Allou Samé 
  
Latifa Oukhellou 
  
Etienne Côme 
  
Patrice Aknin 
email: aknin@inrets.fr
  
Mixture-model-based signal denoising

Keywords: Denoising, Asymmetrical noise, Regression, Gaussian mixture model, EM algorithm, GEM algorithm

This paper proposes a new signal denoising methodology for dealing with asymmetrical noises. The adopted strategy is based on a regression model where the noise is supposed to be additive and distributed following a mixture of Gaussian densities. The parameters estimation is performed using a Generalized EM (GEM) algorithm. Experimental studies on simulated and real signals in the context of a diagnosis application in the railway domain reveal that the proposed approach performs better than the least-squares and wavelets methods.

Introduction

Denoising or noise reduction is a subject of research in both signal and image processing. The aim is to remove the additive noise from the signal without distorting it. Various linear and non linear methods have been proposed to solve this problem. They lead to different solutions depending on the noise model and the signal properties which are closely linked to applications.

One of the most popular and recent denoising approaches is based on wavelet analysis [START_REF] Mallat | A theory for multiresolution signal decomposition: the wavelet representation[END_REF][START_REF] Mallat | A wavelet tour of signal processing[END_REF]. It consists in applying thresholding algorithms to the wavelet coefficients in order to extract the most significant of them. This method allows an unknown function to be reconstructed from noisy data, but its theoretical framework involves a normal noise density and requires an optimal choice of the threshold. For this purpose, several thresholding rules have been proposed and successfully applied (Dohono et al. (1996), [START_REF] Ogden | Data dependent wavelet thresholding in nonparametric regression with change-point applications[END_REF].

Many statistical approaches like least-squares method have also been proposed. In this paper, we explore a strategy for denoising based on mixture models which are widely used in clustering (Dempster et al. 1977, McLachlan and[START_REF] Mclachlan | The EM Algorithm and Extentions[END_REF]. The basic idea of the proposed approach is to fit a regression model on the signal with the assumption that the error term (or additive noise) follows a mixture of normal distributions. The parameters of such a model are then estimated by means of a Generalized Expectation Maximization (GEM) algorithm.

It should be noticed that this approach is different from the wavelet method, which is dedicated to reconstruct an unknown signal in a white Gaussian noise. Here, we assume a parametric regression model of the signal and a mixture of normal distributions for the noise. In many situations where the normal assumption cannot be satisfied, the normal mixtures seem to be suitable because they can represent a wide variety of noise densities including both symmetrical and non-symmetrical cases [START_REF] Marron | Exact mean integrated squared error[END_REF].

The paper is organized as follows. At first, we present the regression model and introduce some preliminary notations. Then, we detail the parameter estimation procedure via a GEM algorithm. Section four gives the performances of the approach illustrated on simulated examples and section five is concerned with an application in the railway domain.

Additive noise and mixture model

A signal is supposed to be represented by an independent sample ((x 1 , y 1 ), . . . , (x n , y n )) where variables x and y, defined on IR, represent the dependent variable (for example the time) and the independent variable (the signal at time x), respectively. Polynomial regression functions have been chosen, for their simplicity and their coherence with many real signals. An observed signal is then modeled by

y = a T x + ε, (1) 
where a = (a 0 , a 1 , a 2 , . . . , a m ) T , x = (1, x, x 2 , . . . , x m ) T , m is the polynomial order and ε is an additive noise whose distribution does not depend on x.

Usually, ε is assumed to be normally distributed with zero mean and variance σ 2 , and the estimation of the model parameters proceeds by solving a classical least-squares problem, but in certain practical problems the presence of other sources of noise results in an asymmetrical non-normal noise which makes the least-squares method unsuitable.

To solve this problem, the noise ε is assumed to be centered and distributed according to a mixture of K normal densities

f (ε) = K k=1 π k N (ε; µ k , σ 2 k ) (2)
where N (•; µ k , σ 2 k ) is the normal distribution density with mean µ k and variance σ 2 k , the π k ′ s are the proportions of the mixture. The proportions π k and the means µ k satisfy the constraints

K k=1 π k = 1 and K k=1 π k µ k = 0. The component density N (•; µ k , σ 2 
k ) can thus be regarded as one source of noise. The well known flexibility of mixture distributions allows the regression model to handle both symmetrical and non-symmetrical noises [START_REF] Bartolucci | The use of mixtures for dealing with nonnormal regression errors[END_REF].

The next section shows how the parameters of the proposed model can be estimated.

Parameters estimation via the GEM algorithm

The model parameters are estimated by maximizing the conditional likelihood or equivalently the conditional log-likelihood defined by

L(Ψ) = n i=1 log p(y i |x i ; Ψ), (3) 
where Ψ = (a, π 1 , . . . , π K , µ 1 , . . . , µ K , σ 2 1 , . . . , σ 2 K ) is the parameter vector to be estimated. It can be easily verified that, conditionally on x, the variable y has the mixture distribution density

p(y|x; Ψ) = K k=1 π k N (y ; a T x + µ k , σ 2 k ).
The (observed) log-likelihood is then written

L(Ψ) = n i=1 log K k=1 π k N y i ; a T x i + µ k , σ 2 k , (4) 
where

x i = (1, x i , x 2 i , . . . , x m i ).
This equation clearly highlights that the proposed model is simply a constrained Gaussian mixture of regressions [START_REF] Aitkin | Mixture models, outliers and the EM algorithm[END_REF]Wilson 1980, DeSarbo and[START_REF] Desarbo | A maximum likelihood methodology for clusterwise linear regression[END_REF] in which the coefficient vector a is common for each component.

The Expectation-Maximization (EM) algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF]) is used to perform the maximization of the log-likelihood (4) which can not be solved directly. Let us recall that the EM algorithm requires the specification of complete data whose log-likelihood can be maximized more easily than the observed log-likelihood (4). In this situation, the complete data are obtained by adding to each observation (x i , y i ) its component membership variable z i ∈ {1, . . . , K}. Using the binary coding of z i , z ik = 1 if z i = k and z ik = 0 otherwise, the complete data log-likelihood is written as

L C (Ψ) = n i=1 K k=1 z ik log π k N y i ; a T x i + µ k , σ 2 k , (5) 
Given an initial parameter vector Ψ (0) , the EM algorithm consists in alternating the two following steps until convergence.

E step : Expectation

This step consists in evaluating the expectation of the complete data loglikelihood conditionally on the observed data and the current parameter vector Ψ (q) :

Q(Ψ; Ψ (q) ) = E L C (Ψ)|x 1 , . . . , x n , y 1 , . . . , z n ; Ψ (q) = n i=1 K k=1 t (q) ik log π k N y i ; a T x i + µ k , σ 2 k (6)
where L C (Ψ) is the complete data log-likelihood and

t (q) ik = E(z ik |x i , y i ; Ψ (q) ) = P (z ik = 1|x i , y i ; Ψ (q) ) = π (q) k N (y i ; a (q) T x i + µ (q) k , σ (q) k 2 ) K ℓ=1 π (q) ℓ N (y i ; a (q) T x i + µ (q) ℓ , σ (q) ℓ 2 ) (7)
is the posterior probability that y i originates from the kth mixture component, given x i . Thus, the E step simply requires the computation of the posterior probabilities t (q)

ik .

M step : Maximization

This step consists in computing the parameter vector Ψ (q+1) that maximizes with respect to Ψ, the quantity Q(Ψ; Ψ (q) ) which, in our situation, can be written

Q(Ψ; Ψ (q) ) = k,i t (q) ik log π k - 1 2 k,i t (q) ik log(2π) + log σ 2 k + (y i -(a T x i + µ k )) 2 σ 2 k . ( 8 
)
As in the classical Gaussian mixture situation, it can be verified that the proportions maximizing Q are given by

π (q+1) k = n i=1 t (q) ik n . (9) 
The simultaneous maximization with respect to the parameters a, (µ k ) and (σ 2 k ) cannot be performed analytically. But it can be shown that, for fixed parameters (σ 2 k ), the optimum parameter vector [a T , µ 1 , . . . , µ K ] is given by

[a T , µ 1 , . . . , µ K ] T = K k=1 H T k H k -1 K k=1 H T k Y k , (10) 
with

H k = 1 σ k • diag t (q) 1k , . . . , t (q) nk • X k Y k = 1 σ k • diag t (q) 1k , . . . , t (q) nk • Y,
where diag(e 1 , . . . , e n ) is the diagonal matrix with diagonal elements e 1 , . . . , e n , and

X k =         x T x T n 0 . . . 0 1 0 . . . 0         and Y =         y 1 . . . y i . . . y n         .
Notice that X k is a n × (K + m + 1) matrix with all elements equal 0 except those in the columns 1, . . . , m + 1 and k + m + 1.

On the other hand, for fixed parameters a and (µ k ), it can be shown that the parameter σ 2 k maximizing Q is given by

σ 2 k = n i=1 t (q) ik y i -(a T x i + µ k ) 2 n i=1 t (q) ik . ( 11 
)
Thus, we propose to compute the parameter vector Ψ (q+1) as follows:

(a) compute a (q+1) , µ The strategy described by (a) and (b), which fulfil Q(Ψ (q+1) ; Ψ (q) ) ≥ Q(Ψ (q) ; Ψ (q) ), is commonly used when the maximization cannot be directly performed and also known as a conditional-M step [START_REF] Mclachlan | The EM Algorithm and Extentions[END_REF]. It provides a Generalized EM algorithm (GEM) [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] whose convergence properties are the same as those of the EM algorithm. Usually, the GEM algorithm is iterated for a number of random initial parameters Ψ (0) and only the parameter that provides the largest log-likelihood value is adopted.

Experiments on simulated signals

This section is designed to evaluate the performance of the proposed GEM algorithm as regards the quality of estimation, by using simulated signals.

For this purpose, results obtained with GEM are compared with those of the and wavelets methods. Let us remind that least-squares and wavelet denoising methods [START_REF] Donoho | Density estimation by wavelet thresholding[END_REF] are based on the assumption that the noise has a zero mean normal distribution.

Simulation protocol

Each simulated signal is generated according to a polynomial regression function g(x) (the denoised signal that is to be recovered) and an asymmetrically distributed noise. For all simulated signals, we consider a sample size n = 600 and the value x i = i for the dependant variable (i = 1, ..., n). In the following, we describe the setting of the polynomial coefficients, the type of asymmetrical noise distribution, the criteria used to measure the estimation quality, and the performed experiments.

Polynomial coefficients

focus here only on second degree polynomial functions as the denoised signal, in accordance with the real measured signals described in section 5. Since no significant influence of the regression coefficients on the quality of estimation has been observed, only one polynomial function with coefficients vector a = (1.2; 3 • 10 -5 ; -5 • 10 -5 ) is considered in all the described simulations below, i.e., g(x) = 1.2 + 3 • 10 -5 x -5 • 10 -5 x 2 . Relatively small values (-5•10 -5 and 3•10 -5 ) of the polynomial coefficients have been chosen to get simulated signals whose amplitude is very close to the real signals amplitude.

Asymmetrical noise distributions

Two different types of asymmetric distributions have been adopted for the noise generation:

• a two-components Gaussian mixture distribution with density

f (ε; π 1 , π 2 , µ 1 , µ 2 , σ 2 1 , σ 2 2 ) = π 1 N (ε; µ 1 , σ 2 1 ) + π 2 N (ε; µ 2 , σ 2 2 ) (12)
with mean 2 k=1 π k µ k = 0;

• a three-parameters Weibull distribution

f (ε; κ, λ, α) = κ λ ε -α λ κ-1 exp - ε -α λ κ ]α;+∞[ (ε), (13) 
with α = -λΓ(1+ 1 κ ), Γ being the gamma function. This particular choice of the parameter α ensures a zero mean distribution.

Figures 1 and2 show examples of signals simulated according to the adopted polynomial regression and the two noise distributions (Gaussian mixture and Weibull). 

Evaluation criteria

The quality of estimation provided by GEM, least-squares and wavelets is jointly evaluated by the following criteria measuring the quality of the estimated (denoised) signal and the quality of the noise estimation, respectively:

• The L 2 distance between the true regression function g(x i ) with parameter a and the estimated regression function g(x i ) with parameter a, defined by 

D 2 (g, g) = 1 n n i=1 [a T x i -a T x i ] 2 ; ( 14 
KL(f, f ) = IR f (x) log f (x) f (x) dx. ( 15 
)
The Kullback-Leibler divergence is computed using Monte Carlo integration method since its evaluation is not analytically straightforward in the case of Gaussian mixtures.

Performed experiments

Four sets of experiments have been performed for this simulation study.

• The first set of experiments studies the quality of the estimates when the ratio σ 2 1 /σ 2 2 of the Gaussian mixture variances varies in the set {1/5, 1/4, 1/3, 1/2, 1}, for equal proportions π 1 = π 2 = 0.5, variance σ 2 1 = 2, and ∆ = |µ 1µ 2 | = 4.

• The second set studies the quality of the estimates when the ratio π 1 /π 2 of the Gaussian mixture proportions varies in the set {1/3, 1/2, 1, 2, 3}, for equal variances σ 2 1 = σ 2 2 = 4, and ∆ = 4.

• The third set studies the quality of the estimates when the distance ∆ between the means of the Gaussian mixture components varies in the set {0, 5, 10, 16, 21}, for proportions π 1 = 0.7, π 2 = 0.3 and variances σ 2 1 = 2, σ 2 2 = 10.

• The fourth set of experiments studies the quality of the estimates when the parameter λ of the Weibull distribution varies in the set {5, 10, 15, 20, 25, 30}, for a parameter κ = 1.4.

Results

Table 1 represents, for the four sets of experiments, the D 2 distance and the KL divergence obtained with the methods GEM (applied to K = 2 and K = 3 components), least-squares and wavelets. Notice that each value of D 2 and KL is an average over 30 different simulated samples (Monte-Carlo simulations). As it can be seen, GEM applied with K = 2 or K = 3 performs globally better than its competitors, for any modification of noise distribution parameters σ 2 1 /σ 2 2 , π 1 /π 2 , ∆ or α, in terms of the D 2 distance. Not surprisingly, the KL divergence for GEM is distinctly better for any situation; this behavior illustrates that the mixture model is more suitable for dealing with various situation of asymmetrical noise distribution. When the distance ∆ or the Weibull parameter λ increases, it can be observed that the D 2 distance for all methods increases. In practice, this phenomenon, even more pronounced for least-squares and wavelets, is due to an increase of the noise in addition to the noise asymmetry. It can also be observed that the number of components K = 3 is more adapted for Weibull distribution.

Application to defect diagnosis in the railway domain

In the railway domain, signal denoising is an important preprocessing task for defect diagnosis. Most of the automatic diagnosis systems are indeed based on the analysis of measurement signals which are often corrupted with noise.

Our application concerns the diagnosis of the track/vehicle transmission system in the French high speed lines [START_REF] Aknin | Track circuit diagnosis by automatic analysis of inspection car measurements[END_REF]. The identification of two sources of noise led us to consider that the noise is distributed according to a mixture of two normal densities, rather than a single normal density.

The first task consists in segmenting the complete signal into local arches with a piecewise approach, and the second task is focused on the denoising procedure on each arch. Figure 3 shows an example of a measurement signal. The evaluation of the proposed approach performances on these experimental signals is not possible because the original signals and noise distributions are not available. For this reason, we choose to test the proposed denoising algorithm on signals whose original denoised signals are given by an electrical model, which allows to achieve realistic simulations of the system [START_REF] Aknin | Track circuit diagnosis by automatic analysis of inspection car measurements[END_REF]. We use two different denoised signals called DS1 and DS2, composed of n = 778 obervations (see figure 4). The same noise distributions (Gaussian mixture and Weibull) as for the simulation study are added to DS1 and DS2. The quality of denoised signals reconstruction is evaluated using the D 2 distance. Unlike the cases studied in section 4, the signals considered in this part are generated with non polynomial regression Table 1: D 2 distance and KL divergence in relation to σ 2 1 /σ 2 2 , π 1 /π 2 , ∆ and parameter λ of the Weibull distribution, obtained with GEM (applied with K = 2 and K = 3), least-squares and wavelets. functions but we try to approximate them with second degree polynomial functions.

σ 2 1 σ 2 2 D 2 KL GEM GEM LS Wav. GEM GEM LS Wav. (K=2) (K=3) (K=2) (K=3) 1/5 0.
Results obtained for DS1 and DS2 using the same noise distribution parameters as in the simulation study are shown in tables 2 and 3. It will be observed that, once again, our proposed GEM algorithm performs better than least-squares and wavelets. The relative behavior of the compared methods are almost the same as for the simulation study.

In rare situations where variances have small values, wavelets denoising has better performances than GEM and least-squares. This remark can be illustrated, for instance, in the case of the denoised signal DS2, by setting σ 2 1 = 5 • 10 -4 , π 1 = π 2 = 0.5, ∆ = 0.05 and choosing values of σ 2 2 corresponding to different ratios σ 2 1 /σ 2 2 (see Table 4). The good performances of wavelets in this case, can be attributed to the non polynomial nature of the denoised signal DS2. 

Conclusion

An original methodology for signal denoising was proposed in this paper. This methodology is based on a polynomial regression model where the noise is supposed to be additive and distributed following a Gaussian mixture distribution. A Generalized EM (GEM) algorithm is developed to estimate both the noise distribution and the polynomial regression coefficients. The experimental study on simulated signals reveals that the GEM algorithm provides reasonably good results for relatively low degree of the regression function, compared to the standard least-squares and wavelets methods. When the noise is distributed according to certain asymmetric distributions like Weibull, the experimental study shows that the number of component K = 3 is more adapted than K = 2. This point suggests to adopt a suitable strategy for choosing the optimal number of components of the mixture as regards of the likelihood criterion and the complexity of the model. For this purpose the adaptation of Bayesian Information Criteria (BIC) [START_REF] Schwarz | Estimating the number of components in a finite mixture model[END_REF]) could be an interesting direction of work. Final results on physical signals in the context of a real application in the railway domain show that the GEM algorithm can represent an efficient mean for denoising real signals in presence of asymmetrical noise.

  11), where the parameters a (q+1) and µ (q+1) k have been inserted in the right hand side.
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 1 Figure 1: (left) Example of a signal simulated according to a second degree polynomial function and a Gaussian mixture distribution, and its true denoised signal; (right) corresponding noise mixture distribution and its component densities

Figure 2 :

 2 Figure 2: (left) Example of a signal simulated according to a second degree polynomial function and a Weibull distribution, and its true denoised signal; (right) corresponding noise Weibull distribution

Figure 3 :Figure 4 :

 34 Figure 3: Experimental signal recorded on a track/vehicle transmission system

Figure 5 :

 5 Figure 5: Denoised signal corresponding to the experimental signal of figure 3.

Table 2 :

 2 D 2 distance in relation to σ 2 1 /σ 2 2 , π 1 /π 2 , ∆ and parameter λ of the Weibull distribution; GEM, least-squares and wavelets are applied to noised signals based on DS1.

	σ 2 1 σ 2 2	GEM	D 2 GEM	LS	Wav.	π 1 π 2	GEM	D2 GEM	LS	Wav.
		(K=2) (K=3)				(K=2)	(K=3)		
	1/5	0.025	0.026	0.040	0.137	1/3	0.024	0.025	0.032	0.127
	1/4	0.019	0.019	0.031	0.115	1/2	0.025	0.028	0.031	0.144
	1/3	0.019	0.019	0.026	0.091	1	0.027	0.028	0.031	0.165
	1/2	0.023	0.024	0.027	0.104	2	0.029	0.031	0.034	0.136
	1	0.014	0.015	0.016	0.067	3	0.039	0.039	0.043	0.133
	∆		D 2			λ		D2		
		GEM	GEM	LS	Wav.		GEM	GEM	LS	Wav.
		(K=2) (K=3)				(K=2)	(K=3)		
	0	0.012	0.012	0.015	0.055	4	0.012	0.018	0.029	0.112
	5	0.018	0.017	0.031	0.098	6	0.046	0.039	0.069	0.239
	10	0.030	0.030	0.054	0.175	8	0.069	0.063	0.118	0.422
	16	0.031	0.031	0.091	0.318	10	0.122	0.093	0.151	0.601
	21	0.043	0.043	0.125	0.512	12	0.153	0.126	0.207	0.793

Table 3 :

 3 D 2 distance in relation to σ 2 1 /σ 2 2 , π 1 /π 2 ,∆ and parameter λ of the Weibull distribution; GEM, least-squares and wavelets are applied to noised signals based on DS2.

	σ 2 1 σ 2 2	GEM	D 2 GEM	LS	Wav.	π 1 π 2	GEM	D2 GEM	LS	Wav.
		(K=2) (K=3)				(K=2)	(K=3)		
	1/5	0.021	0.021	0.028	0.109	1/3	0.027	0.028	0.029	0.118
	1/4	0.022	0.022	0.035	0.159	1/2	0.029	0.030	0.036	0.166
	1/3	0.021	0.024	0.027	0.121	1	0.038	0.045	0.042	0.150
	1/2	0.019	0.019	0.022	0.090	2	0.023	0.023	0.025	0.150
	1	0.015	0.016	0.016	0.086	3	0.031	0.032	0.039	0.171
	∆		D 2			λ		D2		
		GEM	GEM	LS	Wav.		GEM	GEM	LS	Wav.
		(K=2) (K=3)				(K=2)	(K=3)		
	0	0.014	0.015	0.014	0.083	4	0.022	0.018	0.031	0.115
	5	0.017	0.018	0.024	0.086	6	0.040	0.032	0.065	0.285
	10	0.026	0.026	0.049	0.207	8	0.053	0.047	0.076	0.458
	16	0.025	0.025	0.064	0.339	10	0.109	0.091	0.159	0.645
	21	0.044	0.044	0.133	0.591	12	0.171	0.141	0.206	1.043

Table 4 :

 4 Results obtained for DS2+noise in the case of small values of the mixture component variances : σ 2 1 = 5.10 -4 .

	σ 2 1 σ 2 2			D 2 (×10 -4 )	
		GEM	GEM	LS Wav.	
		(K=2) (K=3)		
	1/5	0.56		0.57	0.57 0.39	
	1/4	0.56		0.56	0.56 0.30	
	1/3	0.56		0.56	0.56 0.30	
	1/2	0.54		0.54	0.54 0.22	
	1	0.54		0.54	0.54 0.16	
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