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Abstract

This paper proposes a new signal denoising methodology for dealing
with asymmetrical noises. The adopted strategy is based on a regres-
sion model where the noise is supposed to be additive and distributed
following a mixture of Gaussian densities. The parameters estimation
is performed using a Generalized EM (GEM) algorithm. Experimen-
tal studies on simulated and real signals in the context of a diagnosis
application in the railway domain reveal that the proposed approach
performs better than the least-squares and wavelets methods.

Key words Denoising, Asymmetrical noise, Regression, Gaussian mixture
model, EM algorithm, GEM algorithm

1 Introduction

Denoising or noise reduction is a subject of research in both signal and image
processing. The aim is to remove the additive noise from the signal without
distorting it. Various linear and non linear methods have been proposed to
solve this problem. They lead to different solutions depending on the noise
model and the signal properties which are closely linked to applications.

One of the most popular and recent denoising approaches is based on
wavelet analysis (Mallat 1989, 1998). It consists in applying thresholding
algorithms to the wavelet coefficients in order to extract the most significant
of them. This method allows an unknown function to be reconstructed from
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noisy data, but its theoretical framework involves a normal noise density
and requires an optimal choice of the threshold. For this purpose, several
thresholding rules have been proposed and successfully applied (Dohono et
al. (1996), Ogden and Parzen (1996).

Many statistical approaches like least-squares method have also been
proposed. In this paper, we explore a strategy for denoising based on mixture
models which are widely used in clustering (Dempster et al. 1977, McLachlan
and Krishnan 1997). The basic idea of the proposed approach is to fit a
regression model on the signal with the assumption that the error term (or
additive noise) follows a mixture of normal distributions. The parameters
of such a model are then estimated by means of a Generalized Expectation
Maximization (GEM) algorithm.

It should be noticed that this approach is different from the wavelet
method, which is dedicated to reconstruct an unknown signal in a white
Gaussian noise. Here, we assume a parametric regression model of the signal
and a mixture of normal distributions for the noise. In many situations
where the normal assumption cannot be satisfied, the normal mixtures seem
to be suitable because they can represent a wide variety of noise densities
including both symmetrical and non-symmetrical cases (Marron and Wand
1992).

The paper is organized as follows. At first, we present the regression
model and introduce some preliminary notations. Then, we detail the pa-
rameter estimation procedure via a GEM algorithm. Section four gives the
performances of the approach illustrated on simulated examples and section
five is concerned with an application in the railway domain.

2 Additive noise and mixture model

A signal is supposed to be represented by an independent sample
((x1, y1), . . . , (xn, yn)) where variables x and y, defined on IR, represent the
dependent variable (for example the time) and the independent variable (the
signal at time x), respectively. Polynomial regression functions have been
chosen, for their simplicity and their coherence with many real signals. An
observed signal is then modeled by

y = a
T
x + ε, (1)

where a = (a0, a1, a2, . . . , am)T , x = (1, x, x2, . . . , xm)T , m is the polynomial
order and ε is an additive noise whose distribution does not depend on x.

Usually, ε is assumed to be normally distributed with zero mean and
variance σ2, and the estimation of the model parameters proceeds by solving
a classical least-squares problem, but in certain practical problems the pres-
ence of other sources of noise results in an asymmetrical non-normal noise
which makes the least-squares method unsuitable.
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To solve this problem, the noise ε is assumed to be centered and dis-
tributed according to a mixture of K normal densities

f(ε) =
K∑

k=1

πkN (ε;µk, σ2
k) (2)

where N (·;µk, σ
2
k) is the normal distribution density with mean µk and vari-

ance σ2
k, the πk

′s are the proportions of the mixture. The proportions πk

and the means µk satisfy the constraints
∑K

k=1 πk = 1 and
∑K

k=1 πkµk = 0.
The component density N (·;µk, σ

2
k) can thus be regarded as one source of

noise. The well known flexibility of mixture distributions allows the regres-
sion model to handle both symmetrical and non-symmetrical noises (Bar-
tolucci and Scaccia 2005).

The next section shows how the parameters of the proposed model can
be estimated.

3 Parameters estimation via the GEM algorithm

The model parameters are estimated by maximizing the conditional likeli-
hood or equivalently the conditional log-likelihood defined by

L(Ψ) =

n∑

i=1

log p(yi|xi;Ψ), (3)

where Ψ = (a, π1, . . . , πK , µ1, . . . , µK , σ2
1 , . . . , σ

2
K) is the parameter vector to

be estimated. It can be easily verified that, conditionally on x, the variable
y has the mixture distribution density

p(y|x;Ψ) =
K∑

k=1

πkN (y ; a
T
x + µk , σ2

k).

The (observed) log-likelihood is then written

L(Ψ) =

n∑

i=1

log
[ K∑

k=1

πkN
(
yi ; a

T
xi + µk, σ

2
k

)]
, (4)

where xi = (1, xi, x
2
i , . . . , x

m
i ). This equation clearly highlights that the pro-

posed model is simply a constrained Gaussian mixture of regressions (Aitkin
and Wilson 1980, DeSarbo and Cron 1988) in which the coefficient vector a

is common for each component.
The Expectation-Maximization (EM) algorithm (Dempster et al. 1977)

is used to perform the maximization of the log-likelihood (4) which can not be
solved directly. Let us recall that the EM algorithm requires the specification
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of complete data whose log-likelihood can be maximized more easily than
the observed log-likelihood (4). In this situation, the complete data are
obtained by adding to each observation (xi, yi) its component membership
variable zi ∈ {1, . . . ,K}. Using the binary coding of zi, zik = 1 if zi = k and
zik = 0 otherwise, the complete data log-likelihood is written as

LC(Ψ) =

n∑

i=1

K∑

k=1

zik log
[
πkN

(
yi ; a

T
xi + µk, σ

2
k

)]
, (5)

Given an initial parameter vector Ψ
(0), the EM algorithm consists in

alternating the two following steps until convergence.

E step : Expectation

This step consists in evaluating the expectation of the complete data log-
likelihood conditionally on the observed data and the current parameter
vector Ψ

(q):

Q(Ψ;Ψ(q)) = E
[
LC(Ψ)|x1, . . . , xn, y1, . . . , zn;Ψ(q)

]

=

n∑

i=1

K∑

k=1

t
(q)
ik log

[
πkN

(
yi ; a

T
xi + µk, σ

2
k

)]
(6)

where LC(Ψ) is the complete data log-likelihood and

t
(q)
ik

= E(zik|xi, yi;Ψ
(q))

= P (zik = 1|xi, yi;Ψ
(q))

=
π

(q)
k

N (yi; a
(q)T

xi + µ
(q)
k

, σ
(q)
k

2
)

∑K
ℓ=1 π

(q)
ℓ

N (yi; a
(q)T

xi + µ
(q)
ℓ

, σ
(q)
ℓ

2
)

(7)

is the posterior probability that yi originates from the kth mixture compo-
nent, given xi. Thus, the E step simply requires the computation of the

posterior probabilities t
(q)
ik .

M step : Maximization

This step consists in computing the parameter vector Ψ
(q+1) that maximizes

with respect to Ψ, the quantity Q(Ψ;Ψ(q)) which, in our situation, can be
written

Q(Ψ;Ψ(q)) =
∑

k,i

t
(q)
ik log πk −

1

2

∑

k,i

t
(q)
ik

[
log(2π) + log σ2

k +
(yi − (aT

xi + µk))
2

σ2
k

]
. (8)
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As in the classical Gaussian mixture situation, it can be verified that the
proportions maximizing Q are given by

π
(q+1)
k

=

∑n
i=1 t

(q)
ik

n
. (9)

The simultaneous maximization with respect to the parameters a, (µk)
and (σ2

k) cannot be performed analytically. But it can be shown that, for
fixed parameters (σ2

k), the optimum parameter vector [aT , µ1, . . . , µK ] is
given by

[aT , µ1, . . . , µK ]
T

=
[ K∑

k=1

HT
k Hk

]
−1[ K∑

k=1

HT
k Yk

]
, (10)

with

Hk =
1

σk

· diag

(√
t
(q)
1k , . . . ,

√
t
(q)
nk

)
·Xk

Yk =
1

σk

· diag

(√
t
(q)
1k

, . . . ,

√
t
(q)
nk

)
·Y,

where diag(e1, . . . , en) is the diagonal matrix with diagonal elements e1, . . . , en,
and

Xk =





x
T
1 0 . . . 0 1 0 . . . 0
...

...
...

...
...

...
...

...
x

T
i 0 . . . 0 1 0 . . . 0
...

...
...

...
...

...
...

...
x

T
n 0 . . . 0 1 0 . . . 0




and Y =





y1
...
yi

...
yn




.

Notice that Xk is a n× (K +m+1) matrix with all elements equal 0 except
those in the columns 1, . . . ,m + 1 and k + m + 1.

On the other hand, for fixed parameters a and (µk), it can be shown that
the parameter σ2

k maximizing Q is given by

σ2
k =

∑n
i=1 t

(q)
ik

(
yi − (aT

xi + µk)
)2

∑n
i=1 t

(q)
ik

. (11)

Thus, we propose to compute the parameter vector Ψ
(q+1) as follows:

(a) compute a
(q+1), µ

(q+1)
1 , . . . , µ

(q+1)
K using equation (10), where the old

estimates σ
(q)
k

2
, . . . , σ

(q)
K

2
have been inserted in the right hand side;

(b) compute σ
(q+1)
k

2
using equation (11), where the parameters a

(q+1) and

µ
(q+1)
k have been inserted in the right hand side.
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The strategy described by (a) and (b), which fulfil Q(Ψ(q+1);Ψ(q)) ≥
Q(Ψ(q);Ψ(q)), is commonly used when the maximization cannot be directly
performed and also known as a conditional-M step (McLachlan and Krish-
nan 1997). It provides a Generalized EM algorithm (GEM) (Dempster et
al. 1977) whose convergence properties are the same as those of the EM
algorithm. Usually, the GEM algorithm is iterated for a number of random
initial parameters Ψ

(0) and only the parameter that provides the largest
log-likelihood value is adopted.

4 Experiments on simulated signals

This section is designed to evaluate the performance of the proposed GEM
algorithm as regards the quality of estimation, by using simulated signals.
For this purpose, results obtained with GEM are compared with those of the
least-squares and wavelets methods. Let us remind that least-squares and
wavelet denoising methods (Donoho et al. 1996) are based on the assumption
that the noise has a zero mean normal distribution.

4.1 Simulation protocol

Each simulated signal is generated according to a polynomial regression func-
tion g(x) (the denoised signal that is to be recovered) and an asymmetri-
cally distributed noise. For all simulated signals, we consider a sample size
n = 600 and the value xi = i for the dependant variable (i = 1, ..., n). In the
following, we describe the setting of the polynomial coefficients, the type of
asymmetrical noise distribution, the criteria used to measure the estimation
quality, and the performed experiments.

Polynomial coefficients

We focus here only on second degree polynomial functions as the denoised
signal, in accordance with the real measured signals described in section 5.
Since no significant influence of the regression coefficients on the quality of
estimation has been observed, only one polynomial function with coefficients
vector a = (1.2; 3 · 10−5;−5 · 10−5) is considered in all the described simula-
tions below, i.e., g(x) = 1.2 + 3 · 10−5x − 5 · 10−5x2. Relatively small values
(−5·10−5 and 3·10−5) of the polynomial coefficients have been chosen to get
simulated signals whose amplitude is very close to the real signals amplitude.

Asymmetrical noise distributions

Two different types of asymmetric distributions have been adopted for the
noise generation:
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• a two-components Gaussian mixture distribution with density

f(ε;π1, π2, µ1, µ2, σ
2
1 , σ

2
2) = π1N (ε;µ1, σ

2
1) + π2N (ε;µ2, σ

2
2) (12)

with mean
∑2

k=1 πkµk = 0;

• a three-parameters Weibull distribution

f(ε;κ, λ, α) =
κ

λ

(
ε − α

λ

)κ−1

exp

[
−

(
ε − α

λ

)κ]
1]α;+∞[(ε), (13)

with α = −λΓ(1+ 1
κ
), Γ being the gamma function. This particular choice

of the parameter α ensures a zero mean distribution.

Figures 1 and 2 show examples of signals simulated according to the
adopted polynomial regression and the two noise distributions (Gaussian
mixture and Weibull).
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Figure 1: (left) Example of a signal simulated according to a second de-
gree polynomial function and a Gaussian mixture distribution, and its true
denoised signal; (right) corresponding noise mixture distribution and its com-
ponent densities

Evaluation criteria

The quality of estimation provided by GEM, least-squares and wavelets is
jointly evaluated by the following criteria measuring the quality of the esti-
mated (denoised) signal and the quality of the noise estimation, respectively:

• The L2 distance between the true regression function g(xi) with parameter
a and the estimated regression function ĝ(xi) with parameter â, defined
by

D2(g, ĝ) =
1

n

n∑

i=1

[aT
xi − â

T
xi]

2; (14)
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Figure 2: (left) Example of a signal simulated according to a second degree
polynomial function and a Weibull distribution, and its true denoised signal;
(right) corresponding noise Weibull distribution

• The Kullback-Leibler divergence between the estimated noise distribution
f̂ and the true noise distribution f ,

KL(f, f̂) =

∫

IR

f(x) log
f(x)

f̂(x)
dx. (15)

The Kullback-Leibler divergence is computed using Monte Carlo integration
method since its evaluation is not analytically straightforward in the case of
Gaussian mixtures.

Performed experiments

Four sets of experiments have been performed for this simulation study.

• The first set of experiments studies the quality of the estimates when the
ratio σ2

1/σ
2
2 of the Gaussian mixture variances varies in the set

{1/5, 1/4, 1/3, 1/2, 1}, for equal proportions π1 = π2 = 0.5, variance
σ2

1 = 2, and ∆ = |µ1 − µ2| = 4.

• The second set studies the quality of the estimates when the ratio π1/π2

of the Gaussian mixture proportions varies in the set {1/3, 1/2, 1, 2, 3}, for
equal variances σ2

1 = σ2
2 = 4, and ∆ = 4.

• The third set studies the quality of the estimates when the distance ∆
between the means of the Gaussian mixture components varies in the set
{0, 5, 10, 16, 21}, for proportions π1 = 0.7, π2 = 0.3 and variances σ2

1 = 2,
σ2

2 = 10.

• The fourth set of experiments studies the quality of the estimates when the
parameter λ of the Weibull distribution varies in the set {5, 10, 15, 20, 25, 30},
for a parameter κ = 1.4.
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4.2 Results

Table 1 represents, for the four sets of experiments, the D2 distance and
the KL divergence obtained with the methods GEM (applied to K = 2
and K = 3 components), least-squares and wavelets. Notice that each value
of D2 and KL is an average over 30 different simulated samples (Monte-
Carlo simulations). As it can be seen, GEM applied with K = 2 or K = 3
performs globally better than its competitors, for any modification of noise
distribution parameters σ2

1/σ
2
2 , π1/π2, ∆ or α, in terms of the D2 distance.

Not surprisingly, the KL divergence for GEM is distinctly better for any
situation; this behavior illustrates that the mixture model is more suitable
for dealing with various situation of asymmetrical noise distribution. When
the distance ∆ or the Weibull parameter λ increases, it can be observed that
the D2 distance for all methods increases. In practice, this phenomenon,
even more pronounced for least-squares and wavelets, is due to an increase
of the noise variance, in addition to the noise asymmetry. It can also be
observed that the number of components K = 3 is more adapted for Weibull
distribution.

5 Application to defect diagnosis in the railway do-

main

In the railway domain, signal denoising is an important preprocessing task for
defect diagnosis. Most of the automatic diagnosis systems are indeed based
on the analysis of measurement signals which are often corrupted with noise.
Our application concerns the diagnosis of the track/vehicle transmission sys-
tem in the French high speed lines (Aknin et al. 2003). The identification of
two sources of noise led us to consider that the noise is distributed according
to a mixture of two normal densities, rather than a single normal density.
The first task consists in segmenting the complete signal into local arches
with a piecewise approach, and the second task is focused on the denoising
procedure on each arch. Figure 3 shows an example of a measurement signal.

The evaluation of the proposed approach performances on these exper-
imental signals is not possible because the original signals and noise distri-
butions are not available. For this reason, we choose to test the proposed
denoising algorithm on signals whose original denoised signals are given by
an electrical model, which allows to achieve realistic simulations of the sys-
tem (Aknin et al. 2003). We use two different denoised signals called DS1
and DS2, composed of n = 778 obervations (see figure 4). The same noise
distributions (Gaussian mixture and Weibull) as for the simulation study
are added to DS1 and DS2. The quality of denoised signals reconstruction is
evaluated using the D2 distance. Unlike the cases studied in section 4, the
signals considered in this part are generated with non polynomial regression
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Table 1: D2 distance and KL divergence in relation to σ2
1/σ

2
2 , π1/π2, ∆ and

parameter λ of the Weibull distribution, obtained with GEM (applied with
K = 2 and K = 3), least-squares and wavelets.

σ
2

1

σ
2

2

D2 KL

GEM GEM LS Wav. GEM GEM LS Wav.
(K=2) (K=3) (K=2) (K=3)

1/5 0.029 0.028 0.043 0.137 0.005 0.009 0.083 0.083
1/4 0.029 0.034 0.037 0.124 0.005 0.007 0.069 0.070
1/3 0.027 0.031 0.032 0.112 0.004 0.009 0.059 0.052
1/2 0.024 0.027 0.023 0.088 0.003 0.007 0.032 0.032
1 0.019 0.019 0.026 0.079 0.004 0.007 0.029 0.029
π1

π2

D2 KL

GEM GEM LS Wav. GEM GEM LS Wav.
(K=2) (K=3) (K=2) (K=3)

1/3 0.034 0.037 0.042 0.175 0.004 0.007 0.037 0.037
1/2 0.060 0.062 0.065 0.161 0.005 0.008 0.034 0.034
1 0.042 0.046 0.052 0.151 0.004 0.009 0.029 0.029
2 0.043 0.051 0.052 0.184 0.004 0.008 0.033 0.033
3 0.038 0.047 0.041 0.117 0.004 0.009 0.037 0.037

∆ D2 KL
GEM GEM LS Wav. GEM GEM LS Wav.
(K=2) (K=3) (K=2) (K=3)

0 0.017 0.019 0.019 0.068 0.006 0.007 0.042 0.043
5 0.024 0.025 0.034 0.103 0.005 0.008 0.130 0.131
10 0.022 0.023 0.045 0.164 0.004 0.008 0.212 0.212
16 0.046 0.047 0.093 0.236 0.009 0.012 0.357 0.356
21 0.082 0.082 0.201 0.529 0.013 0.015 0.539 0.540

λ D2 KL
GEM GEM LS Wav. GEM GEM LS Wav.
(K=2) (K=3) (K=2) (K=3)

4 0.026 0.025 0.036 0.118 0.068 0.039 0.176 0.176
6 0.050 0.036 0.076 0.237 0.067 0.038 0.176 0.177
8 0.106 0.093 0.146 0.443 0.068 0.037 0.175 0.176
10 0.140 0.127 0.181 0.524 0.069 0.038 0.176 0.177
12 0.183 0.129 0.258 1.172 0.068 0.038 0.176 0.177

functions but we try to approximate them with second degree polynomial
functions.

Results obtained for DS1 and DS2 using the same noise distribution
parameters as in the simulation study are shown in tables 2 and 3. It will
be observed that, once again, our proposed GEM algorithm performs better
than least-squares and wavelets. The relative behavior of the compared
methods are almost the same as for the simulation study.

In rare situations where variances have small values, wavelets denoising
has better performances than GEM and least-squares. This remark can be
illustrated, for instance, in the case of the denoised signal DS2, by setting
σ2

1 = 5 · 10−4, π1 = π2 = 0.5, ∆ = 0.05 and choosing values of σ2
2 corre-

sponding to different ratios σ2
1/σ

2
2 (see Table 4). The good performances of

wavelets in this case, can be attributed to the non polynomial nature of the
denoised signal DS2.
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Figure 3: Experimental signal recorded on a track/vehicle transmission sys-
tem
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Figure 4: Denoised signal DS1 (left) and DS2 (right) given by an electrical
model

Figure 5 shows the denoised signal corresponding to the real signal dis-
played in figure 3.

6 Conclusion

An original methodology for signal denoising was proposed in this paper.
This methodology is based on a polynomial regression model where the noise
is supposed to be additive and distributed following a Gaussian mixture dis-
tribution. A Generalized EM (GEM) algorithm is developed to estimate
both the noise distribution and the polynomial regression coefficients. The
experimental study on simulated signals reveals that the GEM algorithm pro-
vides reasonably good results for relatively low degree of the regression func-
tion, compared to the standard least-squares and wavelets methods. When
the noise is distributed according to certain asymmetric distributions like
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Table 2: D2 distance in relation to σ2
1/σ

2
2 , π1/π2, ∆ and parameter λ of the

Weibull distribution; GEM, least-squares and wavelets are applied to noised
signals based on DS1.

σ
2

1

σ
2

2

D2
π1

π2

D2

GEM GEM LS Wav. GEM GEM LS Wav.
(K=2) (K=3) (K=2) (K=3)

1/5 0.025 0.026 0.040 0.137 1/3 0.024 0.025 0.032 0.127
1/4 0.019 0.019 0.031 0.115 1/2 0.025 0.028 0.031 0.144
1/3 0.019 0.019 0.026 0.091 1 0.027 0.028 0.031 0.165
1/2 0.023 0.024 0.027 0.104 2 0.029 0.031 0.034 0.136
1 0.014 0.015 0.016 0.067 3 0.039 0.039 0.043 0.133

∆ D2 λ D2
GEM GEM LS Wav. GEM GEM LS Wav.
(K=2) (K=3) (K=2) (K=3)

0 0.012 0.012 0.015 0.055 4 0.012 0.018 0.029 0.112
5 0.018 0.017 0.031 0.098 6 0.046 0.039 0.069 0.239
10 0.030 0.030 0.054 0.175 8 0.069 0.063 0.118 0.422
16 0.031 0.031 0.091 0.318 10 0.122 0.093 0.151 0.601
21 0.043 0.043 0.125 0.512 12 0.153 0.126 0.207 0.793

Table 3: D2 distance in relation to σ2
1/σ

2
2 , π1/π2, ∆ and parameter λ of the

Weibull distribution; GEM, least-squares and wavelets are applied to noised
signals based on DS2.

σ
2

1

σ
2

2

D2
π1

π2

D2

GEM GEM LS Wav. GEM GEM LS Wav.
(K=2) (K=3) (K=2) (K=3)

1/5 0.021 0.021 0.028 0.109 1/3 0.027 0.028 0.029 0.118
1/4 0.022 0.022 0.035 0.159 1/2 0.029 0.030 0.036 0.166
1/3 0.021 0.024 0.027 0.121 1 0.038 0.045 0.042 0.150
1/2 0.019 0.019 0.022 0.090 2 0.023 0.023 0.025 0.150
1 0.015 0.016 0.016 0.086 3 0.031 0.032 0.039 0.171

∆ D2 λ D2
GEM GEM LS Wav. GEM GEM LS Wav.
(K=2) (K=3) (K=2) (K=3)

0 0.014 0.015 0.014 0.083 4 0.022 0.018 0.031 0.115
5 0.017 0.018 0.024 0.086 6 0.040 0.032 0.065 0.285
10 0.026 0.026 0.049 0.207 8 0.053 0.047 0.076 0.458
16 0.025 0.025 0.064 0.339 10 0.109 0.091 0.159 0.645
21 0.044 0.044 0.133 0.591 12 0.171 0.141 0.206 1.043

Weibull, the experimental study shows that the number of component K = 3
is more adapted than K = 2. This point suggests to adopt a suitable strategy
for choosing the optimal number of components of the mixture as regards of
the likelihood criterion and the complexity of the model. For this purpose
the adaptation of Bayesian Information Criteria (BIC) (Schwarz 1978) could
be an interesting direction of work. Final results on physical signals in the
context of a real application in the railway domain show that the GEM al-
gorithm can represent an efficient mean for denoising real signals in presence
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Table 4: Results obtained for DS2+noise in the case of small values of the
mixture component variances : σ2

1 = 5.10−4.

σ
2

1

σ
2

2

D2 (×10−4)

GEM GEM LS Wav.
(K=2) (K=3)

1/5 0.56 0.57 0.57 0.39
1/4 0.56 0.56 0.56 0.30
1/3 0.56 0.56 0.56 0.30
1/2 0.54 0.54 0.54 0.22
1 0.54 0.54 0.54 0.16
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Figure 5: Denoised signal corresponding to the experimental signal of figure
3.

of asymmetrical noise.
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