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Introduction

Let (L t , t ≥ 0) be a real-valued Lévy process, i.e. a process with stationary independent increments and càdlàg sample paths. The distribution of the process (L t , t ≥ 0) is completely specified by the characteristic function of the random variable L t which has the form:

(1)

ψ t (u) = E(exp iuL t ) = exp t(iu b - 1 2 u 2 σ 2 + R * (e iux -1 -iux1 |x|≤1 )N (dx)),
where b ∈ R, σ 2 ≥ 0 and N (dx) is a positive measure on R * satisfying R *

x 2 ∧ 1 N (dx) < ∞

(see e.g. [START_REF] Bertoin | Lévy processes[END_REF] or Sato (1997)). Thus, the statistical problem for Lévy processes is the joint estimation of its characteristic triple ( b, σ 2 , N ) where appears a finite-dimensional parameter ( b, σ 2 ) and an infinite dimensional parameter N , the Lévy measure. In most recent contributions, authors consider a discrete time observation of the sample path, with regular sampling interval ∆. Therefore, statistical procedures are based on the i.i.d. sample composed of the increments (Z k = Z ∆ k = L k∆ -L (k-1)∆ , k = 1, . . . , n). In the general case, the distribution of the r.v. Z k is not explicitly given as a function of ( b, σ 2 , N ). This is why authors rather use the relationship between the characteristic function ψ ∆ of Z k and the characteristic triple. Assuming that N (dx) = n(x)dx admits a density, several papers concentrate on the estimation of the Lévy density under various assumptions on the characteristic triple, including the case of b = σ 2 = 0 or assuming stronger integrability conditions on the Lévy density (see e.g. [START_REF] Watteel | Nonparametric estimation of the canonical measure for infinitely divisible distributions[END_REF], Jongbloed and van der Meulen (2006), van Es et al. (2007), [START_REF] Figueroa-López | Nonparametric estimation for Lévy models based on discrete-sampling[END_REF] and the references therein, Comte andGenon-Catalot (2008, 2009a,b)). The joint estimation of ( b, σ 2 , N ) is investigated in [START_REF] Neumann | Nonparametric estimation for Lévy processes from low-frequency observations[END_REF] or [START_REF] Gugushvili | Nonparametric estimation of the characteristic triplet of a discretely observed Lévy process[END_REF]. The methods and results differ according to the asymptotic point of view. One may consider that the sampling interval ∆ is fixed and that n tends to infinity (low frequency data). This approach, which is quite natural, raises mathematical difficulties and does not take into account the underlying continuous time model properties. One may consider that ∆ = ∆ n tends to 0 as n tends to infinity (high frequency data). Under the assumption that ∆ n tends to 0 within a fixed length time interval (n∆ n = t fixed), the estimation of σ has been widely investigated for Lévy processes (see e.g. [START_REF] Woerner | Power and multipower variation: Inference for high frequency data[END_REF], [START_REF] Barndorff-Nielsen | Limit theorems for multipower variation in the presence of jumps[END_REF], [START_REF] Jacod | Asymptotic properties of power variations of Lévy processes[END_REF]). However, the Lévy density cannot be identified from observations within a finite-length time interval. To identify all parameters in the high-frequency context, one has to assume both that ∆ n tends to 0 and n∆ n tends to infinity. This is the point of view adopted in this paper. Our main focus is the nonparametric estimation of the Lévy density n(.) by an adaptive deconvolution method which generalizes the study of Comte and Genon-Catalot (2009a). We also study estimators of the other parameters. More precisely, we assume that the Lévy density satisfies (H1) R x 2 n(x)dx < ∞.

For statistical purposes, this assumption, which was proposed in [START_REF] Neumann | Nonparametric estimation for Lévy processes from low-frequency observations[END_REF], has several useful consequences. First, for all t, EL 2 t < +∞ and as R (e iux -1iux)n(x)dx is well defined, we get the following expression for (1):

(2)

ψ t (u) = E(exp iuL t ) = exp t(iub - 1 2 u 2 σ 2 + R (e iux -1 -iux)n(x)dx),
where b = EL 1 has a statistical meaning (contrary to b). Thus, the sample path can be expressed as:

(3)

L t = bt + σW t + X t ,
where (W t ) and (X t ) are independent processes, (W t ) is a Brownian motion, (X t ) a square integrable pure-jump martingale:

X t = ]0,t] R *
x(p(du, dx)dun(x)dx), and p(du, dx) = s≥0 δ s,∆Ls (du, dx)

is the random Poisson measure associated with the jumps of (L t ) (or (X t )) with intensity dun(x)dx.

In Section 2, we present our main assumptions and some preliminary properties. In Section 3, we assume that σ = 0 and study the estimation of the function h(x) = x 2 n(x). Using a sample of size 2n, we build two collections of estimators ( ĥm , hm ) m>0 indexed by a cut-off parameter m. The collections are obtained by Fourier inversion of two different estimators of the Fourier transform h * of the function h. The estimators of h * are built using empirical estimators of the characteristic function ψ ∆ and its first two derivatives. First, we give a bound for the L 2 -risk of ( ĥm , hm ) for fixed m. Then, introducing an adequate penalty, we propose a data-driven choice of the cut-off parameter which yields an estimator ( ĥ m, h m) for each collection. The L 2 -risk of these estimators is studied. We prove that the optimal rate of convergence is automatically reached on Sobolev classes of regularity for the function h.

In Section 4, we consider the general case. To reach the Lévy density and get rid of the unknown σ 2 , we must now use derivatives of ψ ∆ up to the order 3 and we estimate the function p(x) = x 3 n(x) developing the Fourier inversion approach and adaptive choice of the cut-off parameter as for h. It is worth stressing that the point of view of small sampling interval is crucial to our study. Indeed, it helps obtaining simple estimators of ψ ∆ and its successive derivatives which are used to estimate the Fourier transform p * pf p. Section 5 is devoted to the estimation of (b, σ). We study classical empirical means of the observations. This gives an estimator of b but cannot give estimators of σ. To estimate σ, we consider power variation estimators, introduced in [START_REF] Woerner | Power and multipower variation: Inference for high frequency data[END_REF], [START_REF] Barndorff-Nielsen | Limit theorems for multipower variation in the presence of jumps[END_REF], [START_REF] Jacod | Asymptotic properties of power variations of Lévy processes[END_REF], Aït-Sahalia and [START_REF] Jacod | Asymptotic properties of power variations of Lévy processes[END_REF], under the asymptotic framework of high frequency data within a long time interval. Moreover, a new estimator of σ is obtained from the non parametric study. In Section 6, we give examples of Lévy models satisfying our set of assumptions. We provide numerical simulation results in Section 7. Section 9 contains the main proofs. In Section 10, two classical results, used in proofs, are recalled.

Assumptions and preliminary properties.

Let us consider the two functions

h(x) = x 2 n(x), p(x) = x 3 n(x),
and the assumptions

(H2) (k) R |x| k n(x)dx < ∞. (H3) h belongs to L 2 (R). (H4) x 8 n 2 (x)dx = x 4 h 2 (x)dx < ∞ (H5) p belongs to L 2 (R). (H6) x 12 n 2 (x)dx = x 6 p 2 (x)dx < ∞ Assumption (H2)(k) is a moment assumption. Indeed, according to Sato (1999, Section 5.25, Theorem 5.23), E|L t | k < ∞ is equivalent to |x|>1 |x| k n(x)dx < ∞.
Below, for each stated result, the required value of k is given. Under (H1), the function h is integrable and Section 3 is devoted to the nonparametric estimation of h under the additional assumptions (H3)-(H4). Assumption (H4) is only required for the adaptive result. Under (H1)-(H2)(3), the function p is integrable and Section 4 concerns the estimation of p under (H5)-(H6).

Properties of the moments of L ∆ = Z ∆ 1 = Z 1 for small ∆ are used in the proofs below. Lemma 2.1. Let p ≥ 1 be an integer and assume (H1)-(H2)(p) with p ≥ 3. Then, E(|Z 1 | p ) < +∞ and E(Z 1 ) = b∆, Var(Z 1 ) = ∆(σ 2 + x 2 n(x)dx) and for 3 ≤ ≤ p, E(Z 1 ) = ∆c + o(∆) where c = x n(x)dx.

Proof. Under the assumption, ψ ∆ is p-times derivable and the result follows by computing the successive derivatives of ψ ∆ . Thus, under (H1), (H2)(p), E(Z 1 /∆) is bounded for all ≤ p, for all ∆.

More precise results on the asymptotic behaviour of (1/∆)Ef (Z 1 ) for unbounded functions f are given in Figueroa-López (2008) (see the Appendix). In the sequel, results on the behaviour of the characteristic function ψ ∆ (see [START_REF] Barndorff-Nielsen | Modelling by Lévy processes for financial econometrics[END_REF]) for small ∆ are needed.

Lemma 2.2. Under (H1), |ψ ∆ (u) -1| ≤ ∆|u|(c(u) + σ 2 |u|) where c(u) = |b| + | u 0 |h * (v)|dv|, h * (v) = e ivx h(x)dx denotes the Fourier transform of h. If h * is integrable on R, then |ψ ∆ (u) -1| ≤ ∆|u|(|b| + |h * | 1 + |u|σ 2 ). Proof. By formula (2), under (H1), ψ ∆ is C 1 with: (4) ψ ∆ (u) = ∆ψ ∆ (u)(φ(u) -σ 2 u),
where we have set, using that e iux -1 = ix u 0 e ivx dv:

(5) φ(u) = ib - u 0 h * (v)dv. We have |φ(u)| ≤ |b| + | u 0 |h * (v)
|dv| and by the Taylor formula, ψ ∆ (u) -1 = uψ ∆ (c u u) for some c u ∈ (0, 1). The result follows.

Case of no Gaussian component.

In this section, we assume that σ 2 = 0 and focus on the nonparametric estimation of h. For reasons that will appear below, we assume that we have at our disposal a 2n-sample, (Z k ) 1≤k≤2n , with

Z k = Z ∆ k = L k∆ -L (k-1)∆ .
We assume that ∆ = ∆ n tends to 0 and n∆ n tends to infinity. Hence, ∆ and Z k depend on n. However, to simplify notations, we omit the dependence on n and simply write ∆, Z k .

3.1. Definition of estimators depending on a cut-off parameter. For a complex valued function f belonging to L 1 (R), we denote its Fourier transform by f * (u) = e iux f (x)dx. For integrable and square integrable functions f, f 1 , f 2 , we use the following notations:

||f || = |f (x)| 2 dx, < f 1 , f 2 >= f 1 (x) f2 (x)dx,
(z denotes the conjugate of the complex number z). We have:

(f * ) * (x) = 2πf (-x), < f 1 , f 2 >= 1 2π < f * 1 , f * 2 > .
By formula (2), under (H1), ψ ∆ is C 2 and we have, as σ 2 = 0 (see ( 5)):

ψ ∆ (u) ψ ∆ (u) = i∆(b + e iux -1 x h(x)dx) = ∆φ(u).
Derivating again gives:

ψ" ∆ (u)ψ ∆ (u) -(ψ ∆ (u)) 2 ψ 2 ∆ (u) = -∆ e iux h(x)dx = -∆h * (u).
The construction of estimators is based on the formulae:

(6) h * (u) = - 1 ∆ ψ" ∆ (u)ψ ∆ (u) -(ψ ∆ (u)) 2 ψ 2 ∆ (u) = - 1 ∆ ψ" ∆ (u) ψ ∆ (u) - (ψ ∆ (u)) 2 ψ 2
∆ (u) and the high frequency setting which yields that for all u, lim ∆→0 ψ ∆ (u) = 1. By splitting the 2n-sample into two independent subsamples of n observations, we introduce the following empirical unbiased estimators of ψ ∆ , ψ ∆ , ψ ∆ :

ψ(j) ∆,q (u) = 1 n qn k=1+(q-1)n (iZ k ) j e iuZ k , j = 0, 1, 2, q = 1, 2.
We also define, based on the full sample, the estimator of ψ ∆ :

ψ(2) ∆ (u) = 1 2n 2n k=1 (iZ k ) 2 e iuZ k .
We now build estimators of the Fourier transform h * of h. Considering the first expression of h * in (6), we replace ψ ∆ , ψ ∆ , ψ ∆ in the numerator by the empirical estimators built on the two independent subsamples of size n. In the denominator, ψ 2 ∆ is simply replaced by 1. This yields:

(7) ĥ * (u) = 1 ∆ ψ(1) ∆,1 (u) ψ(1) ∆,2 (u) - ψ(2) ∆,1 (u) ψ(0)
∆,2 (u . Hence, using independence of the two subsamples,

E ĥ * (u) = 1 ∆ (ψ ∆ (u)) 2 -ψ" ∆ (u)ψ ∆ (u) = h * (u) + h * (u)(ψ 2 ∆ (u) -1).
Introducing a cut-off parameter m, we define an associated estimator of h, by:

ĥm (x) = 1 2π πm -πm
e -iux ĥ * (u)du.

This means that ĥ * m (u) = ĥ * (u)1 

(x) = 1 n 2 ∆ 1≤j,k≤n (Z 2 k -Z k Z n+j ) sin(πm(Z k + Z j+n -x)) π(Z k + Z j+n -x) .
We also define another estimator of h * of h by setting:

(8) h * (u) = - 1 ∆ ψ(2) ∆ (u).
Here, using (6), we get

(9) E h * (u) = - 1 ∆ ψ" ∆ (u) = h * (u) + h * (u)(ψ ∆ (u) -1) -∆ψ ∆ (u)φ 2 (u).
Thus, h * is simpler but has an additional bias term. We set:

(10) hm (x) = 1 2π πm -πm e -iux h * (u)du = 1 2n∆ 2n k=1 Z 2 k sin(πm(Z k -x)) π(Z k -x) .
3.2. Risk for a fixed cut-off parameter. Next, let us define

h m (x) = 1 2π πm -πm e -iux h * (u)du.
Then we can prove the following result Proposition 3.1. Assume that (H1)-(H2)( 4) and (H3) hold. Then we have

(11) E( ĥm -h 2 ) ≤ h m -h 2 + 72E(Z 4 1 /∆) m n∆ + 4∆ 2 π πm -πm u 2 c 2 (u)|h * (u)| 2 du.
And,

(12) E( hm -h 2 ) ≤ h m -h 2 + E(Z 4 1 /∆) m n∆ + 2∆ 2 π πm -πm u 2 c 2 (u)|h * (u)| 2 du + C∆ 2 B m , with C a constant, c(u) is defined in Lemma 2.2, B m is defined in (16) and satisfies B m = O(m) if h * ∈ L 1 (R) and B m = O(m 5 ) otherwise.
Proof. First, the Parseval formula gives ĥmh 2 = (1/(2π)) ĥ * mh * 2 and we can note that h

* (u) -h * m (u) = h * (u)1 I |u|≥πm is orthogonal to ĥ * m -h * m which has its support in [-πm, πm]. Thus, ĥm -h 2 = 1 2π ( h * -h * decomposition, we get E( ĥm -h m 2 ) ≤ 1 π E πm -πm | ĥ * (u) -E ĥ * (u)| 2 du + 1 π πm -πm |ψ 2 ∆ (u) -1| 2 |h * (u)| 2 du ≤ 1 π πm -πm
V ar( ĥ * (u))du + 4∆ 

∆( ĥ * (u) -E( ĥ * (u))) = ( ψ(1) ∆,1 (u) -ψ ∆ (u))( ψ(1) ∆,2 (u) -ψ ∆ (u)) +( ψ(1) ∆,1 (u) -ψ ∆ (u))ψ ∆ (u) + ( ψ(1) ∆,2 (u) -ψ ∆ (u))ψ ∆ (u) -( ψ(2) ∆,1 (u) -ψ ∆ (u))( ψ(0) ∆,2 (u) -ψ ∆ (u)) -( ψ(2) ∆,1 (u) -ψ ∆ (u))ψ ∆ (u) -( ψ(0) ∆,2 (u) -ψ ∆ (u))ψ ∆ (u). (13) 
Considering each term consecutively and exploiting the independence of the samples, we obtain [START_REF] Gugushvili | Nonparametric estimation of the characteristic triplet of a discretely observed Lévy process[END_REF] Var( ĥ * (u)

) ≤ 6 ∆ 2 E 2 (Z 2 1 ) n 2 + 2 E 2 (Z 2 1 ) n + E(Z 4 1 ) n 2 + 2 E(Z 4 1 ) n ≤ 36 E(Z 4 1 /∆) n∆ .
Thus, the first risk bound is proved. Analogously, we have

(15) E( hm -h 2 ) ≤ h m -h 2 + 1 π πm -πm |E h * (u) -h * (u)| 2 du + 1 π πm -πm V ar( h * (u))du
For the variance of h * (u), we use:

h * (u) -E h * (u) = - 1 ∆ ( ψ(2) ∆ (u) -ψ ∆ (u)). Thus, Var( h * (u)) ≤ 1 2n∆ E(Z 4 1 /∆).
Next, for the bias of h * (u), we use (see ( 9)-( 5)):

|E h * (u) -h * (u)| 2 ≤ 2|h * (u)| 2 ||ψ ∆ (u) -1| 2 + 2∆ 2 |φ 4 (u)|.
Hence, there is an additional term in the risk bound equal to Remark 3.1. We stress that the estimator ĥm is more complicated to study, but hm has an additional bias term.

3.3.

Rates of convergence in Sobolev classes. We consider classes of functions h belonging to the set:

(17) C(a, L) = {f ∈ (L 1 ∩ L 2 )(R), (1 + u 2 ) a |f * (u)| 2 du ≤ L}.
Then we can prove the following result:

Proposition 3.2. Assume that (H1)-(H2)( 4) and (H3) hold and that h belongs to C(a, L) with a > 1/2. Consider the asymptotic setting where n → +∞, ∆ → 0, n∆ → +∞ and assume that m ≤ n∆. If n∆ 2 ≤ 1, then, for the optimal choice m = O((n∆) 1/(2a+1) ), we have:

E( ĥm -h 2 ) ≤ O((n∆) -2a/(2a+1) ).
If a ≥ 1, the condition n∆ 2 ≤ 1 can be replaced by n∆ 3 ≤ 1.

The same result holds for hm .

Proof. As h -h m 2 = (1/π) |u|≥πm |h * (u)| 2 du, the definition of C(a, L) implies clearly that h -h m 2 ≤ (L/2π)(πm) -2a
. The compromise between this term and the variance term of order m/(n∆) is standard: it leads to choose m = O((n∆) 1/(2a+1) ) and yields the order O((n∆) -2a/(2a+1) ).

For a > 1/2, we have

| u 0 |h * (v)|dv| = | u 0 |h * (v)|(1 + v 2 ) a/2 (1 + v 2 ) -a/2 dv| ≤ |h * (v)| 2 (1 + v 2 ) a (1 + v 2 ) -a dv 1/2 ≤ L (1 + v 2 ) -a dv,
where (1 + v 2 ) -a dv < +∞. Therefore, h * is integrable and |φ(u

)| ≤ |b| + |h * | 1 .
The last term in the risk bound [START_REF] Figueroa-López | Small-time moment asymptotics for Lévy processes[END_REF] is less than

K∆ 2 πm -πm u 2 |h * (u)| 2 du ≤ L∆ 2 (πm) 2(1-a) + . If a ≥ 1 and n∆ 3 ≤ 1, we have ∆ 2 (πm) 2(1-a) + = ∆ 2 ≤ (n∆) -1 . If a ∈ (1/2, 1), the inequality ∆ 2 m 2(1-a) ≤ m -2a is equivalent to ∆ 2 m 2 ≤ 1. As m ≤ n∆, ∆ 2 m 2 ≤ 1 holds if n∆ 2 ≤ 1.
For the additional bias term appearing in the risk bound of hm , we have

B m = O(m). Thus, m∆ 2 ≤ m -2a holds, for m = O((n∆) 1/(2a+1) ), if m 1+2a ∆ 2 = (n∆)∆ 2 ≤ 1 which in turn holds if n∆ 3 ≤ 1.
Remark 3.2. We can also discuss the case where a ∈ (0, 1

/2]. If a ≤ 1/2, | u 0 |h * (v)|dv| = O(|u| 1/2-a ).
Hence, the last term in [START_REF] Figueroa-López | Small-time moment asymptotics for Lévy processes[END_REF] is of order ∆ 2 m 3-4a which is less than m -2a if ∆ 2 m 3-2a ≤ 1 and thus ∆ 2 m 3 ≤ 1. This requires n∆ 5/3 ≤ 1. The same constraint appears for hm by looking at the exact formula for ∆ 2 B m (see [START_REF] Härdle | Wavelets, approximation, and statistical applications[END_REF]).

3.4.

Adaptation. The estimators ĥm , hm are deconvolution estimators that can also be described as minimum contrast estimators and projection estimators. For details, the reader is referred to Comte andGenon-Catalot (2009a,2009b). For m > 0, let

S m = {f ∈ L 2 (R), support(f * ) ⊂ [-πm, πm]}.
The space S m is generated by an orthonormal basis, the sinus cardinal basis, defined by:

ϕ m,j (x) = √ mϕ(mx -j), j ∈ Z, ϕ(x) = sin πx πx (ϕ(0) = 1).
This is due to the fact that 

ϕ * m,j (u) = e iuj/m √ m 1 [-πm,πm] (u), j ∈ Z. For a function f ∈ L 2 (R), f m (x) = 1/2π
| ĥ * (u)| 2 du
The coefficients âm,j of the series as well as ĥm 2 can be explicitly computed by integration. In the same way, we set

Γ n (t) = ||t|| 2 - 1 π < h * , t * >= ||t|| 2 -2 < hm , t >,
and obtain: hm = arg min t∈Sm Γ n (t),

Analogously, hm has a series expansion on the sinus cardinal basis with explicit coefficients and hm 2 has a closed-form formula. We give the explicit expression of hm 2 which is less cumbersome than ĥm 2 :

(18) hm 2 = m 4n 2 ∆ 2 1≤k,l≤2n Z 2 k Z 2 l ϕ(m(Z k -Z l )).
Now, we need to select the best m as possible, in a set

M n = {m ∈ N, 1 ≤ m ≤ n∆} = {1, . . . , m n }.
For the estimators ĥm , we propose to take

(19) m = arg min m∈Mn -ĥm 2 + pen(m) with pen(m) = κ m n∆ 2 ( 1 n n k=1 Z 2 k )( 1 n 2n k=n+1 Z 2 k ) + 1 n n k=1 Z 4 k .
The intuition for this choice is the following. The expression of pen(m) is an estimator of the variance term of the risk bound [START_REF] Figueroa-López | Small-time moment asymptotics for Lévy processes[END_REF] as close as possible of the variance (see [START_REF] Gugushvili | Nonparametric estimation of the characteristic triplet of a discretely observed Lévy process[END_REF]). The term

-ĥm 2 is an estimator of -h m 2 = h -h m 2 -h 2 ,
which is up to a constant, the bias term of the bound [START_REF] Figueroa-López | Small-time moment asymptotics for Lévy processes[END_REF]. This is why m mimics the optimal bias-variance compromise.

For the estimators hm , we define

(20) m = arg min m∈Mn -hm 2 + κ m n∆ 2 1 2n 2n k=1 Z 4 k .
The following result shows that the above data-driven choices of the cut-off parameter are indeed relevant.

Theorem 3.1. Assume (H1)-(H2)( 16)-( H3)-(H4). If, moreover, h * ∈ L 1 (R) and n∆ 3 ≤ 1, there exist a numerical constants κ, κ such that

E( ĥ m -h 2 ) ≤ C inf m∈Mn h -h m 2 + κ(∆E 2 ( Z 2 1 ∆ ) + E( Z 4 1 ∆ )) m n∆ + ∆ 2 π πmn -πmn u 2 |h * (u)| 2 du + C ln 2 (n∆) n∆ , E( h m -h 2 ) ≤ C inf m∈Mn h -h m 2 + κ E( Z 4 1 ∆ ) m n∆ + ∆ 2 π πmn -πmn u 2 |h * (u)| 2 du + ∆ 2 B mn + C ln 2 (n∆) n∆ ,
where

B mn = O(m n ) (B mn is defined in (16)).
The numerical constants κ, κ have to be calibrated via simulations (see discussion in Comte and Genon-Catalot (2009a)).

By computations analogous to those in the proof of Proposition 3.2, we obtain the following Corollary.

Corollary 3.1. Assume that the assumptions of Theorem 3.1 are fulfilled. If, for some positive L, h ∈ C(a, L) with a > 1/2, then E( ĥ mh 2 ) = O((n∆) -2a/(2a+1) ) provided that n∆ 2 ≤ 1.

The same holds for E( h

m -h 2 ). If a ≥ 1, the constraint n∆ 3 ≤ 1 is enough. 4. Study of the general case (σ 2 = 0)
In this section, we assume (H1)-(H2)(3) and study the estimation of the function

p(x) = x 3 n(x).
We suppose that we have a sample of size 3n, (Z k ) 1≤k≤3n , Z k = L k∆ -L (k-1)∆ . As previously, we can build two estimators of p * , one is simpler but has more bias than the other one. 4.1. Definition of the estimators. We have to compute the three first derivatives of ψ ∆ to get rid of σ 2 (see [START_REF] Bertoin | Lévy processes[END_REF]:

ψ ∆ (u) ψ ∆ (u) = ∆(ib -uσ 2 + i e iux -1 x h(x)dx) = ∆(φ(u) -uσ 2 )
Derivating again gives:

(21) ψ ∆ (u)ψ ∆ (u) -(ψ ∆ (u)) 2 (ψ ∆ (u)) 2 = ∆(φ (u) -σ 2 ) = -∆(σ 2 + e iux x 2 n(x)dx),
and lastly ψ

(3) ∆ (u)ψ 2 ∆ (u) -3ψ ∆ (u)ψ ∆ (u)ψ ∆ (u) + 2[ψ ∆ (u)] 2 ψ 3 ∆ (u) = -∆ip * (u).
Therefore, we get the formulae:

p * (u) = i ∆ ψ (3) ∆ (u)ψ 2 ∆ (u) -3ψ ∆ (u)ψ ∆ (u)ψ ∆ (u) + 2[ψ ∆ (u)] 3 ψ 3 ∆ (u) = i ∆ ψ (3) ∆ (u) ψ ∆ (u) -3 ψ ∆ (u)ψ ∆ (u) ψ 2 ∆ (u) + 2 [ψ ∆ (u)] 3 ψ 3 ∆ (u)
,

where ψ ∆ (u) is close to one. We define empirical estimators of ψ ∆ (u), ψ ∆ (u), ψ ∆ (u), ψ (3) 
∆ (u) using the independent subsamples:

ψ(j) ∆,q (u) = 1 n qn k=1+(q-1)n (iZ k ) j e iuZ k , j = 0, 1, 2, 3, q = 1, 2, 3.
The following estimator of p * is obtained by replacing expressions in the numerator of p * by their empirical counterpart (using the independent subsamples); moreover, the denominator is replaced by 1. We get

(22) p * (u) = i ∆   ψ(3) ∆,1 (u) ψ(0) ∆,2 (u) ψ(0) ∆,3 (u) -3 ψ(2) ∆,1 (u) ψ(1) ∆,2 (u) ψ(0) ∆,3 (u) + 2 3 q=1 ψ(1) ∆,q (u)   .
The bias of p * (u) is given by ( 23)

Ep * (u) -p * (u) = (ψ 3 ∆ (u) -1)p * (u) Note that, as |ψ ∆ (u)| ≤ 1, |ψ 3 ∆ (u) -1| ≤ 3|ψ ∆ (u) -1|.
The estimator of p associated to p * (u) with cut-off parameter m is:

pm (x) = 1 2π πm -πm e -iux p * (u)du,
which has a closed-form formula obtained by integration. We also define, based on all the observations, ψ

∆ (u) = 1 3n 3n k=1 (iZ k ) 3 e iuZ k . And p * (u) = i ∆ ψ(3) ∆ (u) and pm (x) = 1 2π πm -πm e -iux p * (u)du. (3) 
Here,

(24) Ep * (u) -p * (u) = (ψ ∆ (u) -1)p * (u) + 3i ψ ∆ (u)ψ ∆ (u) ∆ψ ∆ (u) -2i [ψ ∆ (u)] 3 ∆ψ 2 ∆ (u) Let us set: (25) φ(u) = φ(u) -uσ 2 = ib - u 0 h * (v)dv -uσ 2 .
Using ψ ∆ (u) = ∆ψ ∆ (u) φ(u) and some computations, we get:

(26) Ep * (u) -p * (u) = (ψ ∆ (u) -1)p * (u) -3i∆ψ ∆ (u) φ(u)(σ 2 + h * (u)) + i∆ 2 ψ ∆ (u)( φ(u)) 3 ,
which shows additional terms in comparison with the bias [START_REF] Ledoux | Probability in Banach spaces. Isoperimetry and processes[END_REF]. The corresponding estimator has the expression:

(27) pm (x) = 1 3n∆ 3n k=1 Z 3 k sin(πm(Z k -x)) π(Z k -x) .
4.2. Risk of the estimators. Let

p m (x) = 1 2π πm -πm e -iux p * (u)du
denote the orthogonal projection of p on S m . The risk of the estimators with fixed cut-off parameter is bounded as follows.

Proposition 4.1. Under (H1)-(H2)( 6) and (H5),

(28) E( pm -p 2 ) ≤ p -p m 2 + C 0 E(Z 6 1 /∆) m n∆ + C ∆ 2 π πm -πm u 2 (1 + u 2 )|p * (u)| 2 du
where C 0 in a numerical constant much larger than 1.

We also have

E( pm -p 2 ) ≤ p -p m 2 + E(Z 6 1 /∆) m n∆ +C(∆ 2 πm -πm u 2 (1 + u 2 )|p * (u)| 2 du + ∆ 2 m 3 + ∆ 4 m 7 ). Proof. As previously, pm -p 2 = 1 2π ( p * -p * m 2 + p * m -p * m 2 ). The first term (1/(2π))( p * -p * m 2 = p -p m 2 is the projection bias on S m . Next, p * m (u) -p * m (u) = [p * m (u) -E(p * m (u))] + [E(p * m (u)) -p * m (u)] = [p * m (u) -E(p * m (u))] + [(ψ ∆ (u)) 3 -1]p * (u)1 I |u|≤πm . Using Lemma 2.

and (23), we get

E( pm -p m 2 ) ≤ 1 π πm -πm C∆ 2 u 2 (1 + u 2 )|p * (u)| 2 du + 1 π E πm -πm |p * (u) -Ep * (u)| 2 du ≤ C ∆ 2 π πm -πm u 2 (1 + u 2 )|p * (u)| 2 du + 1 π πm -πm V ar(p * (u))du .
The estimator p * is the sum of three terms, each term being the product of three independent variables. To bound the variance of p * , for each term, we subtract the corresponding expectation and use a decomposition with only centered terms. For instance, the first centered term of p * is split as follows:

ψ(3) ∆,1 ψ(0) ∆,2 ψ(0) ∆,3 -ψ (3) ∆ [ψ ∆ ] 2 = ( ψ(3) ∆,1 -ψ (3) ∆ )( ψ(0) ∆,2 -ψ ∆ )( ψ(0) ∆,3 -ψ ∆ ) +( ψ(3) ∆,1 -ψ (3) ∆ )( ψ(0) ∆,2 -ψ ∆ )ψ ∆ + ( ψ(3) ∆,1 -ψ (3) ∆ )( ψ(0) ∆,3 -ψ ∆ )ψ ∆ + ψ (3) ∆ ( ψ(0) ∆,2 -ψ ∆ )( ψ(0) ∆,3 -ψ ∆ ) +( ψ(3) ∆,1 -ψ (3) ∆ )[ψ ∆ ] 2 + ψ (3) ∆ ( ψ(0) ∆,2 -ψ ∆ )ψ ∆ + ψ (3) 
∆ ψ ∆ ( ψ(0) ∆,3ψ ∆ ), and analogously for the two other terms in the formula of the estimator.

Considering each term consecutively and exploiting the independence of the samples, we obtain [START_REF] Watteel | Nonparametric estimation of the canonical measure for infinitely divisible distributions[END_REF] Var(p

* (u)) ≤ 7 × 3 ∆ 2 E(Z 6 1 ) + 9E(Z 4 1 )E(Z 2 1 ) + 4[E(Z 2 1 )] 3 1 n 3 + 3 n 2 + 3 n
The main term is 4 . By the Hölder formula, we have

E(Z 6 1 )/(n∆ 2 ) = [E(Z 6 1 )/∆]/(n∆) coming from E(| ψ(3) ∆,1 (u)-ψ (3) ∆ (u)| 2 )|ψ ∆ (u)|
E(Z 4 1 ) ≤ (E(Z 6 1 )) 2/3 and E(Z 2 1 ) ≤ (E(Z 6 1 )) 1/3 . Thus, 1 2π πm -πm V ar(p * (u))du ≤ 2058 [E(Z 6 1 )/∆]m/(n∆).
This ends the study of ĥm .

Now, let us study hm . Here, the variance satisfies:

Var(p * (u)) ≤ E(Z 6 1 ) n∆ 2 = E(Z 6 1 /∆) n∆ .
As previously,

E( pm -p m 2 ) = 1 2π E( p * m -p * m 2 ) = 1 2π πm -πm Var(p * (u)) + |E(p * (u)) -p * (u)| 2 du,
where the first term is bounded by E(Z 6 1 /∆)m/(n∆). It remains to study the bias term using [START_REF] Meyer | Ondelettes et opérateurs[END_REF]. We have

|h * (u)| ≤ |h| 1 . By Lemma 2.2, | φ(u)| ≤ |b| + |u|(|h| 1 + σ 2 ) ≤ C(1 + |u|). Inserting these bounds in (26) implies (30) |E(p * (u)) -p * (u)| ≤ C∆|p * (u)||u|(1 + |u|) + C ∆(1 + |u|) + C ∆ 2 (1 + |u|) 3
Gathering the terms gives the announced bound for the risk of pm . This ends the proof of proposition 4.1.

Remark 4.1. Again here, both estimators have the same rate of variance with different constants. The simpler estimator has additional bias terms.

We can state the result analogous to the one of Proposition 3.2.

Proposition 4.2. Assume that (H1), (H2)( 6), (H5) hold and that p belongs to C(a, L). Consider the asymptotic setting where n → +∞, ∆ → 0 and n∆ → +∞. If n∆ 3/2 ≤ 1, then we have, for the optimal choice m = O((n∆) 1/(2a+1) ),

E( pm -p 2 ) ≤ O((n∆) -2a/(2a+1) ). If a ≥ 1/2, the condition n∆ 3/2 ≤ 1 can be replaced by n∆ 2 ≤ 1. If a ≥ 3/2, the condition n∆ 3/2 ≤ 1 can be replaced by n∆ 3 ≤ 1. Moreover, if n∆ 11/7 ≤ 1, then E( pm -p 2 ) ≤ O((n∆) -2a/(2a+1) ).
If a ≥ 1/2, the condition n∆ 7/5 ≤ 1 can be replaced by n∆ 2 ≤ 1.

Proof. Let us take m = O((n∆) 1/(2a+1) ). When p ∈ C(a, L), the first two terms of (28) are of order O((n∆

) -2a/(2a+1) ). The last term is O(∆ 2 m 2(2-a) + ). If a ≥ 2, its order is ∆ 2 and is less than 1/(n∆) if n∆ 3 ≤ 1. If a ∈ (0, 2), ∆ 2 m 2(2-a) = O(∆ 2 (n∆) 2(2-a)/(1+2a) ) which has lower rate than O((n∆) -2a/(2a+1) ) if ∆ 2 (n∆) 4/(1+2a) ≤ O(1), that is n∆ 1+(1+2a)/2 = n∆ 3/2+a ≤ O(1)
. This gives the results for pm .

For pm , we must consider in addition the terms ∆ 2 m 3 and ∆ 4 m 7 . As previously, 

∆ 2 m 3 ≤ (n∆) -2a/(2a+1) if n∆ (6a+5)/(2a+3) ≤ O(1) that is n∆ 5/3 ≤ 1 if a > 0 and n∆ 2 if a ≥ 1/2. Moreover, ∆ 4 m 7 ≤ (n∆) -2a/(2a+1) if n∆ (10a+11)/(2a+7) ≤ 1 that is n∆ 11/7 ≤ 1 if a > 0 and n∆ 2 ≤ 1 if a ≥ 1/2.
Z 6 k + ( 1 n n k=1 Z 4 k )( 1 n 2n k=n+1 Z 2 k ) ,
where the penalty follows closely the variance term of the risk bound of pm . For simplicity and under additional restrictions, we can also consider the estimator p m where

(32) m = arg min m∈Mn -pm 2 + pen(m) with pen(m) = κ m n∆ 2 1 3n 3n k=1 Z 6 k .
We can prove the following result:

Theorem 4.1.
Under assumption (H1), (H2)( 24), (H5), (H6) and with n∆ 2 ≤ 1. There exist numerical constants κ, κ such that

E( p m -p 2 ) ≤ C inf m∈Mn p -p m 2 + κ[E( Z 6 1 ∆ ) + ∆E( Z 2 1 ∆ )E( Z 4 1 ∆ )] m n∆ + ∆ 2 π πµn -πµn u 2 (1 + u 2 )|p * (u)| 2 du + C ln 2 (n∆) n∆ . E( p m -p 2 ) ≤ C inf m∈Mn p -p m 2 + κ E( Z 6 1 ∆ ) m n∆ +C ∆ 2 π πµn -πµn u 2 (1 + u 2 )|p * (u)| 2 du + ∆ 2 µ 3 n + ∆ 4 µ 7 n + ln 2 (n∆) n∆ . (µ n = √ n∆).
The result is given for p m but only proved for p m to avoid technicalities analogous to those studied in the case of estimation of h.

The consequence of Theorem 4.1 is that the adaptive estimators reach automatically the optimal rate of convergence when p belongs to a Sobolev class. This can be seen by computations analogous to those of Proposition 4.2.

Parameter estimation

Under (H1), the observed process may be written as L t = bt + σW t + X t where (W t ) is a standard Brownian motion, (X t ) is a Lévy process, independent of (W t ), of the form

X t = ]0,t] R x(p(ds, dx) -dsn(x)dx),
where p(ds, dx) is the random jump measure of (L t ) (and (X t )) which has compensator dsn(x)dx.

If moreover,

|x|n(x)dx < ∞.
then, the observed process may be written as L t = b 0 t + σW t + Γ t where b 0 = bxn(x)dx and

Γ t = ]0,t] R xp(ds, dx) = X t + t xn(x)dx = s≤t Γ s -Γ s -
is of bounded variation on compact sets. We consider here a sample of size n. By using empirical means of the data Z k , it is possible to obtain consistent and asymptotically Gaussian estimators of b ( = 1) and, under suitable integrability assumptions on the Lévy density, of x n(x)dx for ≥ 3. But this method fails to estimate σ for = 2 (see below). For this, one has to use another approach either based on power variations or deduced for the nonparametric estimation.

5.1. Some small time properties. To study estimators of b and σ, small time properties of moments are required.

In Figueroa-López (2008), conditions under which 1 ∆ Ef (L ∆ ) converges, as ∆ tends to 0, to f (x)n(x)dx for unbounded functions f are investigated (with new results and an exhaustive review of previous ones). We sum up below some of these.

First, we recall that a non-negative locally bounded function g is said to be submultiplicative (resp. subadditive) if there exists a constant K > 0 such that, for all x, y, g(x + y) ≤ Kg(x)g(y)

(resp. g(x + y) ≤ K(g(x) + g(y))). Let S(n) = {g(x) := p(x)k(x), p subadditive, k submultiplicative, and |x|>1 g(x)n(x)dx < ∞}.
Theorem 5.1. Let f be locally bounded, n(x)dx-a.e. continuous and such that there exists a function g ∈ S(n) such that lim sup

|x|→∞ |f (x)|/g(x) < ∞. If moreover, f (x) = o(x 2 ) as x → 0, then, as ∆ → 0, 1 ∆ Ef (L ∆ ) → f (x)n(x)dx. If instead f (x) ∼ x 2 as x → 0, then 1 ∆ Ef (L ∆ ) → σ 2 + f (x)n(x)dx.
This is Theorem 1.1 of Figueroa-López (2008). In particular, if for k ≥ 2, |x| k n(x)dx < ∞, the functions f u (x) = e iux x k , u ∈ R, satisfy the assumptions. Of course, the result can be obtained directly by derivating the characteristic function ψ ∆ as seen above. If for r real number, r ≥ 2, |x| r n(x)dx < ∞, f (x) = |x| r satisfies the assumptions.

For the case of f (x) = |x| r with r < 2, which is not included in the previous theorem, we state the two following special propositions. γ n Γ (γ)dγ < ∞ and (B t ) is a Brownian motion independent of (Γ t ). The Lévy measure of (X t ) has a density given by

(33) n X (x) = +∞ 0 e -x 2 /2γ 1 √ 2πγ n Γ (γ)dγ. Consequently, if C = +∞ 0 γ r/2 n Γ (γ)dγ < ∞ with r ≤ 2, then E|X ∆ | r ≤ C∆.
(iii) Let (X t ) be a Lévy process with no Gaussian component. Then, X ∆ / √ ∆ converges to 0 as ∆ tends to 0 in probability and in L r for all r < 2.

5.2.

Estimator of b. Consider a Lévy process (L t ) satisfying (H1) and set Z k = L k∆ -L (k-1)∆ as above. Let us define the empirical means:

(34) b = 1 n∆ n k=1 Z k , ĉ = 1 n∆ n k=1 Z k for ≥ 2.
We prove now that b, ĉ , ≥ 2 are consistent and asymptotically Gaussian estimators of the quantities b, c , ≥ 2 where Setting

c 2 = σ 2 + x 2 n(x)dx, c = x n(x)dx, for ≥ 3.
c 1 = b, ĉ1 = b, as VarZ k = ∆c 2 + o(∆) for ≥ 1, we have n∆Varĉ = c 2 + O(∆). Writing √ n∆(ĉ -Eĉ ) = 1 √ n∆ n k=1 (Z k -EZ k ) = n k=1 χ k,n ,
it is now enough to prove that n k=1 E|χ k,n | 2+ε tends to 0. Under the assumption, we have

n k=1 E|χ k,n | 2+ε ≤ C n ε/2 ∆ 1+ε/2 E|Z k | (2+ε) + |E(Z k )| 2+ε ≤ C (n∆) ε/2 ,
which gives the result.

We stress that this method provides an estimator of b which is easy to compute and very good in practice (see Section 7), but cannot provide an estimator of σ 2 . 5.3. Estimation of σ 2 .

Power variations.

Estimators of σ based on power variations of (L t ) have been proposed and mostly studied in the case where n∆ = 1. They are studied for high frequency data within a long time interval in Aït-Sahalia and Jacod (2007). In the latter paper, the context is more general than ours, which implies that proofs are of high complexity. For Lévy processes fitting in our set of assumptions, we can derive the asymptotic properties of power variations estimators with a specific proof given in Section 9. Consider

(35) σ(r) n = 1 m r n∆ r/2 n k=1 |Z k | r ,
where m r = E|X| r for X a standard Gaussian variable (recall that Z k = L k∆ -L (k-1)∆ ).

Proposition 5.3. As n tends to infinity, ∆ tends to 0 and n∆ tends to infinity, if

n∆ 2-r = o(1), √ n(σ (r)
nσ r ) converges in distribution to a N (0, σ 2r (m 2r /m 2 r -1)) for: (i) (L t ) a Lévy process satisfying (H1) and such that |x|n(x)dx < ∞ and |x| r n(x)dx < ∞ for r < 1. (ii) (L t = bt + σW t + X t ), with X t = B Γt , where W, B, Γ are independent processes, W, B are Brownian motions, Γ is a subordinator with Lévy measure

n Γ satisfying b = +∞ 0 γ n Γ (γ)dγ < ∞ and +∞ 0 γ r/2 n Γ (γ)dγ < ∞ for r < 1.
For other cases of Lévy processes, the result depends on the rate of convergence to 0 of E|X ∆ | r /∆ r/2 (see Proposition 5.1 (iii)) and will still hold if √ n∆E|X ∆ | r /∆ r/2 tends to 0.

Remark 5.1.

• It is worth noting that the rate of convergence of the estimators σ(r) n is √ n. For r = 1, the estimator σ(1) n is consistent but not asymptotically Gaussian (because of its asymptotic bias). We have implemented these estimators for r = 1/2, r = 1/4 (see Section 7) for processes satisfying |x| r n(x)dx < +∞ for all positive r.

• Other estimators based on truncated power variations can be considered (see Aït-Sahalia and Jacod (2007)). • We always give integrability conditions on R for the Lévy density. This simplifies the presentation but induces some redundancies. One should distinguish integrability conditions near 0 and near infinity to avoid these redundancies.

5.3.2.

Another estimator of σ 2 . The previous power variation estimators depend on r and have rate √ n under the condition that n∆ 2-r = o(1) where the value r < 1 is such that |x| r n(x)dx < ∞. This imposes a stronger integrability condition around 0 than (H1). Under (H1) and (H2)(3), using an estimator of p * and empirical mean estimators, we can build an estimator of σ 2 with rate √ n∆. As seen above, estimators of c 2 = σ 2 + x 2 h(x)dx = σ 2 +h * (0) are available. Using a sample of size 3n, we get an unbiased estimator of c 2 by setting (see Proposition 5.2):

c2 = 1 3n∆ 3n k=1 Z 2 k -∆ 1 n∆ n k=1 Z k 1 n∆ 2n =n+1 Z .
Following the same proof as above, we can prove that √ n∆(c 2c 2 ) converges in distribution to the centered Gaussian law with variance c 4 as ∆ tends to 0, n∆ tends to infinity with no additional condition on ∆. We build an estimator of σ 2 by subtracting an estimator of h * (0). In addition to (H1)-(H2)(3), assume that p * (u) belongs to L 1 (R).

Note that h * (u) = e iux x 2 n(x)dx is such that (d/du)(h * (u)) = ip * (u). Integrating from u to ∞, and using that lim |u|→+∞ h * (u) = 0 yields h * (u) = -i p * (v)dv. Since h * (0) is a real number, we must have:

h * (0) = +∞ 0 Imp * (v)dv.
Therefore, for M to be chosen adequately later on, we propose to estimate σ 2 , using the estimator p * of p * , by:

(36) σ2 M = c2 - M 0 Imp * (v)dv.
Integration yields (37

) M 0 Imp * (v)dv = 1 3n∆ 3n k=1 Z 2 k (1 -cos M Z k ). Thus (38) σ2 M = 1 3n∆ 3n k=1 Z 2 k cos M Z k -∆ 1 n∆ n k=1 Z k 1 n∆ 2n =n+1 Z .
Then we can prove the following result:

Proposition 5.4. Assume (H1)-(H2)( 4), (H5) and that p * belongs to L 1 (R). If, in addition, p ∈ C(a, L) with a > 5/2, M = M (∆) = ∆ -1/4 and n∆ 2 tends to 0, √ n∆(σ 2 M (∆)σ 2 ) converges in distribution to a centered Gaussian law with variance (1/2) x 4 n(x)dx = c 4 /2.

Examples

In this section, we give examples of models fitting in our framework. where N t is a Poisson process with constant intensity c and Y i is a sequence of i.i.d. random variables with density f , independent of the process (N t ). Then, Nt i=1 Y i is a compound Poisson process and (L t ) is a Lévy process with Lévy density n(x) = cf (x). Note that EL 1 = b = b 0 + xn(x)dx. For the estimation of p, the rates that can be obtained depend on the density f provided that f satisfies the assumptions of Theorem 4.1, which are essentially here moment assumptions for the r.v.'s Y i . Any order can be obtained as shown in Table 1 where optimal rates are computed for f a standard Gaussian, an exponential with parameter 1 and a Beta distribution with parameters (1, 3) (for p to be regular enough). As |x| r n(x)dx < ∞ for all r < 1 (actually, for all r ≤ 2), estimation of σ r is possible using σ(r) n for any value of 0 < r < 1 (provided that n∆ 2-r = o(1)). The estimator σ2 M is possible if p is regular enough (p ∈ C(a, L) with a > 5/2).

Example 2. Drift + Brownian motion + Lévy-Gamma process. Consider L t = b 0 t + σW t + Γ t where (Γ t ) is a Lévy gamma process with parameters (β, α), i.e. is a subordinator such that, for all t > 0, Γ t has distribution Gamma with parameters (βt, α) As for all r > 0, x r n(x)dx < ∞, σ(r) n is authorized, for any value of 0 < r < 1, to estimate σ r .

f (x) N (0, 1) E(1) β(1, 3) p(x) = cx 3 f (x) ∝ x 3 e -x 2 ∝ x 3 e -x 1 I x>0 ∝ x 3 (1 -x) 2 1 I [0,1] (x) p * (u) ∝ (u 3 -3u)e -u 2 /2 ∝ 1/(1 -iu) 4 O(1/|u| 3 )
Example 2 (continued). Drift + Brownian motion + A specific class of subordinators. Let L t = b 0 t + σW t + Γ t where (Γ t ) is a subordinator of pure jump type with Lévy density of the form n(x) = βx δ-1/2 x -1 e -αx 1 I x>0 with δ > -1/2 (thus xn(x)dx < ∞). This class of subordinators includes compound Poisson processes (δ > 1/2) and Lévy Gamma processes (δ = 1/2). When δ > 0, the function xn(x) is both integrable and square integrable. This case was discussed in Genon-Catalot and [START_REF] Comte | Nonparametric estimation for pure jump Lévy processes based on high frequency data[END_REF] where the estimation of xn(x), when b 0 = 0, σ = 0, is studied. Here, we consider the case -1/2 < δ ≤ 0 which includes the Lévy Inverse Gaussian process (δ = 0). Assumptions (H1)-(H6) are satisfied. The function p(x) = x 3 n(x) can be estimated in presence (or not) of additional drift and Brownian component. We can compute

p * (u) = β Γ(δ + 5/2) (α -iu) δ+5/2 . Thus, |u|≥πm |p * (u)| 2 du = O(m -(2δ+4) ). As 2δ + 1 ≤ 1, u 4 |p * (u)| 2 is not integrable and we have ∆ 2 |u|≤πµn u 4 |p * (u)| 2 du = ∆ 2 O(µ n ) = O(∆ 3/2
). The best rate for estimating p is O((n∆) -(2δ+4)/(2δ+5) ) for a choice m = O((n∆) 1/(2δ+5) ). Note that ∆ 3/2 ≤ (n∆) -(2δ+4)/(2δ+5) for n∆ 2 ≤ 1 and -1/2 < δ ≤ 0. We have x r n(x)dx < ∞ for r > 1/2δ. Hence, to estimate σ r using σ(r) n , we must choose 1/2δ < r < 1.

Example 3. Drift + Brownian motion + Pure jump martingale. Consider L t = bt+σW t +B Γt where W, B, Γ are independent processes, W, B are standard Brownian motion, and Γ is a pure-jump subordinator with Lévy density n Γ (γ) = βγ δ-1/2 γ -1 e -αγ 1 I γ>0 as above (assuming δ > -1). The Lévy density n(.) of (L t ) (and of (X t = B Γt )) is linked with n Γ (see (33)) and can be computed as the norming constant of a Generalized Inverse Gaussian distribution:

n(x) = 2β √ 2π K δ-1 ( √ 2α|x|)( |x| √ 2α ) δ-1 ,
where K ν is a Bessel function of third kind (MacDonald function) (see e.g. Barndorff-Nielsen and Shephard (2001)). For δ = 1/2, B Γt is a symmetric bilateral Lévy Gamma process (see [START_REF] Madan | The Variance Gamma (V.G.) Model for Share Market Returns[END_REF], [START_REF] Küchler | Bilateral Gamma distributions and processes in financial mathematics[END_REF]). For δ = 0, B Γt is a normal inverse Gaussian Lévy process (see Barndorff-Nielsen and Shephard ( 2001)). The relation (33) allows to check that the function p(x) = x 3 n(x) belongs to L 1 ∩ L 2 and satisfies (H6) for δ > -3/4. Moreover, we can obtain

p * (u) = -iβ u 3 Γ(δ + 5/2) (α + u 2 /2) 5/2 -3 uΓ(δ + 3/2) (α + u 2 /2) 3/2 . Thus, |u|≥πm |p * (u)| 2 du = O(m -3 ) and ∆ 2 |u|≤πµn u 4 |p * (u)| 2 du = ∆ 2 O(µ n ) = O(∆ 3/2
). The best rate for estimating p is O((n∆) -3/4 ) obtained for m = O((n∆) 1/4) ). We have ∆ 3/2 ≤ (n∆) -3/4 as n∆ 2 ≤ 1. As γ r/2 n Γ (γ)dγ < ∞ for r > 1δ/2, the estimation of σ r by σ(r) n requires 1δ/2 < r < 1. Therefore, we must have δ < 0.

Simulations

In this section, we present numerical results for simulated Lévy processes corresponding to Examples 1 and 2 (see Section 6). For these models, the functions g(x) = xn(x), h and p belong to L 1 ∩L 2 (R). Thus, we can apply the method of Comte and Genon-Catalot (2009a), to estimate g when b 0 = 0, σ = 0, and the method developed here to estimate h when σ = 0 and p when σ = 0. For simplicity, we have implemented the estimators h m, p m defined by ( 10)-( 20) and ( 27)-(32). The numerical constant κ appearing in the penalties has been set to 7.5 for g, 4 for h and 3 for p; its calibration is done by preliminary experiments. The cutoff m is chosen among 100 equispaced values between 0 and 10.

Figure 1 shows estimated curves for models with jump part coming from compound Poisson processes (see (39)) where the Y i 's are standard Gaussian, Exponential E(1), β(1, 3), and β(3, 3) rescaled on [-4, 4]. The intensity c is equal to 0.5, except for the β(1, 3) Y i 's where c = 4.

Figure 2 shows estimated curves for jump part of Lévy Gamma and bilateral Lévy Gamma type. The bilateral Lévy Gamma process is the difference Γ t -Γ t of two independent Lévy Gamma processes.

On top of each graph, we give the mean value of the selected cutoff with its standard deviation in parentheses. This value is surprisingly small. As expected, the presence of a Gaussian component deteriorates the estimation, which remains satisfactory on the whole.

Tables 2 and3 show the means of the estimation results for b = E(L 1 ) = b 0 + xn(x)dx (see (34)) and σ, with standard deviations in parentheses. We have set σ

(r) = [σ (r) n ] 1/r to denote the estimator of σ, see (35).
The estimation of b is good in all cases, and especially when n∆ is large. The estimation of σ is clearly more difficult, with noticeable differences according to the values of n and ∆. When ∆ is not small enough, the estimation can be heavily biased. In accordance with the theory, when r is smaller, the estimator of σ is slightly better (smaller bias). Table 4 shows the values of n∆ 2 and n∆ 2-r , which should be small for the performance of the estimator to be satisfactory. It is worth noting that σ is constantly over-estimated. We also implemented σM (see (38)) on some of the same simulated data, see Table 5; the performances of the estimator are strongly related to the asymptotic conditions: n∆ large, and n∆ 2 small. This is why the results when n∆ 2 = 125, 5 (see Table 4) are not reported. When negative values occured, the estimate is 

Estimation of g(x) = xn(x) Estimation of h(x) = x 2 n(x) Estimation of p(x) = x 3 n(x) b 0 = 0, σ = 0 b 0 = 0.25, σ = 0 b 0 = 0.25, σ = 0.5 ( 

Model

(n, ∆) (5.10 Table 3. Estimation of (b, σ), b 0 = 1, the true value of b in parenthesis, σ = 1, power variation method for estimation of σ, K = 200 replications.

(n, ∆) (5.10 4 , 0.05) (5.10 4 , 0.01) (5.10 4 , 10 -3 ) (10 5. Estimation of σ with second method, b 0 = 1, σ = 1, K = 200 replications.

Concluding remarks

In this paper, we consider a general Lévy process and discrete observations of the sample paths, with sampling interval ∆. The asymptotic framework ∆ → 0, n∆ → +∞ is especially well fitted to produce simple adaptive nonparametric estimators of the Lévy density, showing nice performances on simulated data. For the other parameters of the characteristic triple, central limit theorems for empirical means based on the increments (including power variations) are given. The practical implementation confirms the theoretical results: the drift is very well estimated, the variance of the Gaussian component requires a large number of observations. 9. Proofs 9.1. Proof of Theorem 3.1. We only study ĥ m as the result for h m can be proved analogously (and is even simpler).

The proof is given in two steps. We define, for some , 0 < < 1,

Ω := [(1/n∆) n k=1 Z 2 k ][(1/n∆) 2n k=n+1 Z 2 k ] (E(Z 2 1 /∆)) 2 -1 ≤ /2 [(1/n∆) n k=1 Z 4 k ] (E(Z 4 1 /∆)) -1 ≤ /2 ,
so that E( ĥ mh 2 ) = E( ĥ mh 2 1 I Ω ) + E( ĥ mh 2 1 I Ω c ).

Step 1. For the study of E( ĥ mh 2 1 I Ω c ), we refer to the analogous proof given in Comte and Genon-Catalot (2009) (see Section A4 therein). Using that E(Z 16 1 ) < +∞, we can prove E( ĥ mh 2 1 I Ω c ) ≤ C/(n∆). For this, we make use of the Rosenthal inequality recalled in the Appendix.

Step 2. Study of E( ĥ mh 2 1 I Ω ). The proof relies on the following decomposition of γ n

γ n (t) -γ n (s) = t -h 2 -s -h 2 + 2 t -s, h - 1 π ĥ * , t * -s * = t -h 2 -s -h 2 -2ν n (t -s) -2R n (t -s),
where

ν n (t) = 1 2π ĥ * -E( ĥ * ), t * , R n (t) = 1 2π E( ĥ * ) -h * , t * .
As γ n ( ĥm ) = -ĥm 2 , we deduce from [START_REF] Jongbloed | Nonparametric inference for Lévydriven Ornstein-Uhlenbeck processes[END_REF] that, for all m ∈ M n , γ n ( ĥ m) + pen( m) ≤ γ n (h m ) + pen(m).

This yields:

ĥ m -h 2 ≤ h -h m 2 + pen(m) -pen( m) + 2ν n ( ĥ m -h m ) + 2R n ( ĥ m -h m )
Then, for φ n = ν n , R n , we use the inequality:

2φ n ( ĥ m -h m ) ≤ 2 ĥ m -h m sup t∈Sm+S m, t =1 |φ n (t)| ≤ 1 8 ĥ m -h m 2 + 8 sup t∈Sm+S m, t =1 |φ n (t)| 2
Using that ĥ mh m 2 ≤ 2 ĥ mh 2 + 2 ĥmh 2 and some algebra, we find

1 4 ĥ m -h 2 ≤ 7 4 h -h m 2 + pen(m) -pen( m) + +8 sup t∈Sm+S m, t =1 |R n (t)| 2 + 8 sup t∈Sm+S m, t =1 |ν n (t)| 2 (40)
We have to study the terms containing a supremum, which are of different nature. First, for R n (t), we have:

Lemma 9.1. We have: sup t∈Sm+S m, t =1 |R n (t)| 2 ≤ C∆ 2 πmn -πmn u 2 |h * (u)| 2 du.
Proof. We have R n (t) = 1 2π t * , (1ψ 2 ∆ )h * . By using Lemma 2.2, we find sup

t∈Sm+S m, t =1 | t * , (1 -ψ 2 ∆ )h * | 2 ≤ sup t∈Sm n , t =1 | t * , (1 -ψ 2 ∆ )h * | 2 ≤ 2π (1 -ψ 2 ∆ )h * 1 I [-πmn,πmn] 2 ≤ C∆ 2 πmn -πmn u 2 |h * (u)| 2 du.
On the other hand, ν n must be decomposed into ν n (t) = 4 j=1 ν n,j (t) + r n (t) with

r n (t) = 1 2π∆ t * , ( ψ(1) ∆,1 (u) -ψ ∆ (u))( ψ(1) ∆,2 (u) -ψ ∆ (u)) - 1 2π∆ t * , ( ψ(2) ∆,1 (u) -ψ ∆ (u))( ψ(0) ∆,2 (u) -ψ ∆ (u)) , (41) 
and

ν n,1 (t) = 1 2π∆ t * , (ψ ∆ - ψ(2) ∆,1 )ψ ∆ , ν n,2 (t) = 1 2π∆ t * , (ψ ∆ - ψ(0) ∆,2 )ψ ∆ . ν n,3 (t) = 1 2π∆ t * , ( ψ(1) ∆,1 -ψ ∆ )ψ ∆ , ν n,4 (t) = 1 2π∆ t * , ( ψ(1) ∆,2 -ψ ∆ )ψ ∆ , Lemma 9.2. We have: E sup t∈Sm+S m, t =1 |r n (t)| 2 ≤ C n .
Proof. Using the independence of the subsamples, we can write:

E sup t∈Sm+S m, t =1 |r n (t)| 2 ≤ E sup t∈Sm n , t =1 |r n (t)| 2 ≤ 1 2π 2 ∆ 2 E[ ( ψ(1) ∆,1 -ψ ∆ )( ψ(1) ∆,2 -ψ ∆ )1 I [-πmn,πmn] 2 + ( ψ(2) ∆,1 -ψ ∆ )( ψ(0) ∆,2 -ψ ∆ )1 I [-πmn,πmn] 2 ] ≤ 1 2π 2 ∆ 2 πmn -πmn E[| ψ(1) ∆,1 (u) -ψ ∆ (u)| 2 ]E[| ψ(1) ∆,2 (u) -ψ ∆ (u)| 2 ]du + 1 2π 2 ∆ 2 πmn -πmn E[| ψ(2) ∆,1 (u) -ψ ∆ (u)| 2 ]E[| ψ(0) ∆,2 (u) -ψ ∆ (u)| 2 ]du ≤ m n π∆ 2 [E(Z 2 1 )] 2 n 2 + E(Z 4 1 ) n 2 ≤ C n (42) because m n ≤ n∆ and E(Z 2 1
) and E(Z 4 1 ) have order ∆. Now, the study of the ν n,j 's relies on Lemma 10.1. Let us first study the process ν n,1 . We must split

Z 2 k = Z 2 k 1 I Z 2 k ≤kn √ ∆ + Z 2 k 1 I Z 2 k >kn √
∆ with k n to be defined later. This implies that ν n,1 (t) = ν P n,1 (t) + ν R n,1 (t) (P for Principal, R for residual) with (43)

ν P n,1 (t) = 1 n n k=1 [f t (Z k ) -E(f t (Z k ))] with f t (z) = 1 2π∆ z 2 1 I z 2 ≤kn √ ∆ t * , e iz• ψ ∆ ,
and ν R n,1 (t) = ν n,1 (t)ν P n,1 (t). We prove the following result: 

(44) p(m, m ) = 4E(Z 4 1 /∆) m ∨ m ∆ , then E sup t∈Sm+S m, t =1 [ν P n,1 (t)] 2 -p(m, m) + + E sup t∈Sm n , t =1 |ν (R) n,1 (t)| 2 ≤ C ln 2 (n∆) n∆ ,
where C is a constant.

For ν n,2 , we have Proposition 9.2. Under the assumptions of Theorem 3.1,

E sup t∈Sm+S m, t =1 [ν n,2 (t)] 2 -p(m, m) + ≤ C n∆ ,
where C is a constant.

For both ν n,3 and ν n,4 , which are similar, we have to split again

Z k = Z k 1 I |Z k |≤kn √ ∆ + Z k 1 I |Z k |>kn √
∆ with the same k n as above. We define ν n,j (t) = ν P n,j (t) + ν R n,j (t) as previously, for j = 3, 4. [ν P n,j (t)] 2q(m, m)

+ + E sup t∈Sm n , t =1 |ν (R) n,j (t)| 2 ≤ C ln 2 (n∆) n∆ ,
where C is a constant. Now, on Ω , the following inequality holds (by bounding the indicator by 1), for any choice of κ,

(1 -)pen th (m) ≤ pen(m) ≤ (1 + )pen th (m),
where pen th (m) = E(pen(m)). It follows from (40) that 

1 4 E( ĥ m -h 2 1 I Ω ) ≤ 7 4 h -h m 2 + pen th (m) -E(pen( m)1 I Ω ) + +C∆
t∈Sm+S m, t =1 |ν n,2 (t)| 2 1 I Ω ) ≤ 8( C n∆ + 2E[(p(m, m) + q(m, m))1 I Ω ]) (47)
We note that p(m, m ) + q(m, m ) = 1 4κ (pen th (m) + pen th (m )).

Thus

pen th (m) -E(pen( m)1 I Ω ) + 128E[(p(m, m) + q(m, m))1 I Ω ] ≤ pen th (m) -(1 -)E(pen th ( m)1 I Ω ) + 32 κ E[(pen th (m) + pen th ( m))1 I Ω ] ≤ (1 + 32 κ )pen th (m) + ( 32 κ -(1 -))E[pen th ( m))1 I Ω ].
Therefore we choose κ such that (32/κ -(1 -)) ≤ 0, that is κ ≥ 32/(1 -). This together with ( 46) and (47) yields 

1 4 E( ĥ m -h 2 1 I Ω ) ≤ 7 4 h -h m 2 + (2 -)pen th (m) + C∆ 2 πmn -πmn u 2 |h * (u)| 2 du + C" n∆ . 9 
≤ k n 2π √ ∆ πm -πm |t * (u)|du ≤ k n 2π √ ∆ (2πm πm -πm |t * (u)| 2 du) 1/2 = k n √ ∆ (m ) 1/2 t = k n √ m √ ∆ := M Moreover E( sup t∈Sm+S m , t =1 [ν P n,1 (t)] 2 ) ≤ 1 2πn∆ 2 πm -πm E(Z 4 1 )ψ 2 ∆ (u)du ≤ m E(Z 4 1 /∆) n∆ := H 2 .
The most delicate term is v.

Var(f t (Z 1 )) = 1 4π 2 ∆ 2 E Z 4 1 1 I Z 2 1 ≤kn √ ∆ | e ixZ 1 t * (-x)ψ ∆ (x)dx| 2 ≤ 1 4π 2 ∆ 2 E Z 4 1 e i(x-y)Z 1 t * (-x)t * (y)ψ ∆ (x)ψ ∆ (-y)dxdy = 1 4π 2 ∆ 2 ψ (4) ∆ (x -y)t * (-x)t * (y)ψ ∆ (x)ψ ∆ (-y)dxdy,
where we recall that ψ

∆ (x) = E(Z 4 1 e ixZ 1 ). Making use of the basis (ϕ m",j , j ∈ Z) of S m" , we have t = j∈Z t j ϕ m ,j with t 2 = j∈Z t 2 j = 1,

Var(f t (Z 1 )) ≤ 1 4π 2 ∆ 2 j,k∈Z t j t k ψ (4) ∆ (x -y)ϕ * m ,j (-x)ϕ * m ,k (y)ψ ∆ (x)ψ ∆ (-y)dxdy ≤ 1 4π 2 ∆ 2   j,k∈Z ψ (4) ∆ (x -y)ϕ * m ,j (-x)ϕ * m ,k (y)ψ ∆ (x)ψ ∆ (-y)dxdy 2   1/2 = 1 4π 2 ∆ 2 [-πm ,πm ] 2 |ψ (4) ∆ (x -y)| 2 |ψ ∆ (x)| 2 |ψ ∆ (-y)| 2 dxdy 1/2 Var(f t (Z 1 )) ≤ 1 4π 2 ∆ 2 [-πm ,πm ] 2 ψ (4) ∆ (x -y)| 2 dxdy 1/2 ≤ √ 2πm 4π 2 ∆ 2 [-2πm ,2πm ] |ψ (4) ∆ (z)| 2 dz 1/2 . ( 48 
)
Therefore, we need to study [-2πm ,2πm ] |ψ

(4) ∆ (z)| 2 dz. Recall that φ(u) = ib - u 0 h * (v)dv. We have ψ (4) 
∆ = ∆[φ (3) + ∆(4φφ + 3(φ ) 2 ) + 6∆ 2 φ φ 2 + ∆ 3 φ 4 ]ψ ∆ , where φ (u) = -h * (u), φ (u) = -i e iux x 3 n(x)dx, φ (3) (u) = e iux x 4 n(x)dx satisfy: |φ (u)| 2 du = h 2 , |φ (u)| ≤ |h| 1 , |φ (u)| 2 du = x 6 n 2 (x)dx = x 2 h 2 (x)dx, |φ (3) (u)| 2 du = x 8 n 2 (x)dx = x 4 h 2 (x)dx.
By assumption, h * is in

L 1 (R), thus, |φ(u)| ≤ |b| + |h * | 1 := M φ . Therefore |ψ (4) ∆ | 2 ≤ C∆ 2 (|φ (3) | 2 + ∆ 2 ((φ ) 2 + (φ ) 4 ) + ∆ 4 (φ ) 2 + ∆ 6
), where C is a constant depending on M φ and |h| 1 . Therefore,

2πm -2πm |ψ (4) ∆ (u)| 2 du ≤ C∆ 2 [ x 4 h 2 (x)dx + ∆ 2 ( x 2 h 2 (x)dx + 4πm |h| 4 1 ) + ∆ 4 h 2 + 4πm ∆ 6 ] ≤ C 1 ∆ 2 [ x 4 h 2 (x)dx + ∆ 2 x 2 h 2 (x)dx + ∆ 4 h 2 ] + C 2 m ∆ 4
Thus, using Assumptions (H1), (H3), (H4),

[-2πm ,2πm ] |ψ (4) ∆ (u)| 2 du ≤ K(∆ 2 + m ∆ 4 ).
As m ∆ 4 ≤ n∆ 5 and n∆ 3 ≤ 1 we get

[-2πm ,2πm ] |ψ (4) ∆ (u)| 2 du ≤ 2K∆ 2 .
This together with (48) yields

v = c √ m ∆
where c is a constant. Applying Lemma 10.1 yields, for 2 = 1/2 and p(m, m ) given by ( 44) yields

E sup t∈Sm+S m , t =1 [ν P n,1 (t)] 2 -p(m, m ) + ≤ C 1 √ m" n∆ e -C 2 √ m" + k 2 n m" n 2 ∆ e -C 3 √ n/kn
as p(m, m ) = 4H 2 . We choose

k n = C 3 4 √ n ln(n∆) ,
and as m ≤ n∆, we get

E sup t∈Sm+S m , t =1 [ν P n,1 (t)] 2 -p(m, m ) + ≤ C 1 √ m" n∆ e -C 2 √ m" + 1 (∆n) 4 ln 2 (n∆)
.

Therefore mn m =1 E sup t∈Sm+S m , t =1 [ν P n,1 (t)] 2 -p(m, m ) + ≤ C 1 n∆ m =1 √ m"e -C 2 √ m" n∆ + 1 (n∆) 3 ln 2 (n∆)
.

As C 2 xe -C 2 x is decreasing for x ≥ 1/C 2 , and its maximum is 1/(eC 2 ), we get

mn m =1 √ m"e -C 2 √ m" ≤ √ m ≤1/C 2 (eC 2 ) -1 + √ m ≥1/C 2 √ m e -C 2 √ m ≤ 1 eC 3 2 + ∞ m =1 √ m e -C 2 √ m < +∞. It follows that mn m =1 E sup t∈Sm+S m , t =1 [ν P n,1 (t)] 2 -p(m, m ) + ≤ C n∆ .
Let us now study the second term ν (R) n,j (t) in the decomposition of ν n,j (t). The cases j = 3, 4 being similar, we consider only ν (R) n,j (t) for j = 1. 

E sup t∈Sm n , t =1 |ν (R) n,1 (t)| 2 ≤ 1 4π 2 ∆ 2 E   πmn -πmn 1 n n k=1 (Z 2 k 1 I Z 2 k >kn √ ∆ e iuZ k -E(Z 2 k 1 I Z 2 k >kn √ ∆ e iuZ k )) 2 |ψ 2 ∆ (u)| 2 du   ≤ E(Z 4 1 1 I Z 2 1 >kn √ ∆ ) 4nπ 2 ∆ 2 πmn -πmn du ≤ m n E(Z 4+2p 1 ) 2πn∆ 2 (k n √ ∆) p ≤ K E(Z 4+2p 1 /∆) ln p (n∆) 2π(n∆) p/
| ft (z)| ≤ 1 2π∆ πm -πm |t * (-u)| 2 du πm -πm |ψ ∆ (u)| 2 du ≤ √ m E(Z 2 1 ) ∆ ≤ C √ m := M. Next E( sup t∈Sm+S m , t =1 [ν n,2 (t)] 2 ) ≤ 1 2πn∆ 2 πm -πm |ψ ∆ (u)| 2 du ≤ m E 2 (Z 2 1 )/∆) n∆ := H 2 .
Following the same line as previously for v, we get

Var( ft (Z 1 )) ≤ 1 4π 2 ∆ 2 [-πm ,πm ] 2 |ψ ∆ (u -v)| 2 |ψ ∆ (u)| 2 |ψ ∆ (-v)| 2 dudv 1/2 . As ψ ∆ = ∆(φ + ∆φ 2 ]ψ ∆ , we get (recall that M φ = |b| + |h * | 1 is the upper bound of |φ(u)|): Var( ft (Z 1 )) ≤ 1 4π 2 ∆ 2 πm -πm |ψ ∆ (x)| 2 dx ≤ 2∆ 2 ( h * 2 + 2πm ∆ 2 M 2 φ ) 4π 2 ∆ 2 ≤ 1 π ( h 2 + M 2 φ m n ∆ 2 ) ≤ h 2 + M 2 φ π := v as m n ∆ 2 ≤ n∆ 3 ≤ 1.
Proof of Proposition 9. 

(u)| ≤ E(|Z 1 |) ≤ E(Z 2 
1 ), we obtain here that M = k n √ m E(Z 2 1 /∆). On the other hand, we find H 2 = m E 2 (Z 2 1 )/(n∆ 2 ). Lastly, we find

Var( ft (Z 1 )) ≤ 1 4π 2 ∆ 2 [-πm ,πm ] 2 |ψ (2) ∆ (u -v)| 2 |ψ ∆ (u)| 2 |ψ ∆ (-v)| 2 dudv 1/2 .

With the bounds for |ψ

∆ | and 2πm -2πm |ψ ∆ (z)| 2 dz, we obtain v = cE(Z 2 1 /∆) √ m .
9.3. Proof of Theorem 4.1. The proof follows the same lines as for the adaptive estimator of h. We introduce, for 0 < < 1,

Ω b := [(1/(3n∆)) 3n k=1 Z 6 k ] (E(Z 6 1 /∆)) -1 ≤ .
Provided that E(Z 24 1 ) < ∞, we can make use of the Rosenthal inequality to obtain:

E( p m -p 2 1 I Ω c ) ≤ C/n∆.
For the study of E( p mp 2 1 I Ω ), the decomposition is similar to the previous case (see (40))

where ĥ m, h are now replaced by p m, p). The processes R n (t) and ν n (t) are given by:

ν n (t) = 1 2π p * -E(p * ), t * , R n (t) = 1 2π E(p * ) -p * , t * .
The term R n (t) is dealt using [START_REF] Woerner | Power and multipower variation: Inference for high frequency data[END_REF]. For the term containing ν n (t), we need apply 10.1. So, ν n is split into the sum of a principal and a residual term, respectively denoted by ν P n and ν R n with (49)

ν P n (t) = 1 3n 3n k=1 [f t (Z k ) -E(f t (Z k ))] with f t (z) = 1 2π∆ z 3 1 I |z| 3 ≤kn √ ∆ t * , e iz• ,
and ν R n (t) = ν n (t)ν P n (t). Everything is analogous. The difference is that, for applying 10.1, we have to bound 2πm"

-2πm" |ψ (6) ∆ (u)| 2 du (instead of 2πm" -2πm" |ψ (4) 
∆ (u)| 2 du previously). Using ψ ∆ = ∆ φψ ∆ (see ( 5)-( 25)), we find

ψ (6) ∆ = ∆ψ ∆ φ (5) + ∆ 2 ψ ∆ [6 φφ (4) + 15φ (3) (φ (u) -σ 2 )] +∆ 3 ψ ∆ [15φ (3) φ2 + 60φ (φ (u) -σ 2 ) φ + 15(φ (u) -σ 2 ) 3 ] +∆ 4 ψ ∆ [17φ φ(3) + 36 φ(2) (φ (u) -σ 2 ) 2 ] +12∆ 5 ψ ∆ φ4 (φ (u) -σ 2 ) + ∆ 6 ψ ∆ φ6 . Now, φ(u) ≤ C(1 + |u|)
and all the derivatives of φ, φ are bounded. Moreover, under (H6), |φ (5) (u)| 2 du = x 6 |p(x)| 2 dx < +∞. Thus, we find the following bound 2πm"

-2πm" |ψ (6) 
∆ | 2 ≤ C∆ 2 (1 + ∆ 2 m 3 + ∆ 4 m 5 + ∆ 6 m 7 + ∆ 8 m 9 + ∆ 10 m 13 ) = O(∆ 2 ), as m ≤ √ n∆.
The proof may then be completed as for ĥ m. 9.4. Proof of Proposition 5.1.

Proof of (i). The assumptions and the fact that r ≤ 1 imply

|Γ ∆ | r = | s≤∆ Γ s -Γ s -| r ≤ s≤∆ |Γ s -Γ s -| r .
Taking expectations yields

E|Γ ∆ | r ≤ ∆ |γ| r n(γ)dγ.
Proof of (ii). Consider f a non-negative function such that f (0) = 0. We have:

E s≤t f (X s -X s -) = E s≤t f (B Γs -B Γs -). Then, s≤t Ef (B Γs -B Γs -) = s≤t R f (x) Ee (-x 2 /2(Γs-Γs -)) 1 2π(Γ s -Γ s -) dx.
Since, for all x,

E s≤t e (-x 2 /2(Γs-Γs -)) 1 2π(Γ s -Γ s -) = t +∞ 0 e -x 2 /2γ 1 √ 2πγ n Γ (γ)dγ,
we get the formula for n X . Setting m α = E|X| α , for X a standard Gaussian variable, yields

R |x| α n X (x)dx = m α +∞ 0 γ α/2 n Γ (γ)dγ. Thus E|X ∆ | r = m r E(Γ r/2 ∆ ). As r/2 ≤ 1, Γ r/2 ∆ = ( s≤∆ Γ s -Γ s -) r/2 ≤ s≤∆ (Γ s -Γ s -) r/2 .
Taking expectation gives the result.

Proof of (iii) The result is proved e.g. Then, for all r, √ n(σ (r)

nσ r ) converges in distribution to a centered Gaussian distribution with variance σ 2r (m 2r /m 2 r -1) as n tends to infinity, ∆ tends to 0, n∆ tends to infinity, and n∆ 2 tends to 0.

Proof. We have

Eσ (r) n = 1 m r E|θ √ ∆ + σX| r ,
for X a standard Gaussian variable. We get, after a change of variables, Since r < 1, the constraint n∆ 2-r = o(1) can be fulfilled and implies n∆ 2 = o(1). Hence, the result follows from the previous proposition. Proof of (ii). The proof is analogous to the previous one (using Proposition 5.1 (ii)) and is omitted. We have

Eσ (r) n = 1 m r |u| r exp [- (u -θ √ ∆) 2 2σ 2 ] du σ √ 2π 
3n∆Varσ 2 M = 1 ∆ E(Z 4 1 cos 2 M Z 1 ) -E(Z 2 1 cos M Z 1 ) 2 .
We need choose M tending to infinity in such a way that the right handside above tends to a limit. For this, we use: 

E(Z
∆ (2M )). We know that (1/∆)E(Z 4 1 tends to x 4 n(x)dx as ∆ tends to 0. Some elementary computations yield (see ( 5)-( 25)): ψ ∆ (u) = -∆ψ ∆ (u)(h * (u) + σ 2 ) + ∆ 2 ψ ∆ (u) φ2 (u), ψ

∆ (u) = ψ ∆ (u) ∆φ (3) (u) + ∆ 2 4φ (u) φ(u)) + 3(h * (u) + σ 2 ) 2 -6∆ 3 φ2 (u)(h * (u) + σ 2 ) + ∆ 4 φ4 (u) . We have |ψ ∆ | ≤ 1, | φ(u)| ≤ |b| + |u|(σ 2 + |h| 1 ), φ , φ , φ (3) are Fourier transforms of integrable functions and thus tend to 0 as |u| tends to infinity. Hence, as M tends to infinity,

1 ∆ |ψ (4) ∆ (2M )| ≤ C(∆M + ∆ 2 M 2 + ∆ 3 M 4 ).
Choosing M such that ∆ 3 M 4 tends to 0, we obtain that the above term tends to 0. This choice implies also that ∆ -1/2 ψ ∆ (M ) tends to 0. Hence, 3n∆Varσ 2 M tends to x 4 n(x)dx/2. For the Lindeberg condition, we write Thus, choosing M = ∆ -1/4 will give a bias of order ∆ 1/2 . As n∆ 2 tends to 0, and M 4 ∆ 3 = ∆ 2 → 0, we get the result. 

√ n∆(σ 2 M -E(σ 2 M )) =
(f ) = (1/n) n i=1 [f (Y i ) -E(f (Y i ))
] and let F a countable class of uniformly bounded measurable functions. Then for 2 > 0 By standard density arguments, this result can be extended to the case where F is a unit ball of a linear normed space, after checking that f → ν n (f ) is continuous and F contains a countable dense family. 

E sup f ∈F |ν n,Y (f )| 2 -2(1 + 2 2 )H 2 + ≤ 4 K 1 v n e -K 1 2 nH 2 v + 98M 2 K 1 n 2 C 2 ( 2 ) e - 2K 1 

4

 4 (u)|du = ∆ 2 B m . If h * is integrable, |φ(u)| ≤ C,and B m = O(m). Otherwise, |φ 4 (u)| ≤ C|u| 4 , and B m = O(m 5 ).

4. 3 .

 3 Adaptive strategy. The adaptive selection of the best possible m imposes here a restricted collection of models. We choose M n = {m ∈ N/{0}, m ≤ √ n∆ := µ n }. From the bias point of view, the estimator to consider is p m with:

Proposition 5 . 1 .

 51 (i) Let (Γ t ) be a Lévy process with no continuous component and Lévy measure n(γ)dγ. If |γ|n(γ)dγ < ∞, b = γn(γ)dγ and for r ≤ 1, |γ| r n(γ)dγ < ∞. There exists a constant C such that, for all ∆, E|Γ ∆ | r ≤ C∆. (Under the assumption, (Γ t ) has finite mean and bounded variation on compact sets). (ii) Let X t = B Γt where (Γ t ) is a subordinator with Lévy density n Γ satisfying b = +∞ 0

Proposition 5 . 2 .

 52 Assume (H1) and n tends to infinity, ∆ tends to 0, n∆ tends to infinity.(i) Under (H2)(2 + ε) for some positive ε, √ n∆( bb) converges in distribution to N (0, c 2 ).(ii) Under (H2)(2( + ε)) for some positive ε, and if n∆ 3 tends to 0, √ n∆(ĉc ) converges in distribution to N (0, c 2 ). Proof. We have E(Z k ) = ∆b and, for ≥ 2, E(Z k ) = ∆c + o(∆). Therefore, b is an unbiased estimator of b and, for ≥ 2, √ n∆|Eĉc | = √ n∆O(∆). Hence, the additional condition n∆ 3 = o(1) to erase the bias.

  +∞ u p * (v)dv and thus h * (0) = -i +∞ 0

Example 1 .

 1 Drift + Brownian motion+ Compound poisson process. Let (39) L t = b 0 t + σW t + Nt i=1 Y i

  and density: α βt x βt-1 e -αx /Γ(βt)1I x≥0 . The Lévy density of (L t ) is n(x) = βx -1 e -αx 1 I x>0 . We have EL 1 = b = b 0 + xn(x)dx and p(x) = βx 2 e -αx 1 I x>0 . We find p * (u) = 2β/(αiu) 3 , |u|≥πm |p * (u)| 2 du = O(m -5 ) and πµn -πµn u 4 |p * (u)| 2 du = O(1). Therefore the rate for estimating p is O((n∆) -5/6 ) for a choice m = O((n∆)1/6 ).

6 (Figure 1 .

 61 Figure 1. Variability bands for the estimation of g, h, p for a compound Poisson process with Gaussian (first line), Exponential E(1) (second line), β(1, 3) (third line) and rescaled on [-4, 4] β(3, 3) (fourth line) Y i 's,with c = 0.5, except for the third line c = 4. True (bold black line) and 50 estimated curves (dotted red), ∆ = 0.05, n = 5.10 4 .

Figure 2 .

 2 Figure 2. Variability bands for the estimation of g, h, p for jumps from a Lévy-Gamma process with β = 1, α = 1 (first line), a bilateral Lévy-Gamma process with (β, α) = (0.7, 1), (β , α ) = (1, 1) (second line). True (bold black line) and 50 estimated curves (dotted red), ∆ = 0.05, n = 5.10 4 .
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 91 Under the assumptions of Theorem 3.1, choose k n = C √ n ln(n∆) and define

Proposition 9 . 3 .

 93 Under the assumptions of Theorem 3.1, define for j = 3

9 . 5 . 2 . 9 . 3 .

 95293 in Barndorff-Nielsen et al. (2006) (Theorem 1, p. 804) (see also Aït-Sahalia and Jacod (2007)). Proof of proposition 5.3. The study of (35) relies on the following result which is standard for r = Lemma Let Y t = θt + σW t for θ a constant and consider σ(r) n = 1 m r n∆ r/2 n k=1 |Y k∆ -Y (k-1)∆ | r .

n

  Thus, Eσ(r) nσ r = σ r e -θ 2 ∆/2σ 2 -1 + 1 m r e -θ 2 ∆/2σ 2 |u| r (e θu√ ∆/σ 2 -1)e -σ 2 ] n ∆ n/2-1and that |u| r ue -u 2 2σ 2 du σ √ 2π = 0, we easily obtain|Eσ (r) nσ r | ≤ c∆ Thus, √ n|Eσ (r) nσ r | = o(1) if √ n∆ = (n∆ 2 ) 1/2 = o(1). Noting that E|θ √ ∆ + σX| k converges to σ k m k as ∆ tends to 0, we get nVarσ (r)n → σ 2r (m 2r /m 2 r -1). Finally, we look atχ k,n = 1 n |θ √ ∆ + σ(W k∆ -W (k-1)∆ )/ √ ∆| r -E|θ √ ∆ + σX| r ,) converges in distribution to the centered Gaussian with the announced variance which completes the proof.Proof of (i). As noted above, Lt = b 0 t + σW t + Γ t with b 0 = bxn(x)dx. Using that, for r ≤ 1, || a i + b i | r -| a i | r | ≤ |b i | r , we get |σ (r) nσ(r) n | ≤ 1 m r n∆ r/2 n k=1 |Γ k∆ -Γ (k-1)∆ | r ,where σ(r) n is built with Y t = b 0 t + σW t as in the previous Lemma. Thus, applying Proposition 5.1 (i), r/2 |x| r n(x)dx.

9. 6 . 4 .

 64 Proof of Proposition 5.Let

2 1

 2 cos M Z 1 ) = -Reψ ∆ (M ),

M 0 ( 1 + v 2 ) 2 -a dv 1 / 2 + C ∆M 2 + C ∆ 2 ( 1 + v 2 ) -a dv 1 / 2

 012212221212 where nE|χ k,n | 4 ≤ C n∆ (EZ4 1 /∆) tends to 0. So, we have the convergence in distribution result for√ 3n∆(σ 2 M -Eσ 2 M ). Finally, √ 3n∆(σ 2 M -Eσ 2 M ) -√ 3n∆(σ 2 M -Eσ 2 M ) = -∆ √ 3n∆( b1 b2b 2 ).As the righthand side above tends to 0 in probability, we obtain the convergence in distribution of√ 3n∆(σ 2 M -Eσ 2 M ).It remains to study the bias of σ2M . From definition (36), we deduceE(σ 2 M ) = σ 2 + h * (0) -* (v) -E(p * (v)))dv.Therefore,|E(σ 2 M )σ 2 | ≤ M 0 |E(p * (v))p * (v)|dv + +∞ M |p * (v)|dv.It follows from[START_REF] Woerner | Power and multipower variation: Inference for high frequency data[END_REF] that|E(σ 2 M )σ 2 | ≤ C M 0 ∆|p * (v)||v|(1 + |v|)dv + ∆(1 + |v|)dv + ∆ 2 (1 + |v|) 3 dv + +∞ M |p * (v)|dv ≤ C ∆ M 0 |p * (v)|(1 + v 2 )dv + ∆M 2 + ∆ 2 M 4 + +∞ M |p * (v)|dv Assume now that p ∈ C(a, L), then |E(σ 2 M )σ 2 | ≤ C ∆ M 0 |p * (v)|(1 + v 2 ) a/2 (1 + v 2 ) 1-a/2 dv + ∆M 2 + ∆ 2 M 4 + +∞ M |p * (v)|(1 + v 2 ) a/2 (1 + v 2 ) -a/2 dv ≤ C ∆ √ L If a >5/2, we get |E(σ 2 M )σ 2 | ≤ K(∆ + ∆M 2 + ∆ 2 M 4 + M -a+1/2 ) ≤ K(∆ + ∆M 2 + ∆ 2 M 4 + M -2 ).

10 . Appendix 10 . 1 .

 10101 Two classical results. The Talagrand inequality. The following result follows from the Talagrand concentration inequality given in Klein and Rio (2005) and arguments in Birgé and Massart (1998) (see the proof of their Corollary 2 page 354). Lemma 10.1. (Talagrand Inequality) Let Y 1 , . . . , Y n be independent random variables, let ν n,Y

2 - 1 ,

 21 K 1 = 1/6, andsup f ∈F f ∞ ≤ M, E sup f ∈F |ν n,Y (f )| ≤ H, sup (Y k )) ≤ v.

The

  Rosenthal inequality. (see e.g.Hall and Heyde (1980, p.23)) Let (X i ) 1≤i≤n be n independent centered random variables, such that E(|X i | p ) < +∞ for an integer p ≥ 1. Then there exists a constant C(p)

Table 1 .

 1 for large |u|. Rates for different "Drift+ Brownian motion +Compound Poisson process".

	|u|≥πm |p * (u)| 2 du |u|≤πµn u 4 |p * (u)| 2 du m (best choice of m) Rate ∝	O((πm) 5 e -(πm) 2 ) O(1) 2 log log(n∆)/π O((n∆) 1/8 ) O((πm) -7 ) O(1) log(n∆) -5 log(n∆) n∆ (n∆) -7/8	O((πm) -5 ) O(1) O((n∆) 1/6 ) (n∆) -5/6

Table 2 .

 2 Estimation of (b, σ), b 0 = 1, the true value of b in parenthesis, σ = 0.5, K = 200 replications. , 0.05) (5.10 4 , 0.01) (5.10 4 , 10 -3 ) (10 4 , 10 -3 )

			4 , 0.05)	(5.10 4 , 0.01)	(5.10 4 , 10 -3 )	(10 4 , 10 -3 )
	Poisson	b (b = 1)	1.000 (0.02)	0.997 (0.04)	0.995 (0.123) 1.001 (0.280)
	Gaussian	σ(1/2)	0.602 (0.03) 0.527 (0.002) 0.504 (0.002) 0.504 (0.005)
		σ(1/4)	0.589 (0.03) 0.521 (0.002) 0.503 (0.002) 0.503 (0.002)
	Poisson	b (b = 1.5)	1.502 (0.05) 1.502 (0.051) 1.494 (0.142) 1.461 (0.359)
	Exp(1)	σ(1/2)	0.611 (0.003) 0.530 (0.003) 0.505 (0.002) 0.505 (0.005)
		σ1/4	0.594 (0.003) 0.522 (0.003) 0.503 (0.002) 0.503 (0.005)
	Gamma	b (b = 2)	2.001 (0.02)	2.000 (0.05)	1.998 (0.177) 2.018 (0.335)
	(1,1)	σ(1/2)	0.705 (0.004) 0.562 (0.003) 0.512 (0.002) 0.513 (0.005)
		σ(1/4)	0.677 (0.004) 0.548 (0.003) 0.508 (0.002) 0.508 (0.005)
	Bilateral	b (b = 1.4286) 1.426 (0.035) 1.4286 (0.076) 1.4493 (0.264) 1.405 (0.619)
	Gamma	σ(1/2)	0.862 (0.005) 0.628 (0.004) 0.526 (0.003) 0.526 (0.006)
	(0.7,1), (1.1)	σ(1/4)	0.798 (0.004) 0.593 (0.003) 0.516 (0.002) 0.515 (0.006)

Table 4 .

 4 Values of n, ∆, n∆, n∆ 2 , n∆ 2-r for r = 1/2 and r = 1/4.

	4 , 10 -3 )

  .2. Proof of Propositions 9.1, 9.2, 9.3 . Proof of Proposition 9.1. Let m = m ∨ m , and note that S m + S m = S m .

								We evaluate
	the constants M, H, v to apply 10.1 to ν P n,1 (t) (see (43)).
	sup z∈R	|f t (z)| ≤	k n 2π √	∆	sup z∈R	|	-πm πm	t

* (-u)e iuz ψ ∆ (u)du|

  Proof of Proposition 9.2. For ν n,2 , the variables are bounded without splitting, and the function f t is replaced by ft = (2π∆) -1 t * , e iz. ψ ∆ . We just check the orders of M , H 2 and v for the application of Lemma 10.1. For t ∈ S m = S m + S m and t ≤ 1, we have sup z∈R

	2	,
	√ n/ ln(n∆)). Taking p = 2, which is possible using m n ≤ n∆ and recalling that k n = (C 3 /4)( because E(Z 8 1 ) < +∞, gives a bound of order ln 2 (n∆)/(n∆).
	Proposition 9.1 is proved.