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We describe here the control, shape and appearance models that are built using an original photogrammetric method to capture
characteristics of speaker-specific facial articulation, anatomy, and texture. Two original contributions are put forward here: the
trainable trajectory formation model that predicts articulatory trajectories of a talking face from phonetic input and the texture
model that computes a texture for each 3D facial shape according to articulation. Using motion capture data from different speakers
and module-specific evaluation procedures, we show here that this cloning system restores detailed idiosyncrasies and the global
coherence of visible articulation. Results of a subjective evaluation of the global system with competing trajectory formation
models are further presented and commented.
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1. Introduction

Embodied conversational agents (ECAs)—virtual characters
as well as anthropoid robots—should be able to talk with
their human interlocutors. They should generate facial
movements from symbolic input. Given history of the
conversation and thanks to a model of the target language,
dialog managers and linguistic front-ends of text-to-speech
systems compute a phonetic string with phoneme durations.
This minimal information can be enriched with details of the
underlying phonological and informational structure of the
message, with facial expressions, or with paralinguistic infor-
mation (mental or emotional state) that all have an impact
on speech articulation. A trajectory formation model—
called also indifferently articulation or control model—has
thus to be built that computes control parameters from such
a symbolic specification of the speech task. These control
parameters will then drive the talking head (the shape and
appearance models of a talking face or the proximal degrees-
of-freedom of the robot).

The acceptability and believability of these ECA depend
on at least three factors: (a) the information-dependent

factors that relate to the relevance of the linguistic con-
tent and paralinguistic settings of the messages, (b) the
appropriate choice of voice quality, communicative and
emotional facial expressions, gaze patterns, and so forth,
adapted to situation and environmental conditions; (c) the
signal-dependent factors that relate to the quality of the
rendering of this information by multimodal signals. This
latter signal-dependent contribution depends again on two
main factors: the intrinsic quality of each communicative
channel, that is, intrinsic quality of synthesized speech,
gaze, facial expressions, head movements, hand gestures
and the quality of the interchannel coherence, that is, the
proper coordination between audible and visible behavior of
the recruited organs that enable intuitive perceptual fusion
of these multimodal streams in an unique and coherent
communication flow. This paper addresses these two issues
by (i) first describing a methodology for building virtual
copies of speaker-specific facial articulation and appearance,
and (ii) a model that captures most parts of the audiovisual
coherence and asynchrony between speech and observed
facial movements.
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Figure 1: A facial animation system generally comprises three
modules: the control model that computes a gestural score given
the phonetic content of the message to be uttered, a shape model
that computes the facial geometry, and an appearance model
that computes the final appearance of the face on screen. The
acoustic signal can be either postsynchronized or computed by
articulatory synthesis. In this later case the internal speech organs
shape the vocal tract (tongue, velum, etc.) that is further acoustically
“rendered” by appropriate sound sources.

This “cloning” suite—that captures speaker-specific
idiosyncrasies related to speech articulation—is then eval-
uated. We will notably show that the proposed statistical
control model for audiovisual synchronization favorably
competes with the solution that consists in concatenating
multimodal speech segments.

2. State of the Art

Several review papers have been dedicated to speech and
facial animation [1, 2]. A facial animation system generally
comprises three modules (cf. Figure 1).

(1) A control model that computes gestural trajectories
from the phonetic content of the message to be
uttered. The main scientific challenge of this pro-
cessing stage is the modeling of the so-called coar-
ticulation, that is, context-dependent articulation of
sounds. The articulatory variability results in fact
not only from changes of speech style or emotional
content but also from the under specification of
articulatory targets and planning [3].

(2) A shape model that computes the facial geometry
from the previous gestural score. This geometry is
either 2D for image-based synthesis [4, 5] or 3D
for biomechanical models [6, 7]. The shape model
drives movements of fleshpoints on the face. These
fleshpoints are usually vertices of a mesh that deforms
according to articulation. There are three main sci-
entific challenges here: (a) identifying a minimal set
of independent facial movements related to speech
as well as facial expressions [8] (b) identifying the
movement of fleshpoints that are poorly contrasted
on the face: this is usually done by interpolating
movements of robust fleshpoints (lips, nose, etc.)
surrounding each area or regularizing the optical
flow [9]; (c) linking control variables to movements,
that is, capturing and modeling realistic covariations
of geometric changes all over the lower face by

independent articulations, for example, jaw rotation,
lip opening, and lip rounding all change shape of lips
and nose wings.

(3) An appearance model that computes the final appear-
ance of the face on screen. This is usually done
by warping textures on the geometric mesh. Most
textures are generally a function of the articulation
and other factors such as position of light sources
and skin pigmentation. The main challenge here
is to capture and model realistic covariations of
appearance and shape, notably when parts of the
shape can be occluded. The challenge is in fact even
harder for inner organs (teeth, tongue, etc.) that are
partially visible according to lip opening.

Most multimodal systems also synthesize the audio signal
although most animations are still postsynchronized with
a recorded or a synthetic acoustic signal. The problem
of audiovisual coherence is quite important: human inter-
locutors are very sensitive to discrepancies between the
visible and audible consequences of articulation [10, 11]
and have expectations on resulting audiovisual traces of
the same underlying articulation. The effective modeling
of audiovisual speech is therefore a challenging issue for
trajectory formation systems and still an unsolved problem.
Note however that intrinsically coherent visual and audio
signals can be computed by articulatory synthesis where
control and shape models drive the internal speech organs
of the vocal tract (tongue, velum, etc.). This vocal tract shape
is then made audible by the placement and computation of
appropriate sound sources.

3. Cloning Speakers

We describe here the cloning suite that we developed for
building speaker-specific 3D talking heads that best captures
the idiosyncratic variations of articulation, geometry, and
texture.

3.1. Experimental Data. The experimental data for facial
movements consists in photogrammetric data collected by
three synchronized cameras filming the subject’s face. Studio
digital disk recorders deliver interlaced uncompressed PAL
video images at 25 Hz. When deinterlaced, the system
delivers three 288 × 720 uncompressed images at 50 Hz in
full synchrony with the audio signal.

We characterize facial movements both by the defor-
mation of the facial geometry (the shape model described
below) and by the change of skin texture (the appearance
model detailed in Section 5). The deformation of the
facial geometry is given by the displacement of facial
fleshpoints. Instead of relying on sophisticated image pro-
cessing techniques—such as optical flow—to estimate these
displacements with no make-up, we choose to build very
detailed shape models by gluing hundreds of beads on the
subjects’ face (see Figure 2). 3D movements of facial flesh-
points are acquired using multicamera photogrammetry.

This 3D data is supplemented by lip geometry that is
acquired by fitting semiautomatically a generic lip model
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(a) Speaker CD

(b) Speaker OC

Figure 2: Two speakers utter here sounds with different make-ups. Colored beads have been glued on the subjects’ face along Langer’s lines
so as to cue geometric deformations caused by main articulatory movements when speaking. Left: a make-up with several hundreds of beads
is used for building the shape model. Right: a subset of crucial fleshpoints is preserved for building videorealistic textures.

Figure 3: Some elementary articulations for the face and the head that statistically emerge from the motion capture data of speaker CD
using guided PCA. Note that a nonlinear model of the head/neck joint is also parameterized. The zoom at the right-hand side shows that the
shape model includes a detailed geometry of the lip region: a lip mesh that is positioned semiautomatically using a generic lip model [12]
as well as a mesh that fills the inner space. This later mesh attaches the inner lip contour to the ridge of the upper teeth: there is no further
attachment to other internal organs (lower teeth, tongue, etc.).

[12] to the speaker-specific anatomy and articulation. This
is in fact impossible to glue beads on the wet part of the lips
and this would also impact on articulation.

Data used in this paper have been collected for three
subjects: an Australian male speaker (see Figure 2(a)), a UK-
English female speaker (see Figure 2(b)), and a French female
speaker (see Figure 12). They will be named, respectively, by
the initials CD, OC, and AA.

3.2. The Shape Model. In order to be able to compare up-
to-date data-driven methods for audiovisual synthesis, a
main corpus of hundreds of sentences pronounced by the
speaker is recorded. The phonetic content of these sentences
is optimized by a greedy algorithm that maximizes statistical
coverage of triphones in the target language (differentiated
also with respect to syllabic and word boundaries).

The motion capture technique developed at GIPSA-Lab
[13, 14] consists in collecting precise 3D data on selected
visemes. Visemes are selected in the natural speech flow by
an analysis-by-synthesis technique [15] that combines auto-
matic tracking of the beads with semiautomatic correction.

Our shape models are built using a so-called guided Prin-
cipal Component Analysis (PCA) where a priori knowledge

is introduced during the linear decomposition. We in fact
compute and iteratively subtract predictors using carefully
chosen data subsets [16]. For speech movements, this
methodology enables us to extract at least six components
once the head movements have been removed.

The first one, jaw1 controls the opening/closing move-
ment of the jaw and its large influence on lips and face
shape. Three other parameters are essential for the lips:
lips1 controls the protrusion/spreading movement common
to both lips as involved in the /i/ versus /y/ contrast; lips2
controls the upper lip raising/lowering movement used for
example in the labio-dental consonant /f/; lips3 controls the
lower lip lowering/raising movement found in consonant / /
for which both lips are maximally open while jaw is in a
high position. The second jaw parameter, jaw2, is associated
with a horizontal forward/backward movement of the jaw
that is used in labio-dental articulations such as /f/ for
example. Note finally a parameter lar1 related to the vertical
movements of the larynx that are particularly salient for
males. For the three subjects used here, these components
account for more than 95% of the variance of the positions
of the several hundreds of fleshpoints for thirty visemes
carefully chosen to span the entire articulatory space of each
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Figure 4: The phasing model of the PHMM predicts phasing
relations between acoustic onsets of the phones (bottom) and
onsets of context-dependent phone HMM that generate the frames
of the gestural score (top). In this example, onsets of gestures
characterizing the two last sounds are in advance compared to
effective acoustics onsets. For instance an average delay between
observed gestural and acoustic onset is computed and stored for
each context-dependent phone HMM. This delay is optimized with
an iterative procedure described in Section 4.3 and illustrated in
Figure 5.
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Figure 5: Training consists in iteratively refining the context-
dependent phasing model and HMMs (plain lines and dark blocks).
The phasing model computes the average delay between acoustic
boundaries and HMM boundaries obtained by aligning current
context-dependent HMMs with training utterances. Synthesis sim-
ply consists in forced alignment of selected HMMs with boundaries
predicted by the phasing model (dotted lines and light blocks).

language. The root mean square error is in all cases less
than 0.5 mm for both hand-corrected training visemes and
test data where beads are tracked automatically on original
images [15].

The final articulatory model is supplemented with
components for head movements (and neck deformation)
and with basic facial expressions [17] but only components
related to speech articulation are considered here. The
average modeling error is less than 0.5 mm for beads located
on the lower part of the face.

4. The Trajectory Formation System

The principle of speech synthesis by HMM was first intro-
duced by Tokuda et al. [18] for acoustic speech synthesis and
extended to audiovisual speech by the HTS working group
[19]. Note that the idea of exploiting HMM capabilities
for grasping essential sound characteristics for synthesis
was also promoted by various authors such as Giustiniani
and Pierucci [20] and Donovan [21]. The HMM-trajectory
synthesis technique comprises training and synthesis parts
(see [22, 23] for details).

4.1. Basic Principles. An HMM and a duration model for
each state are first learned for each segment of the training
set. The input data for the HMM training is a set of
observation vectors. The observation vectors consist of static
and dynamic parameters, that is, the values of articula-
tory parameters and their temporal derivatives. The HMM
parameter estimation is based on Maximum-Likelihood
(ML) criterion [22]. Usually, for each phoneme in context, a
3-state left-to-right model is estimated with single Gaussian
diagonal output distributions. The state durations of each
HMM are usually modeled as single Gaussian distributions.
A second training step can also be added to factor out similar
output distributions among the entire set of states, that is,
state tying. This step is not used here.

The synthesis is then performed as follows. A sequence
of HMM states is built by concatenating the context-
dependent phone-sized HMM corresponding to the input
phonetic string. State durations for the HMM sequence
are determined so that the output probabilities of the state
durations are maximized (thus usually by z-scoring). Once
the state durations have been assigned, a sequence of obser-
vation parameters is generated using a specific ML-based
parameter generation algorithm [22] taking into account the
distributions of both static and dynamic parameters that are
implicitly linked by simple linear relations (e.g., Δp(t) =
p(t)− p(t−1); ΔΔp(t) = Δp(t)−Δp(t−1) = p(t)− p(t−2);
etc.).

4.2. Comments. States can capture parts of the interar-
ticulatory asynchrony since transient and stable parts of
the trajectories of different parameters are not obligatory
modeled by the same state. As an example, a state of an
HMM model can observe a stable part of one parameter A
(characterized by a mean dynamic parameter close to zero)
together with a synchronous transient for another parameter
B (characterized by a positive or negative mean dynamic
parameter). If the next state observes the contrary for param-
eters A and B, the resulting trajectory synthesis will exhibit
an asynchronous transition between A and B. This surely
explains why complex HMM structures aiming at explicitly
coping with audiovisual asynchronies do not outperform
the basic ergodic structure, especially for audiovisual speech
recognition [24]. Within a state, articulatory dynamics is
captured and is then reflected in the synthesized trajectory.
By this way, this algorithm may capture implicitly part
of short-term coarticulation patterns and inter-articulatory
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Figure 6: Distribution of average time lags estimated for the HMM bi-phones collected from our speakers. From left to right: CD, OC, and
AA. Note that time lags are mainly positive, that is, gestural boundaries—pacing facial motion—are mainly located after acoustic boundaries.

asynchrony. Larger coarticulation effects can also be captured
since triphones intrinsically depend on adjacent phonetic
context.

These coarticulation effects are however anchored to
acoustic boundaries that are imposed as synchronization
events between the duration model and the HMM sequence.
Intuitively we can suppose that context-dependent HMM
can easily cope with this constraint but we will show that
adding a context-dependent phasing model helps the trajec-
tory formation system to better fit observed trajectories.

4.3. Adding and Learning a Phasing Model. We propose
to add a phasing model to the standard HMM-based
trajectory formation system that learns the time lag between
acoustic and gestural units [25, 26], that is, between acoustic
boundaries delimiting allophones and gestural boundaries
delimiting pieces of the articulatory score observed by
the context-dependent HMM sequence (see Figure 4). This
trajectory formation system is called PHMM (for Phased-
HMM) in the following.

A similar idea was introduced by Saino et al. [27] for
computing time-lags between notes of the musical score
and sung phones for an HMM-based singing voice synthesis
system. Both boundaries are defined by clear acoustic
landmarks and can be obtained semiautomatically by forced
alignment. Lags between boundaries are clustered by a
decision tree in the same manner used for clustering spectral,
fundamental frequency, and duration parameters in HMM
synthesis. Saino et al. [27] evaluated their system with 60
Japanese children’s songs by one male speaker resulting in
72 minutes of signal in total and showed a clear perceptual
benefit of the lag model in comparison with an HMM-based
system with no lag models.

In our case gestural boundaries are not available: gestures
are continuous and often asynchronous [28]. It is very
difficult to identify core gestures strictly associated with
each allophone. Gestural boundaries emerge here as a by-
product of the iterative learning of lags. We use here the
term phasing model instead of lag model in reference to work
on control: events are in phase when the lag equals 0 and
antiphase when the average lag is half the average duration

between events. Because of the limited amount of AV data
(typically several hundreds of sentences, typically 15 minutes
of speech in total), we use here a very simple phasing model:
a unique time lag is associated with each context-dependent
HMM. This lag is computed as the mean delay between
acoustic boundaries and results of forced HMM alignment
with original articulatory trajectories.

These average lags are learnt by an iterative process
consisting of an analysis-synthesis loop (see Figure 5).

(1) Standard context-dependent HMMs are learnt using
acoustic boundaries as delimiters for gestural param-
eters.

(2) Once trained, forced alignment of training trajecto-
ries is performed (Viterbi alignment in Figure 5).

(3) Deviations of the resulting segmentation with acous-
tic boundaries are collected. The average deviation of
the right boundary of each context-dependent HMM
is then computed and stored. The set of such mean
deviations constitutes the phasing model.

(4) New gestural boundaries are computed applying the
current phasing model to the initial acoustic bound-
aries. Additional constraints are added to avoid
collapsing: a minimal duration of 30 milliseconds is
guaranteed for each phone.

A typical distribution of these lags is given in Figure 6.
For context-dependent phone HMM where contextual infor-
mation is limited to the following phoneme, lags are mostly
positive: gestural boundaries occur latter than associated
acoustic ones, that is, there is more carryover coarticulation
than anticipatory one.

4.4. Objective Evaluation. All sentences are used for training.
A leave-one-out process for PHMM has not been used
since a context-dependent HMM is built only if at least 10
samples are available in the training data; otherwise context-
independent phone HMMs are used. PHMM is com-
pared with concatenative synthesis using multirepresented
diphones [29]: synthesis of each utterance is performed
simply by using all diphones of other utterances. Selection
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Figure 7: Comparing natural (dark blue) and synthetic trajectories
computed by three different systems for the first 6 main articulatory
parameters (jaw opening, lip spreading, jaw protrusion, lower and
upper lip opening, laryngeal movements) for the sentence “The
lack of employment ensures that the poor earn less than it costs
to survive.” The three systems are concatenation of audiovisual
diphones (black), HMM-based synthesis (light blue), and the
proposed PHMM (red). Vertical dashed lines at the bottom of
each caption are acoustic boundaries while gestural boundaries
are given by the top plain lines. Note the large delay of the non
audible prephonatory movements at the beginning of the utterance.
The trajectories of lower and upper lips for the word “ensures” is
zoomed and commented in Figure 8.

is performed classically using minimization of selection and
concatenation costs over the sentence.

Convergence is obtained after typically 2 or 3 itera-
tions. Figures 7 and 8 compare the articulatory trajectories
obtained: the most important gain is obtained for silent artic-
ulations typically at the beginning (prephonatory gestures)
and end of utterances.

Figure 9 compares mean correlations obtained by the
concatenative synthesis with those obtained by the PHMM
at each iteration. The final improvement is small, typically 4–
5% depending on the speaker. We especially used the data of
our French female speaker for subjective evaluation because
PHMM does not improve objective HMM results; we will
show that the subjective quality is significantly different.

We have shown elsewhere [25] that the benefit of phasing
on prediction accuracy is very conservative; PHMM always
outperforms the HMM-based synthesis anchored strictly
on acoustic boundaries whatever contextual information is
added or the number of Gaussian mixtures is increased.
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Figure 8: A zoomed portion of Figure 7 evidencing that PHMM
(red) captures the original carryover movements (dark blue) of the
open consonant [sh] into the [ua] vowel. We plot here the behavior
of the lower and upper lip opening. PHMM predicts a protrusion
of the lips into half of the duration of the [ua] allophone while
both HMM-based (light blue) and concatenation-based (black)
trajectory formation systems predict a quite earlier retraction at
acoustic onset. In the original stimuli the protrusion is sustained
till the end of the word “ensures.”

5. The Photorealistic Appearance Model

Given the movements of the feature points, the appearance
model is responsible for computing the color of each pixel of
the face. Three basic models have been proposed so far in the
literature.

(1) Patching facial regions [4, 30]: prestored patches
are selected from a patch dictionary according to
the articulatory parameters and glued on the facial
surface according to face and head movements.

(2) Interpolating between target images [9, 31]: the shape
model is often used to regularize the computation of
the optical flow between pixels of key images.

(3) Texture models [32, 33]: view-dependent or view
independent—or cylindrical textures—texture maps
are extracted and blended according to articulatory
parameters and warped on the shape.

Our texture model computes texture maps. These maps
are computed in three steps.

The detailed shape model built using several hundreds of
fleshpoints is used to track articulation of faces marked only
by a reduced number of beads (see Figure 2). We do not use
all available data (typically several dozen thousand frames):
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Figure 9: Mean correlations (together with standard deviations) between original and predicted trajectories for the main six articulatory
parameters (jaw rotation, lip rounding, lower and upper lip opening, jaw retraction and larynx height). For each parameter, correlations
for eleven conditions are displayed: the first correlation is for the trajectories predicted by concatenative synthesis using multirepresented
diphones (see text); the second correlation is for trajectories predicted by HMM using acoustic boundaries; the rest of the data give results
obtained after the successive iteration of the estimations of the phasing model. Asymptotic behavior is obtained within one or two iterations.
From left to right: data from speakers CD, OC, and AA.

(a)

(b)

(c)

Figure 10: Texturing the facial mesh with an appearance model for OC. (a) Original images that will be warped to the “neutral” mesh
displayed on the right. (b) shape-free images obtained: triangles in white color are not considered in the modeling process because they are
not fully visible from the front camera. The left image displays the mean texture together with the “neutral” mesh drawn with blue lines. (c)
resynthesis of the facial animation using the shape and appearance models superposed to the original background video.
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Figure 11: Comparison between original images and resynthesis of various articulations for CD. Note the lightening bar at the bottom of
the neck due to the uncontrolled sliding of the collar of the tee-shirt during recordings.

Figure 12: Same as Figure 11 for AA whose data have been used for the comparative subjective evaluation described in Section 6.

We only retain one target image per allophone (typically a
few thousand frames).

Shape-free images (see [32]) are extracted by warping
the selected images to a “neutral shape” (see middle of
Figure 10).

A linear regression of the RGB values of all visible pixels
of our shape-free images by the values of articulatory param-
eters obtained in step 1. The speaker-specific shape and
appearance models are thus driven by the same articulatory
parameters. Instead of the three PCA performed for building
Active Appearance Models [32] where independent shape
and appearance models are first trained and then linked, we
are only concerned here by changes of shape and appearance
directly linked with our articulatory parameters. For instance
the articulatory-to-appearance mapping is linear but non-
linear mapping is possible because of the large amount of
training data available by step 1.

The layered mesh-based mapping is of particular impor-
tance for the eyes and lips where different textured plans
(e.g., iris, teeth, tongue) appear and disappear according to
aperture.

Note also that the 3D shape model is used to weight the
contribution of each pixel to the regression, for instance,
all pixels belonging to a triangle of the facial mesh that
is not visible or does not face the camera are discarded
(see Figure 10). This weighting can also be necessary for
building view-independent texture models: smooth blending
between multiview images may be obtained by weighting
contribution of each triangle according to its viewing angle
and the size of its deformation in the shape-free image.

6. Subjective Evaluation

A first evaluation of the system was performed at the LIPS’08
lipsync challenge [34]. With minor corrections, it winned
the intelligibility test at the next LIPS’09 challenge. The
trainable trajectory formation model PHMM, the shape
and appearance models were parameterized using OC data.
The texture model was trained using the front-view images

from the corpus with thousands of beads (see left part of
Figure 2(b)). The system was rated closest to the original
video considering both audiovisual consistency and intelli-
gibility. It was ranked second for audiovisual consistency and
very close to the winner. Concerning intelligibility, several
systems outperformed the original video. Our system offers
the same visual benefit as the natural video is not less not
more.

We also performed a separate evaluation procedure to
evaluate the contribution of PHMM to the appreciation of
the overall quality. We thus tested different control models
maintaining the shape and appearance models strictly the
same for all animations. This procedure is similar to the
modular evaluation previously proposed [29] but with
video-realistic rendering of movements instead of a point-
light display. Note that concatenative synthesis was the
best control model and outperformed the most popular
coarticulation models in this 2002 experiment.

6.1. Stimuli. The data used in this experiment are from a
French female speaker (see Figure 12) cloned using the same
principles as above.

We compare here audio-visual animations built by com-
bining the original sound with synthetic animations driven
by various gestural scores: the original one (Nat) and 4 other
scores computed from the phonetic segmentation of the
sound. All videos are synthetic. All articulatory trajectories
are “rendered” by the same shape and appearance models
in order to focus on perceptual differences only due to the
quality of control parameters. The four control models are
the following.

(1) The trajectory formation model proposed here
(PHMM).

(2) The basic audio-synchronous HMM trajectory for-
mation system (HMM).

(3) A system using concatenative synthesis with multi-
represented diphones (CONC). This system is similar
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to the Multisyn synthesizer developed from acoustic
synthesis [35] but uses here an audiovisual database.

(4) A more complex control model called TDA [36]
that uses PHMM twice. PHMM is first used to seg-
ment training articulatory trajectories into gestural
units. They are stored into a gestural dictionary.
The previous system CONC is then used to select
and concatenate the appropriate multi-represented
gestural units. CONC and TDA however differ in the
way selection costs are computed. Whereas CONC
only considers phonetic labels, TDA uses the PHMM
prediction to compute a selection cost for each
selected unit by computing its distance to the PHMM
prediction for that portion of the gestural score.

The five gestural scores drive then the same plant, that is,
the shape textured by the videorealistic appearance model.
The resulting facial animation is then patched back with the
appropriate head motion on the original background video
as in [4, 9].

6.2. Test Procedure and Results. 20 naı̈ve subjects (33 ± 10
years, 60% male) participated in the audio-visual experi-
ment. The animations were played on a computer screen.
They were informed that these animations were all synthetic
and that the aim of the experiment was to rate different
animation techniques.

They were asked to rate on a 5-point MOS scale
(very good, good, average, insufficient, very insufficient) the
coherence between the sound and the computed animation.

Results are displayed in Figure 13. All ratings are within
the upper MOS scale, that is, between average and very
good. Three groups can be distinguished: (a) the trajectory
formation systems PHMM and TDA are not distinguished
from the resynthesis of original movements; (b) the audio-
synchronous HMM trajectory formation system is then
rated best, and (c) the concatenation system with multi-
represented audiovisual diphones is rated significantly worse
than all others.

6.3. Comments. The HMM-based trajectory formation sys-
tems are significantly better than the data-driven concatena-
tive synthesis that outperforms coarticulation models even
when parameterized by the same data. The way we exploit
training data has thus made important progress in the last
decennia; it seems that structure should emerge from data
and not be parameterized by data. Data modeling takes over
data collection not only because modeling regularizes noisy
data but also because modeling takes into account global
parameters such as the minimization of global distortion or
variance.

7. Conclusions

We have demonstrated here that the prediction accuracy of
an HMM-based trajectory formation system is improved
by modeling the phasing relations between acoustic and
gestural boundaries. The phasing model is learnt using an

Nat PHMM TDA HMM CONC
Average

Good

Very good

n.s.

n.s.

n.s.

Figure 13: Results of the MOS test. Three groups can be distin-
guished: (a) the trajectory formation systems PHMM and TDA are
not distinguished from the resynthesis of original movements; (b)
the audio-synchronous HMM trajectory formation system is then
rated best, and (c) the concatenation system with multi-represented
audiovisual diphones is rated significantly worse than all others.

analysis-synthesis loop that iterates HMM estimations and
forced alignments with the original data. We have shown
that this scheme improves significantly the prediction error
and captures both strong (prephonatory gestures) and subtle
(rounding) context-dependent anticipatory phenomena.

The interest of such an HMM-based trajectory formation
system is double: (i) it provides accurate and smooth
articulatory trajectories that can be used straightforwardly to
control the articulation of a talking face or used as a skeleton
to anchor multimodal concatenative synthesis (see notably
the TDA proposal in [36]); (ii) it also provides gestural
segmentation as a by-product of the phasing model. These
gestural boundaries can be used to segment original data
for multimodal concatenative synthesis. A more complex
phasing model can of course be built—using, for example,
CART trees—by identifying phonetic or phonological factors
influencing the observed lag between visible and audible
traces of articulatory gestures.

Concerning the plant itself, much effort is still required
to get a faithful view-independent appearance model, par-
ticularly for the eyes and inner mouth. For the later, precise
prediction of jaw position—and thus lower teeth—and
tongue position should be performed in order to capture
changes of appearance due to speech articulation. Several
options should be tested: direct measurements via jaw splint
or EMA [37], additional estimators linking tongue and
facial movements [38], or more complex statistical models
optimally linking residual appearance of the inner mouth to
phonetic content.
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