
i ) (7a)

i ∈ A \ I ⇔ Vρ ≤ ci(0). (7b)

Proof. We start with (7a). The forward implication is (5b). Conversely, consider i ∈ A, and assume

that Dρ ≥ ci(x
s
i ) − xs

i c
′
i(x

s
i ). If i ∈ A \ I, then xs

i = 0 and ci(0) ≤ Dρ < Lρ , contradicting the

Wardrop equilibrium condition. If i ∈ Is, then (5a) implies that ci(x
s
i )−xs

i c
′
i(x

s
i ) = Dρ +2si > Dρ ,

yielding a contradiction again.

The forward implication of (7b) follows from (4b). Conversely, consider an i ∈ A, and assume

that Vρ ≤ ci(0). If i ∈ I0, then ci(0) < Lρ < Vρ , which yields a contradiction. If i ∈ Is then (4a)

implies that ci(0) < ci(x
s
i ) + xs

i c
′
i(x

s
i ) = Vρ , which is again a contradiction. �

In other words, we have the following partition of the arcs according to the expression ci(x
s
i ) −

xs
i c

′
i(x

s
i ): considering i0 ∈ I0, is ∈ Is, and j ∈ A \ I, we have

ci0(x
s
i0) − xs

i0c
′
i0(x

s
i0) ≤ Dρ < cis(x

s
is) − xs

isc
′
is(x

s
is) < Vρ ≤ cj(0). (8)

This characterizes which arcs are used naturally because they are cheap, which arcs are used because

of the rebates offered, and which arcs are not used, even having the possibility of offering rebates,

because they are too expensive. Of course, to use this result constructively one would first need

to know the Stackelberg equilibrium. In the next section, we will see how to work around that

problem for affine cost functions. Going back to Instance 2, one can see that c1(x
s
1) − xs

1c
′
1(x

s
1) =

0 ≤ Dρ = 1 − 1/ρ < c2(x
s
2) − xs

2c
′
2(x

s
2) = 1 < Vρ = 1 + 1/(2ρ) ≤ c3(0) = 2.

We can now use the, so far partial, characterization of Stackelberg equilibria to determine how

many participants extract a benefit from the availability of rebates in the network.

Proposition 5.7. Consider a network with parallel arcs and strictly increasing and differentiable

cost functions, and let (s, xs) be the Stackelberg equilibrium. The proportion of participants that

receive a rebate is strictly lower than 1/ρ.

Proof. Assume that Is 6= ∅ because otherwise the claim is obvious. Dividing (6) by K(Is),

r

ρ
=

K(I0)

K(Is)

∑

i∈Is

(

xs
i +

si

c′i(x
s
i )

)

+
∑

i∈Is

xs
i = K(I0)(Vρ − Lρ) +

∑

i∈Is

xs
i .

Therefore,
∑

i∈Is
xs

i/r = 1/ρ − K(I0)(Vρ − Lρ)/r < 1/ρ, as we wanted to show. �
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As expected, there is a strong correlation between how many participants respond to the incentive

and the gains in the social cost that arise from it. The previous bound turns out to be tight as

demonstrated by the following instance.

Instance 3. Consider a network similar to that depicted in Figure 1 but with cost functions

c1(x) = 1− (1− ǫ)/ρ+αx and c2(x) = x, where 0 < ǫ < 1 and α > 0. Using results we will develop

in Section 5.2, we must have that I0 = {2} and Is = {1} (because b2 < L∞(1 − 1/ρ) = 1 − 1/ρ <

b1 < L∞(1 + 1/ρ); see the next section for the notation). Hence, the rebate s = (ǫ/(2ρ), 0) is

optimal and the corresponding equilibrium is given by

xs =

(
2 − ǫ

2(1 + α)ρ
, 1 −

2 − ǫ

2(1 + α)ρ

)

.

The proportion of participants that receive positive rebates is xs
1, which tends to 1/ρ as ǫ and α

tend to 0.

5.2. Affine Cost Functions. Having derived properties for general cost functions, this section

considers instances with affine cost functions and explicitly provides expressions for the optimal

rebates. Instances with this type of cost functions are rich enough for many congestion phenomena

to appear. For example, the well-known Braess paradox was initially formulated with affine cost

functions (Braess 1968). Even for applications in which cost functions are more complex, an

affine approximation can already show evidence of first-order effects (Acemoglu and Ozdaglar 2007;

Weintraub et al. 2008). We denote the cost function on arc i ∈ A by ci(x) = aix + bi, with ai > 0

and bi ≥ 0. Without loss of generality, we consider that arcs are sorted according to bi, so we have

that b1 ≤ b2 ≤ . . . ≤ b|A|. For ease of notation, we let [i] := {1, . . . , i}, and b|A|+1 = +∞.

In the case of affine functions, we can simplify some of the formulas we provided in previous

sections. For example, Definition 5.4 becomes K(X) =
∑

i∈X 1/ai for X ⊂ A. Notice also that

a consequence of (5) is that Dρ ≥ 0 and si ≤ bi/2 for all i ∈ Is. Furthermore, (8) allows us to

partition the arcs into the sets I0, Is and A \ I as follows.

Proposition 5.8. Consider a network with parallel arcs and affine cost functions. If we consider

i0 ∈ I0, is ∈ Is,and j ∈ A \ I, then bi0 ≤ Dρ < bis < Vρ ≤ bj.

The following lemma and theorem show that if we know how the arcs are partitioned, we can

compute the optimal rebate values for all arcs.

Lemma 5.9. Consider a network with parallel arcs and affine cost functions, and let (s, xs) be a

Stackelberg equilibrium. If rebates are beneficial (i.e., if Is 6= ∅), then

Dρ =
1

K(I0)



r ρ−1
ρ +

∑

i∈I0

bi

ai





Vρ =
1

K(I)

(

r ρ+1
ρ +

∑

i∈I

bi

ai

)

.
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If I0 is known, making use of the previous lemma, we can compute the optimal rebates using

the relations that we developed in the previous section. This result implies that, essentially, there

is a unique optimal rebate vector.

Theorem 5.10. Consider a network with parallel arcs and affine cost functions. Then, the optimal

rebates must satisfy that

si =

[
bi − Dρ

2

]+

for all i ∈ I. Moreover, if this formula is used for all arcs, the corresponding solution (s, xs) is a

Stackelberg equilibrium.

Proof. Consider an arc i ∈ I. If i ∈ I0, then si = 0 by definition and this agrees with the proposed

formula because of Proposition 5.8. If i ∈ Is, then solving for si in (5a) also gives the proposed

formula.

Now consider using the proposed formula for all i ∈ A. We must prove that each arc j ∈ A \ I

is not used under the corresponding Wardrop equilibrium. Proposition 5.8 implies that bj > Vρ.

Therefore, the rebate computed by the theorem is positive and bj − sj = (bj + Dρ)/2. We conclude

that the experienced cost when the flow is zero equals bj − sj ≥ Lρ , which means that xs
i = 0. �

Evidently, plugging the values into the expression of the previous theorem for Examples 1 and 2

gives us the rebates that we indicated in Section 3.1. What remains to be done to finish the

characterization of optimal rebates is to find I0, which will allow us to determine the value of Dρ.

The following result provides a characterization of the common cost experienced by participants

under a Stackelberg equilibrium. We will use it to compute the values of Dρ and Vρ.

Proposition 5.11. Consider a network with parallel arcs, affine cost functions and total demand

r > 0. For j ∈ A, define γ(j, r) :=
(
r +

∑j
i=1(bi/ai)

)
/K([j]). There exist unique arcs i0, i1 ∈ A

such that

bi0 ≤ γ(i0, r) < bi0+1 (9a)

bi1 < γ(i1, r) ≤ bi1+1 . (9b)

Moreover, γ(i0, r) = γ(i1, r) = L∞, where L∞ is the common cost experienced by participants under

a Wardrop equilibrium (without rebates).

Proof. Let us define i0 := max{i ∈ A : bi ≤ L∞}, and let x be the Wardrop equilibrium. From

the definition, i0 satisfies that bi0 ≤ L∞ < bi0+1. The equilibrium condition implies that xi =

(L∞ − bi)/ai for all i ≤ i0. Summing over that range we get that L∞ = γ(i0, r). What is left to

prove is that there is no other i0 that satisfies (9a). Hence, assume that there is another index ĩ0,

and define x̃ equal to (γ(̃i0, r) − bi)/ai for i ≤ ĩ0 and 0 otherwise. This flow is feasible because it

is nonnegative and its total demand equals r. Furthermore, it satisfies the Wardrop equilibrium

conditions with cost equal to γ(̃i0, r) for all participants. Recall that since cost functions are strictly

increasing, there exists a unique Wardrop equilibrium. Since x and x̃ are both at equilibrium, they

must be equal. This implies that γ(i0, r) = γ(̃i0, r), from where ĩ0 = i0 because of (9a).
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A similar argument proves the existence of a unique index i1 := max{i ∈ A : bi < L∞} that

satisfies (9b). We highlight that i0 and i1 differ only when there is a link i with bi = L∞, in which

case i0 > i1. �

Computing γ(i, r) for the different arcs in Instance 2, we get that γ(1, r) = r, γ(2, r) = (r + 1)/2

and γ(3, r) = (r + 3)/3. Then i0 = 1 when 0 ≤ r < 1, i0 = 2 when 1 ≤ r < 3, and i0 = 3 when

r ≥ 3. Similarly, i1 = 1 when 0 ≤ r ≤ 1, i1 = 2 when 1 < r ≤ 3, and i1 = 3 when r > 3.

In the sequel, we consider the function L∞(z) which represents the perceived cost under a

Wardrop equilibrium (without rebates) when the total demand is z. When we do not denote a

demand explicitly, we assume that the regular demand of r is used. It is well known that the

function L∞(z) is non-decreasing and continuous (Hall 1978). In addition, Proposition 5.11 implies

that it is piecewise linear with slope 1/K([i]) when its value is between bi and bi+1. Therefore, it is a

concave function. For an illustration, see Figure 4 in the following section. Under our assumptions,

L∞(·) is easy to compute using an incremental loading algorithm.

Using the previous result, we can now express the perceived cost of participants at the Stackelberg

equilibrium. In addition, the next proposition will clearly identify the sets I0 and Is. First, I0 = [i0],

where i0 corresponds to the index introduced in Proposition 5.11 for a demand of r(1− 1/ρ). The

arcs without rebates that are used in a Stackelberg equilibrium coincide with those that are used

under a Wardrop equilibrium (without rebates) with a total demand of r(1 − 1/ρ) + ǫ, for a

sufficiently small ǫ > 0. Likewise, I = [i1], where i1 is the index introduced in Proposition 5.11 for

a demand of r(1 + 1/ρ). The arcs used under a Stackelberg equilibrium coincide with those that

are used under a Wardrop equilibrium with a total demand of r(1 + 1/ρ).

Proposition 5.12. Consider a network with parallel arcs and affine cost functions, and a Stack-

elberg equilibrium (s, xs). If rebates are beneficial (i.e., if Is 6= ∅), then

Dρ = L∞

(

r ρ−1
ρ

)

and Vρ = L∞

(

r ρ+1
ρ

)

,

and the perceived cost of each participant under xs is

Lρ = 1
2

(

L∞

(

r ρ−1
ρ

)

+ L∞

(

r ρ+1
ρ

))

.

Proof. From Proposition 5.8 and Lemma 5.9, we know that there exist i0, i1 ∈ A such that I0 = [i0],

I = [i1],

bi0 ≤ γ
(

i0, r
ρ−1

ρ

)

< bi0+1 , and bi1 < γ
(

i1, r
ρ+1

ρ

)

≤ bi1+1 .

Hence, Proposition 5.11 implies the first two claims. The third follows simply from the relation

displayed right after (5). �

Using the values of i0 that we previously computed for Instance 2, it is easy to see that L∞(r) = r

when 0 ≤ r < 1, L∞(r) = (r + 1)/2 when 1 ≤ r < 3, and L∞(r) = (r + 3)/3 when r ≥ 3. Using

this, Dρ = 1 − 1/ρ, Vρ = 1 + 1/(2ρ), and Lρ = 1 − 1/(4ρ) as expected.

Notice that Proposition 5.12 provides an explicit way to compute Dρ. Hence, this value is unique

and, relying on Proposition 5.11, the vector of optimal rebates is unique as well (disregarding that

a rebate for an arc l ∈ A \ I can take any value between 0 and cl(0) − Lρ, which does not count
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as multiple equilibria because l is unused). Since there is a unique Wardrop equilibrium for any

given rebate vector such that Lρ > 0, the Stackelberg game has an essentially unique solution. This

means that any two different Stackelberg equilibria will be undistinguishable from a practical point

of view because flows and costs under both solutions will be equal.

The following proposition provides an easily verifiable condition to check whether rebates can

help lower the social cost in a specific instance or not. Note that when the inequality does not hold,

the formula must hold with equality because of the concavity of L∞(r).

Proposition 5.13. Consider a network with parallel arcs and affine cost functions. Rebates are

beneficial (i.e., Is 6= ∅) if and only if

1
2

(

L∞

(

r ρ−1
ρ

)

+ L∞

(

r ρ+1
ρ

))

< L∞ .

5.3. A Polynomial-Time Algorithm for Computing Optimal Rebates. The results we have

presented in the previous section lead to a polynomial-time algorithm for finding the optimal

rebates. The following algorithm receives an instance described by a network with parallel arcs,

affine cost functions and a fixed demand as input, and computes a Stackelberg equilibrium.

(1) Sort the arcs with respect to bi to cast the instance into the form we considered.

(2) Compute the function L∞(z) for the instance.

(3) Use Proposition 5.13 to decide whether rebates need to be used or not.

(4) If rebates are not beneficial, we are done.

(5) Compute Dρ using Proposition 5.12.

(6) Finally, compute the rebate to offer in each arch using Theorem 5.10.

Each of these steps requires a computation that can be done in polynomial time. The bottleneck

is computing L∞(z), which requires solving at most |A| systems of linear equations to load the

network incrementally and compute the breakpoints of the piecewise linear function.

At this point, it is convenient to discuss how to estimate the information needed to create an

instance in practice. This estimation has been discussed at length in the literature of transportation

engineering (see, e.g., Sheffi 1985). We provide a short overview. First, one needs to list the modes

and their costs as a function on the flows. Cost functions are calibrated from historical information,

taking into account how different modes operate. Overall, one needs to sum the travel time and

the fare or toll for the mode, which can be converted to the same units by using the average value

of time for the population. The latter can usually be estimated from socio-economical information

coming from census data. The demand can be measured directly or may come from historical OD

matrices that can be calibrated using up-to-date traffic counts. The most difficult parameter to

estimate in our model is ρ because it is hard to attach a dollar figure to a reduction in the total

cost experienced by travelers. This estimation has been attempted by the Partnership for New

York City (2006), who measure the economic impact of reducing traffic congestion. Alternatively,

one can compute the optimal rebates, social costs, and total cost experienced by commuters, as

a function of ρ. This can be done easily because the algorithm above runs fast enough to solve

the problem for many different values of ρ. With this curve in hand, one can look at the tradeoff
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between the budget invested in rebates and the overall social benefit. This can guide policymakers

in selecting the optimal rebates to be used in a concrete situation.

6. The Benefits of Using Rebates

6.1. Coordination Mechanisms based on Transfer Payments. First, we introduce some

measures derived from the price of anarchy that will be useful to quantify the quality of equilibria

resulting from a coordination mechanism. As we said in Section 2, Roughgarden and Tardos (2002)

were the first to measure the price of anarchy in the network competition model introduced by

Wardrop (1952). They defined the coordination ratio of an instance as

C(xWE)

C(xSO)
(10)

and the price of anarchy as the supremum of (10) among all Wardrop equilibria and all possible

instances (meaning all possible networks, demands and allowed cost functions). Note that this value

is at least 1 and it can be interpreted as follows: if it is low, then there is not much improvement to

be expected from the introduction of a coordination mechanism in the game that was considered.

On the other hand, a large price of anarchy suggests that there is a potentially large benefit to be

made. For example, the coordination ratio of Pigou’s instance (Instance 1) is 4/3. The following

result establishes that this ratio is the largest possible.

Proposition 6.1 (Roughgarden and Tardos 2002). The price of anarchy for instances with affine

cost functions is 4/3.

For quadratic, cubic and quartic cost functions, the price of anarchy is 1.626, 1.896, and 2.151,

respectively (Roughgarden 2003; Correa et al. 2004). For a simple proof of these results we direct

the reader to Correa et al. (2008).

Traditionally, the efficiency of a solution involving congestion pricing has been defined in terms

of the total cost C(·) because charges are transfer payments that stay inside the system, or alter-

natively by assuming that these payments can be redistributed back to the users. For that social

cost function, as Proposition 3.5 shows, charging users the externalities they introduce produces

a socially efficient outcome. Some more recent articles look at social cost functions that include a

term corresponding to taxation, similar to what we do in (1a). Under these more general social

cost functions, a system owner may take a more holistic view, and not only care about outcomes,

but also about investments. Cole et al. (2006) considered the problem of finding the taxes τ that

minimize
∑

i∈A xi(ci(xi)+τi), where x is a Wardrop equilibrium with respect to modified cost func-

tions c(·)+ τ . Unfortunately, finding an optimal mechanism for this social cost function is NP-hard

for arbitrary instances. Although they did not explicitly specialize their results to networks with

parallel arcs, a generalization of the results of Section 5 can be used to compute optimal payments

in polynomial time (still considering a general conversion factor ρ like in (1a)). Karakostas and

Kolliopoulos (2005) extended the previous analysis and found bounds for the social cost achieved

by an extension of the marginal taxation mechanism to heterogeneous values-of-time. Under this

setting, the ratio of the social cost of an equilibrium to the solution of minimum social cost with
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respect to the optimal taxes is bounded with a smaller constant than that of Proposition 6.1 and

its generalizations. In addition, the social cost is not too large compared to the minimum possible

total cost (without taxes).

One can employ different variations of the concept of the price of anarchy to quantify the power

of a coordination mechanism. We consider the two definitions that are most interesting in our

opinion. Both consist of ratios of the same cost function under two different solutions, thereby

not falling into the situation of comparing apples and oranges. In addition, both compare the

outcome provided by the coordination mechanism to a an upper or lower bound, depending on the

circumstances.

The first measure we consider is a straightforward extension of (10). Indeed, to quantify the loss

of efficiency due to the limited coordinating power of the system owner, we consider the ratio

C(xs)

C(xSO)
. (11)

For example, looking at Instance 2, this ratio equals 1 for ρ ≤ 1 and (8 − 2/ρ + 1/ρ2)/7 for ρ > 1.

Note that although the previous ratio measures the quality of a given solution (s, xs) for a fixed

instance, our main interest is on the supremum of the coordination ratio of an arbitrary Stackelberg

equilibrium over all possible instances, as it is done for the price of anarchy. Another option would

have been to define the price of anarchy as in (11) but using perceived costs, as Cole et al. (2006)

proposed for their study of taxes in networks. Remark 6.5 shows that the bound that can be

obtained is the same as that for (11).

Previous research has determined that the price of anarchy is sometimes a pessimistic measure,

as can be expected from a general worst-case bound. For example, Correa et al. (2008) proposed

to restrict the analysis to instances with fixed congestion loads to get more realistic estimates.

Another aspect of the previous definitions is that they do not consider that in certain settings

a system optimum is unrealistic and cannot be implemented. For example, Schulz and Stier-

Moses (2006) proposed to quantify the performance of a route guidance system for vehicular traffic

by comparing the solutions with and without guidance instead of using a social optimum.

To get a measure that is both less pessimistic and more realistic, we consider that the best

possible outcome is what the system owner can enforce by setting rebates correctly. Hence, we

consider the ratio of the social cost of a Wardrop equilibrium to that of a Stackelberg equilibrium.

Letting s be the optimal rebate vector, this ratio is expressed as

Cρ(0)

Cρ(s)
=

C(xWE)

Cρ(s)
. (12)

When ρ < 1, this quantity may be large because the denominator of (12) can be arbitrary small.

Instead, when ρ ≥ 1, the lower bound in (2) implies that this ratio is less pessimistic (smaller)

than (10). For the examples provided before, we get that this ratio equals 4ρ/(4ρ−1) for Instance 1,

while the coordination ratio displayed in (10) equals 4/3. The corresponding values for Instance 2

are 8ρ/(8ρ − 1) and 8/7, respectively.
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Figure 4. Illustration of the decomposition of 2r(Vρ − Dρ)/ρ.

6.2. Computing the Price of Anarchy. Now that we have already characterized the optimal

rebates for a particular instance of the problem, we are ready to analyze the performance of this

coordination mechanism. We continue to work with networks consisting of parallel arcs and affine

cost functions.

We start by providing a bound between the uncoordinated solution (no rebates) and the Stack-

elberg equilibrium. The case of ρ ≤ 1 follows from Proposition 4.2. Indeed, using Proposition 6.1,

we have that Cρ(0)/Cρ(s) = C(xWE)/(ρC(xSO)) ≤ 4/(3ρ). This means that the price of anarchy

arising from (12) is 4/(3ρ) for an arbitrary network with affine cost functions. The case of ρ > 1

is more involved. We start by computing the social cost of the Stackelberg equilibrium making use

of the relations developed in the previous section.

Lemma 6.2. Consider a network with parallel arcs and affine cost functions. For ρ > 1, the

optimal social cost equals (ρ/2)
∫ r(1+1/ρ)

r(1−1/ρ) L∞(z)dz .

Proof. We rewrite the expression 2r(Vρ − Dρ)/ρ using the graphical decomposition shown in Fig-

ure 4. Indeed, the area of the rectangle equals
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K(I0)
(Vρ − Dρ)

2

2
+
∑

i∈Is

(Vρ − bi)
2

2ai
+

∫ r(1+1/ρ)

r(1−1/ρ)
(L∞(z) − Dρ)dz =

Vρ − Dρ

2

(

(Vρ − Dρ)K(I0) +
∑

i∈Is

Vρ − bi

ai

)

︸ ︷︷ ︸

=2r/ρ

−2
∑

i∈Is

xs
i si +

∫ r(1+1/ρ)

r(1−1/ρ)
(L∞(z) − Dρ)dz ,

where we used the expression for xs
i in the proof of Lemma 5.9, the expression for si in Theorem 5.10,

and that (Vρ − bi)
2 = (Vρ − bi)(Vρ − Dρ + Dρ − bi). The term with the brace equals 2r/ρ because

of (17). After some algebra,

∑

i∈Is

xs
i si =

1

2

∫ r(1+1/ρ)

r(1−1/ρ)
(L∞(z) − Dρ)dz −

r

2ρ
(Vρ − Dρ) =

1

2

∫ r(1+1/ρ)

r(1−1/ρ)
L∞(z)dz −

r

ρ
Lρ . (13)

Consequently, the optimal social cost is

Cρ(s) = rLρ + ρ
∑

i∈Is

xs
isi = (ρ/2)

∫ r(1+1/ρ)

r(1−1/ρ)
L∞(z)dz . (14)

�

Theorem 6.3. Consider a network with parallel arcs and affine cost functions. For ρ > 1, the

unique Stackelberg equilibrium (s, xs) satisfies that

Cρ(0)

Cρ(s)
≤

4ρ

4ρ − 1
.

Proof. Let us assume that Is 6= ∅ because otherwise the result is trivial. We need to compare the

cost Cρ(s) computed in the previous lemma to rL∞(r). Since L∞(z) is a positive and concave

function, L∞(z)/z is a non-increasing function. Bounding the integral from below as Figure 5

illustrates, we get that

Cρ(s) ≥
ρrL∞(r)

2ρ

(

2 −
1

2ρ

)

= Cρ(0)

(

1 −
1

4ρ

)

as claimed. �

The previous result characterizes the tradeoff between willingness to offer rebates and coordi-

nation power of the mechanism. The corresponding bound is tight, as Instance 1 demonstrates.

(Note that the top-most arc has a constant cost, but one can take that cost equal to ax + 1 for an

arbitrarily small a and nothing changes.) When the system owner’s willingness to offer rebates is

high (ρ is not much larger than 1), the optimal social cost is approximately equal to the total cost

under a system optimum; hence, the previous theorem provides a bound that is close to 4/3. Here,

recall that 4/3 is the price of anarchy when the coordination mechanism can achieve a socially

optimal solution (Proposition 6.1). Not surprisingly, when the willingness to offer rebates decreases

(big ρ), the previous theorem gives a bound that is close to 1 because the system owner cannot do

much better than in a Wardrop equilibrium.

Finally, we compute the worst-case ratio between the participants’ real cost under a Stackelberg

equilibrium and under a system optimum, as we proposed in (11). In the case of ρ ≤ 1, the flow
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Figure 5. Illustration of the bound for
∫ r(1+1/ρ)
r(1−1/ρ) L∞(z)dz.

xSO is at equilibrium (and it is the unique one for strictly increasing cost functions, see Section 4.1),

which implies that for an arbitrary network with affine cost functions the mechanism coordinates

the network. The following results provide the bound corresponding to the case of ρ > 1.

Theorem 6.4. Consider a network with parallel arcs and affine cost functions. The Stackelberg

equilibrium (s, xs) described in the previous section satisfies that

C(xs)

C(xSO)
≤

4ρ

3ρ + 1
. (15)

This bound is close to 1 for ρ ≈ 1 because in that case a Stackelberg equilibrium is similar to a

system optimum, and close to 4/3 when ρ is large because in that case it is similar to a Wardrop

equilibrium. As for the previous bound, Theorem 6.4 provides the curve that characterizes the

tradeoff between willingness to offer rebates and coordinating power. We highlight that this bound

is tight, which can be observed by taking ǫ = 0 and letting α tend to 0 in Instance 3.

Remark 6.5. The bound provided by Theorem 6.4 is also valid if one takes the ratio of the par-

ticipants’ perceived cost in the Stackelberg equilibrium to that in the system optimum. This holds

because
∑

i xs
i [ci(x

s
i ) − si]

+ ≤ C(xs). Moreover, the same instance as before shows that this bound

is tight.

7. Conclusions

We have studied the possible improvement that can stem from the use of rebates to coordinate

an urban transportation network. If a system owner can afford to offer rebates and the system is

highly congestible, rebates can significantly lower the social cost, which includes commute times

and costs, as well as the cost of providing the rebates themselves. The algorithm we have presented

can be used to determine optimal subsidies for each mode of transportation. Subsidies only affect a
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limited proportion of the demand, implying that the cost of providing them will not be exceedingly

large. We have also estimated how much improvement this coordination mechanism brings to the

system, as a function of the city’s sensitivity to the cost of offering rebates. The coordinating power

of a rebate scheme increases as the owner’s sensitivity to the rebate cost decreases.

Several questions related to this study remain open. First and foremost, we have worked under

the assumption that an instance has parallel arcs and affine cost functions. It would be interesting

to generalize our results to more general instances. Another interesting problem is to determine the

computational complexity of finding optimal rebates. Proving its hardness would shed light into

this problem and would motivate the need to look for good heuristics. For quadratic cost functions

for example, optimal rebates can be irrational numbers.4 Hence, an optimal rebate vector cannot

be computed exactly in polynomial time. Nevertheless, it would be interesting to find a way to

approximate it. Finally, another interesting open question is whether optimal rebates are unique

or not in general. We have shown that the this is true for networks with parallel arcs and affine

cost functions.

Our model has some limitations that we would like to address in future research. On the one

hand, we plan to incorporate the possibility that the system owner considers congestion pricing and

rebates at the same time. Such extension will be useful to model systems in which both incentive

mechanisms co-exist to create a bigger differential between the total cost of driving and that of

public transportation. On the other hand, we also want to look at an heterogeneous population

because the valuation of time is user-dependant. This extension would allow a modeler to look

at more precise measures of equity among commuters. Furthermore, it is important to consider

elastic demands because in practice some trips are optional and will not happen if the price of

transportation is too high. The last element that would be interesting to consider is a situation

in which multiple agencies in the government have to coordinate their efforts and budgets to offer

incentives to the population. Because each agency has its own goal and agenda, they may not agree

in the policy that should be chosen.
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Appendix A. Proofs

A.1. Proof of Lemma 5.2.

4For example, considering the instance shown in Figure 1 with costs functions 1 and x2, and ρ = 2, it is optimal to
offer a rebate of (11 −

√

13)/18 for the arc with constant cost.
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Proof. Let Ã := A \ {l} and s̃ be the restriction of s to Ã. Assume that s̃ is not optimal for Ã,

and let s̃∗ be an optimal rebate vector for that network. Then, CÃ
ρ (s̃∗) < CÃ

ρ (s̃) = CA
ρ (s), where

the superscript represents the instance and the equality holds because if no participant selects the

arc, it makes no difference whether the arc exists or not. Now, we take the optimal rebate vector

s̃∗ and extend it to the original network by setting s∗l := 0 and s∗i := s̃∗i for i ∈ Ã. Since a situation

like Braess’ paradox (1968) cannot occur in networks with parallel arcs, the participants’ real cost

at a Wardrop equilibrium decreases when link l is (re)introduced. Together with the fact that arc

l is not subsidized, we have that CA
ρ (s∗) ≤ CÃ

ρ (s̃∗), which contradicts the optimality of s in the

original instance. �

A.2. Proof of Proposition 5.3.

Proof. Without loss of generality assume that si = ci(0) − Lρ for all i ∈ A \ I . Consider two

fixed arcs i ∈ Is and j ∈ A. Since si is strictly positive, it is possible to simultaneously reduce

si by a positive infinitesimal dsi and increase sj so that the only effect is that some participants

switch from arc i to j. In other words, we have that dxj = −dxi, where we denote an infinitesimal

variation of a quantity w by dw. By design, the perceived cost Lρ at equilibrium remains the same.

The local effect at the arcs in question is d(ci(x
s
i ) − si) = 0 and d(cj(x

s
j) − sj) = 0. Because s was

optimal, this modification cannot decrease the total rebate cost
∑

i∈A xs
i si, as it does not modify

the total participants’ perceived cost. This implies that d(xs
i si + xs

jsj) ≥ 0. Putting all together,

dxs
i

(
xs

i c
′
i(x

s
i ) + si − xs

jc
′
j(x

s
j) − sj

)
≥ 0.

As dxs
i < 0, we must have xs

i c
′
i(x

s
i ) + si ≤ xs

jc
′
j(x

s
j) + sj, and adding ci(x

s
i ) − si = cj(x

s
j) − sj,

we finally obtain that ci(x
s
i ) + xs

i c
′
i(x

s
i ) ≤ cj(x

s
j) + xs

jc
′
j(x

s
j). We get the claim by letting i and j

vary. �

A.3. Proof of Lemma 5.5.

Proof. To ensure that the modification to the rebates we are going to make does not change the sets

Is and I0, we first remove all unused arcs. Indeed, Lemma 5.2 proves that if s is optimal for the

original network, it is also optimal for the instance containing the arcs in I only. The proposition

is obvious for Is = ∅, so let us assume the opposite. We consider adding or subtracting a common

infinitesimal ds to all rebates that are strictly positive. After modifying s the outcome is still at

equilibrium and all arcs are still used; hence, differentials of perceived costs are equal for all arcs

in I. For a fixed is ∈ Is and a fixed i0 ∈ I0 6= ∅, we have that c′is(x
s
is

)dxis − ds = c′i0(x
s
i0

)dxs
i0

and

dxs
i =







c′is(x
s
is

)dxs
is

/c′i(x
s
i ) i ∈ Is

c′i0(x
s
i0

)dxs
i0

/c′i(x
s
i ) i ∈ I0

As the total demand does not change, we must have that 0 =
∑

i∈I dxs
i = K(Is)c

′
is(x

s
is)dxis +

K(I0)c
′
i0

(xs
i0

)dxs
i0

. After some algebra, c′is(x
s
is)dxis = dsK(I0)/K(I). Finally, let us consider how
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the social cost changes.

dCρ(s) =d

(

r(cis(xis) − sis) + ρ
∑

i∈I

xisi

)

=r(c′is(x
s
is)dxs

is − ds) + ρ
∑

i∈Is

(

c′is(x
s
is)dxs

is

si

c′i(x
s
i )

+ xs
ids

)

=c′is(x
s
is)dxs

is

(

r + ρ
∑

i∈Is

si

c′i(x
s
i )

)

+ ds

(

ρ
∑

i∈Is

xs
i − r

)

=ds

((
K(I0)

K(I)
− 1

)

r + ρ
K(I0)

K(I)

∑

i∈Is

si

c′i(x
s
i )

+ ρ
∑

i∈Is

xs
i

)

=ds
ρ

K(I)

(

−
r

ρ
K(Is) + K(I0)

∑

i∈Is

si

c′i(x
s
i )

+ K(I)
∑

i∈Is

xs
i

)

.

The claim follows because the optimality of s implies that dCρ(s) ≥ 0 for feasible directions ds > 0

and ds < 0. �

A.4. Proof of Lemma 5.9.

Proof. On the one hand, (3a) and (4a), respectively, imply that

xs
i =







Vρ+Dρ−2bi

2ai
i ∈ I0

Vρ−bi

2ai
i ∈ Is .

Since
∑

i∈I xs
i = r, we have

Vρ

2
K(I) = r −

Dρ

2
K(I0) +

∑

i∈Is

bi

2ai
+
∑

i∈I0

bi

ai
. (16)

On the other hand, (4a), (5a) and Lemma 5.5 imply that

r

ρ
K(Is) =

Vρ

2
K(Is)K(I) + (K(I0) − K(I))

∑

i∈Is

bi

2ai
−

Dρ

2
K(I0)K(Is)

and since Is 6= ∅,
Vρ

2
K(I) =

r

ρ
+
∑

i∈Is

bi

2ai
+

Dρ

2
K(I0). (17)

Adding and subtracting (16) and (17) yield the claim. �

A.5. Proof of Proposition 5.13.

Proof. Rebates are beneficial only if the social cost of a Stackelberg equilibrium is lower than that

of the Wardrop equilibrium. In that case, Lρ < L∞ and, hence, the strict inequality of the claim

holds because of Proposition 5.12.
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We now focus on the reverse implication. Assuming that the inequality in the hypothesis holds,

there exists an i ∈ A such that

L∞

(

r ρ−1
ρ

)

< bi < L∞

(

r ρ+1
ρ

)

.

Proposition 5.8 implies that if i ∈ A\I then bi ≥ Vρ , and if i ∈ I0 then bi ≤ Dρ. Therefore, i ∈ Is,

which is consequently nonempty. �

A.6. Proof of Theorem 6.4. First, we express the cost of the system optimum as a function of

L∞ to be able to relate it to the Stackelberg equilibrium.

Lemma A.1. For networks with parallel arcs and affine cost functions, the minimal value of the

participants’ real cost is

C(xSO) =
1

2

∫ 2r

z=0
L∞(z)dz .

Proof. Proposition 3.5 implies that there exists a constant LSO > 0 such that

LSO = 2aix
SO
i + bi ∀ i s.t. xSO

i > 0

LSO ≤ bi ∀ i s.t. xSO
i = 0 .

Proceeding as in Stackelberg equilibrium case, xSO
i = [LSO − bi]

+/(2ai). If we let iSO := max{i ∈

A : bi ≤ LSO}, we have that r =
∑iSO

j=1 (LSO − bj)/(2aj). Hence,

LSO =
1

K([iSO])



2r +

iSO

∑

j=1

bj

aj



 .

Since biSO ≤ LSO < biSO+1, Proposition 5.11 implies that LSO = L∞(2r). Then

C(xSO) =
iSO

∑

j=1

xSO
j

(

L∞(2r) −
L∞(2r) − bj

2

)

= rL∞(2r) −
1

2

iSO

∑

j=1

(L∞(2r) − bj)
2

2aj
.

Finally, using a similar decomposition as in Figure 4, it can be shown that

2rL∞(2r) =

∫ 2r

z=0
L∞(z)dz +

∑

i∈A:bi≤L∞(2r)

(L∞(2r) − bi)
2

2ai
.

The claim follows from the last two equations. �

Now we are ready to offer the proof of Theorem 6.4.

Proof. Equations (1b), (13) and (14) imply that

∑

i∈A

xs
i ci(x

s
i ) = r ρ−1

ρ Lρ +
1

2

∫ r(1+1/ρ)

r(1−1/ρ)
L∞(z)dz . (18)

From Lemma A.1, the concavity of L∞, and decomposing the area under the curve as Figure 6
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Figure 6. Illustration of the bound for C(xSO).

illustrates, we have that

2C(xSO) ≥r ρ−1
ρ

Dρ

2
+ r ρ−1

ρ Vρ +

∫ r(1+1/ρ)

r(1−1/ρ)
L∞(z)dz

=2
∑

i∈A

xs
i ci(x

s
i ) − r ρ−1

ρ

Dρ

2

≥2
∑

i∈A

xs
i ci(x

s
i ) − r ρ−1

ρ

Lρ

2

≥C(xs)
(

2 − ρ−1
2ρ

)

,

where the second, third and fourth lines hold because of (18), Dρ ≤ Lρ , and rLρ ≤
∑

i x
s
i ci(x

s
i ),

respectively. �
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