Estimation for Lévy processes from high frequency data within a long time interval
Fabienne Comte, Valentine Genon-Catalot

To cite this version:

Fabienne Comte, Valentine Genon-Catalot. Estimation for Lévy processes from high frequency data within a long time interval. Annals of Statistics, 2011, 39 (2), pp.803-837. 10.1214/10-AOS856. hal-00447026

HAL Id: hal-00447026
https://hal.science/hal-00447026
Submitted on 14 Jan 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
ESTIMATION FOR LÉVY PROCESSES FROM HIGH FREQUENCY DATA WITHIN A LONG TIME INTERVAL.

F. COMTE AND V. GENON-CATALOT

Abstract. In this paper, we study nonparametric estimation of the Lévy density for Lévy processes, first without then with Brownian component. For this, we consider 2n (resp. 3n) discrete time observations with step \(\Delta \). The asymptotic framework is: \(n \) tends to infinity, \(\Delta = \Delta_n \) tends to zero while \(n \Delta_n \) tends to infinity. We use a Fourier approach to construct an adaptive nonparametric estimator and to provide a bound for the global \(L^2 \)-risk. Estimators of the drift and of the variance of the Gaussian component are also studied. We discuss rates of convergence and give examples and simulation results for processes fitting in our framework. January 13, 2010

AMS Classification. 62G05-62M05-60G51.

1. Introduction

Let \((L_t, t \geq 0) \) be a real-valued Lévy process, i.e. a process with stationary independent increments and càdlàg sample paths. The distribution of the process \((L_t, t \geq 0) \) is completely specified by the characteristic function of the random variable \(L_t \) which has the form:

\[
\psi_t(u) = \mathbb{E}(\exp iuL_t) = \exp \left(iu\tilde{b} - \frac{1}{2}u^2\sigma^2 + \int_{\mathbb{R}^*}(e^{iu|x|} - 1 - iux1_{|x|\leq1})N(dx) \right),
\]

where \(\tilde{b} \in \mathbb{R}, \sigma^2 \geq 0 \) and \(N(dx) \) is a positive measure on \(\mathbb{R}^* \) satisfying

\[
\int_{\mathbb{R}^*}x^2 \land 1 N(dx) < \infty
\]

(see e.g. Bertoin (1996) or Sato (1997)). Thus, the statistical problem for Lévy processes is the joint estimation of its characteristic triple \((\tilde{b}, \sigma^2, N)\) where appears a finite-dimensional parameter \((\tilde{b}, \sigma^2)\) and an infinite dimensional parameter \(N\), the Lévy measure. In most recent contributions, authors consider a discrete time observation of the sample path, with regular sampling interval \(\Delta \). Therefore, statistical procedures are based on the i.i.d. sample composed of the increments \(Z_k = Z_k^\Delta = L_k\Delta - L_{(k-1)\Delta}, k = 1, \ldots, n \). In the general case, the distribution of the r.v. \(Z_k \) is not explicitly given as a function of \((\tilde{b}, \sigma^2, N)\). This is why authors rather use the relationship between the characteristic function \(\psi_\Delta \) of \(Z_k \) and the characteristic triple. Assuming that \(N(dx) = n(x)dx \) admits a density, several papers concentrate on the estimation of the Lévy density under various assumptions on the characteristic triple, including the case of \(\tilde{b} = \sigma^2 = 0 \) or assuming stronger integrability conditions on the Lévy density (see e.g. Watteel and Kulperger (2003), Jongbloed and van der Meulen (2006), van Es et al. (2007), Figueroa-López (2009) and the references therein, Comte and Genon-Catalot (2008, 2009a,b)). The joint estimation of \((\tilde{b}, \sigma^2, N)\) is investigated in Neumann and Reiss (2009) or Gugushvili (2009). The methods and results differ according to the asymptotic point of view. One may consider that the sampling interval \(\Delta \) is fixed and that \(n \) tends to infinity (low frequency data). This approach, which is

1 Université Paris Descartes, MAP5, UMR CNRS 8145.
quite natural, raises mathematical difficulties and does not take into account the underlying continuous time model properties. One may consider that $\Delta = \Delta_n$ tends to 0 as n tends to infinity (high frequency data). Under the assumption that Δ_n tends to 0 within a fixed length time interval ($n\Delta_n = t$ fixed), the estimation of σ has been widely investigated for Lévy processes (see e.g. Woerner (2006), Barndorff-Nielsen et al. (2006), Jacod (2007)). However, the Lévy density cannot be identified from observations within a finite-length time interval. To identify all parameters in the high-frequency context, one has to assume that $n\Delta_n$ tends to infinity. This is the point of view adopted in this paper. Our main focus is the nonparametric estimation of the Lévy density $n(.)$ by an adaptive deconvolution method which generalizes the study of Comte and Genon-Catalot (2009a). We also study estimators of the other parameters. More precisely, we assume that the Lévy density satisfies

\[(H1) \int_{\mathbb{R}} x^2 n(x) dx < \infty.\]

For statistical purposes, this assumption, which was proposed in Neumann and Reiss (2009), has several useful consequences. First, for all t, $\mathbb{E}L_t^2 < +\infty$ and as $\int_{\mathbb{R}} (e^{iux} - 1 - iux)n(x) dx$ is well defined, we get the following expression for (1):

\[\psi_t(u) = \mathbb{E}(\exp iuL_t) = \exp t(iub - \frac{1}{2} u^2 \sigma^2) + \int_{\mathbb{R}} (e^{iux} - 1 - iux)n(x) dx,\]

where $b = \mathbb{E}L_1$ has a statistical meaning (contrary to \tilde{b}). Thus, the sample path can be expressed as:

\[L_t = bt + \sigma W_t + X_t,\]

where (W_t) and (X_t) are independent processes, (W_t) is a Brownian motion, (X_t) a square integrable pure-jump martingale:

\[X_t = \int_{[0,t]} \int_{\mathbb{R}^*} x(\hat{\delta}(du, dx) - dun(x) dx),\]

and

\[\hat{\delta}(du, dx) = \sum_{s \geq 0} \delta_{s, \Delta L_s}(du, dx)\]

is the random Poisson measure associated with the jumps of (L_t) (or (X_t)) with intensity $dun(x) dx$.

In Section 2, we present our main assumptions and some preliminary properties. In Section 3, we assume that $\sigma = 0$ and study the estimation of the function $h(x) = x^2 n(x)$. Using a sample of size $2n$, we build two collections of estimators $(\hat{h}_m, \bar{h}_m)_{m>0}$ indexed by a cut-off parameter m. The collections are obtained by Fourier inversion of two different estimators of the Fourier transform h^* of the function h. The estimators of h^* are built using empirical estimators of the characteristic function ψ_Δ and its first two derivatives. First, we give a bound for the L^2-risk of (\hat{h}_m, \bar{h}_m) for fixed m. Then, introducing an adequate penalty, we propose a data-driven choice of the cut-off parameter which yields an estimator (\hat{h}_m, \bar{h}_m) for each collection. The L^2-risk of these estimators is studied. We prove that the optimal rate of convergence is automatically reached on Sobolev classes of regularity for the function h.

In Section 4, we consider the general case. To reach the Lévy density and get rid of the unknown σ^2, we must now use derivatives of ψ_Δ up to the order 3 and we estimate the function $p(x) = x^3 n(x)$ developing the Fourier inversion approach and adaptive choice of the cut-off parameter as for h. It is worth stressing that the point of view of small sampling interval is crucial to our study. Indeed, it helps obtaining simple estimators of ψ_Δ and its successive
derivatives which are used to estimate the Fourier transform \(p^* \) of \(p \). Section 5 is devoted to the estimation of \((b, \sigma)\). We study classical empirical means of the observations. This gives an estimator of \(b \) but cannot give estimators of \(\sigma \). To estimate \(\sigma \), we consider power variation estimators, introduced in Woerner (2006), Barndorff-Nielsen et al. (2006), Jacod (2007), Aït-Sahalia and Jacod (2007), under the asymptotic framework of high frequency data within a long time interval. Moreover, a new estimator of \(\sigma \) is obtained from the nonparametric study. In Section 6, we give examples of Lévy models satisfying our set of assumptions. We provide numerical simulation results in Section 7. Section 9 contains the main proofs. In Section 10, two classical results, used in proofs, are recalled.

2. Assumptions and preliminary properties.

Let us consider the two functions

\[h(x) = x^2 n(x), \quad p(x) = x^3 n(x), \]

and the assumptions

(H2) \(k \) \(\int_{\mathbb{R}} |x|^k n(x) dx < \infty \).

(H3) \(h \) belongs to \(L^2(\mathbb{R}) \).

(H4) \(\int x^5 n^2(x) dx = \int x^4 h^2(x) dx < \infty \).

(H5) \(p \) belongs to \(L^2(\mathbb{R}) \).

(H6) \(\int x^{12} n^2(x) dx = \int x^6 p^2(x) dx < \infty \).

Assumption (H2)(k) is a moment assumption. Indeed, according to Sato (1999, Section 5.25, Theorem 5.23), \(\mathbb{E}|L_t|^k < \infty \) is equivalent to \(\int_{|x|>1} |x|^k n(x) dx < \infty \). Below, for each stated result, the required value of \(k \) is given. Under (H1), the function \(h \) is integrable and Section 3 is devoted to the nonparametric estimation of \(h \) under the additional assumptions (H3)-(H4). Assumption (H4) is only required for the adaptive result. Under (H1)-(H2)(3), the function \(p \) is integrable and Section 4 concerns the estimation of \(p \) under (H5)-(H6).

Properties of the moments of \(L_\Delta = Z^\Delta_1 = Z_1 \) for small \(\Delta \) are used in the proofs below.

Lemma 2.1. Let \(p \geq 1 \) be an integer and assume (H1)-(H2)(p) with \(p \geq 3 \). Then, \(\mathbb{E}(|Z_1|^p) < +\infty \) and \(\mathbb{E}(Z_1) = b \Delta \), \(\mathbb{V}(Z_1) = \Delta (\sigma^2 + \int x^2 n(x) dx) \) and for \(3 \leq \ell \leq p \), \(\mathbb{E}(Z_1^\ell) = \Delta c_\ell + o(\Delta) \) where \(c_\ell = \int x^\ell n(x) dx \).

Proof. Under the assumption, \(\psi_\Delta \) is \(p \)-times derivable and the result follows by computing the successive derivatives of \(\psi_\Delta \).

Thus, under (H1), (H2)(p), \(\mathbb{E}(Z_1^\ell/\Delta) \) is bounded for all \(\ell \leq p \), for all \(\Delta \).

More precise results on the asymptotic behaviour of \((1/\Delta)\mathbb{E}f(Z_1) \) for unbounded functions \(f \) are given in Figueroa-López (2008) (see the Appendix). In the sequel, results on the behaviour of the characteristic function \(\psi_\Delta \) (see (2)) for small \(\Delta \) are needed.

Lemma 2.2. Under (H1), \(|\psi_\Delta(u) - 1| \leq \Delta |u| (c(u) + \sigma^2 |u|) \) where \(c(u) = |b| + |\int_0^u |h^*(v)| dv| \), \(h^*(v) = \int e^{ixv} h(x) dx \) denotes the Fourier transform of \(h \). If \(h^* \) is integrable on \(\mathbb{R} \), then

\[
|\psi_\Delta(u) - 1| \leq \Delta |u| (|b| + |h^*|_1 + |u| \sigma^2).
\]

Proof. By formula (2), under (H1), \(\psi_\Delta \) is \(C^1 \) with:

\[
\psi'_{\Delta}(u) = \Delta \psi_{\Delta}(u)(\phi(u) - \sigma^2 u),
\]
where we have set, using that $e^{ix} - 1 = ix \int_0^u e^{ivx} dv$:

\begin{equation}
\phi(u) = ib - \int_0^u h^*(v) dv.
\end{equation}

We have $|\phi(u)| \leq |b| + |f_0^u h^*(v)| dv$ and by the Taylor formula, $\psi_\Delta(u) - 1 = u\psi'_\Delta(c_u u)$ for some $c_u \in (0, 1)$. The result follows. \hfill \Box

3. Case of no Gaussian component.

In this section, we assume that $\sigma^2 = 0$ and focus on the nonparametric estimation of h. For reasons that will appear below, we assume that we have at our disposal a $2n$-sample, $(Z_k)_{1 \leq k \leq 2n}$, with $Z_k = Z_k^\Delta = L_{k\Delta} - L_{(k-1)\Delta}$. We assume that $\Delta = \Delta_n$ tends to 0 and $n\Delta_n$ tends to infinity. Hence, Δ and Z_k depend on n. However, to simplify notations, we omit the dependence on n and simply write Δ, Z_k.

3.1. Definition of estimators depending on a cut-off parameter. For a complex valued function f belonging to $L^1(\mathbb{R})$, we denote its Fourier transform by $f^*(u) = \int e^{iux} f(x) dx$. For integrable and square integrable functions f, f_1, f_2, we use the following notations:

$$||f|| = \int |f(x)|^2 dx, \quad <f_1, f_2> = \int f_1(x)\bar{f}_2(x) dx,$$

(\bar{z} denotes the conjugate of the complex number z). We have:

$$(f^*)^*(x) = 2\pi f(-x), \quad <f_1, f_2> = \frac{1}{2\pi} <f_1^*, f_2^*>.$$

By formula (2), under (H1), ψ_Δ is C^2 and we have, as $\sigma^2 = 0$ (see (5)):

$$\frac{\psi'_\Delta(u)}{\psi_\Delta(u)} = i\Delta + \int \frac{e^{iux} - 1}{x} h(x) dx = \Delta \phi(u).$$

Derivating again gives:

$$\frac{\psi''_\Delta(u) \psi_\Delta(u) - (\psi'_\Delta(u))^2}{\psi_\Delta^2(u)} = -\Delta \int e^{iux} h(x) dx = -\Delta h^*(u).$$

The construction of estimators is based on the formulae:

\begin{equation}
h^*(u) = -\frac{1}{\Delta} \left(\frac{\psi''_\Delta(u) \psi_\Delta(u) - (\psi'_\Delta(u))^2}{\psi_\Delta^2(u)} \right) = -\frac{1}{\Delta} \left(\frac{\psi''_\Delta(u)}{\psi_\Delta(u)} - \frac{(\psi'_\Delta(u))^2}{\psi_\Delta^2(u)} \right)
\end{equation}

and the high frequency setting which yields that for all u, $\lim_{\Delta \to 0} \psi_\Delta(u) = 1$. By splitting the $2n$-sample into two independent subsamples of n observations, we introduce the following empirical unbiased estimators of $\psi_\Delta, \psi'_\Delta, \psi''_\Delta$:

$$\hat{\psi}_{\Delta,q}^{(j)}(u) = \frac{1}{n} \sum_{k=1+q(n-1)}^{qn} (iZ_k)^j e^{iuZ_k}, \quad j = 0, 1, 2, \quad q = 1, 2.$$

We also define, based on the full sample, the estimator of ψ''_Δ:

$$\hat{\psi}_{\Delta}^{(2)}(u) = \frac{1}{2n} \sum_{k=1}^{2n} (iZ_k)^2 e^{iuZ_k}.$$
We now build estimators of the Fourier transform h^* of h. Considering the first expression of h^* in (6), we replace $\psi_\Delta, \psi'_\Delta, \psi''_\Delta$ in the numerator by the empirical estimators built on the two independent subsamples of size n. In the denominator, ψ_{Δ}^2 is simply replaced by 1. This yields:

$$\hat{h}^*(u) = \frac{1}{\Delta} \left(\hat{\psi}_{\Delta,1}^{(1)}(u)\hat{\psi}_{\Delta,2}^{(1)}(u) - \hat{\psi}_{\Delta,1}^{(2)}(u)\hat{\psi}_{\Delta,2}^{(0)}(u) \right).$$

Hence, using independence of the two subsamples,

$$\mathbb{E}\hat{h}^*(u) = \frac{1}{\Delta} \left(\mathbb{E}(\psi_\Delta'(u))^2 - \psi_\Delta''(u)\psi_\Delta(u) \right) = h^*(u) + h^*(u)(\psi_{\Delta}^2(u) - 1).$$

Introducing a cut-off parameter m, we define an associated estimator of h, by:

$$\hat{h}_m(x) = \frac{1}{2\pi} \int_{-\pi m}^{\pi m} e^{-iux}\hat{h}^*(u)du.$$

This means that $\hat{h}_m^*(u) = \hat{h}^*(u)1_{[-\pi m,\pi m]}(u)$. By integration, noting that $\mathbb{I}(m) = \sin(\pi m z)/\pi z$, the following expression is available

$$\hat{h}_m(x) = \frac{1}{n^2\Delta} \sum_{1\leq j,k\leq n} (Z_k^2 - Z_kZ_{n+j}) \frac{\sin(\pi m(Z_k + Z_{j+n} - x))}{\pi(Z_k + Z_{j+n} - x)}.$$

We also define another estimator of h^* of h by setting:

$$\tilde{h}^*(u) = -\frac{1}{\Delta} \psi_{\Delta}^{(2)}(u).$$

Here, using (6), we get

$$\mathbb{E}\tilde{h}^*(u) = -\frac{1}{\Delta} \psi''_\Delta(u) = h^*(u) + h^*(u)(\psi_\Delta(u) - 1) - \Delta_\Delta u^2(u)\phi(u).$$

Thus, \tilde{h}^* is simpler but has an additional bias term. We set:

$$\tilde{h}_m(x) = \frac{1}{2\pi} \int_{-\pi m}^{\pi m} e^{-iux}\tilde{h}^*(u)du = \frac{1}{2n\Delta} \sum_{k=1}^{2n} Z_k^2 \frac{\sin(\pi m(Z_k - x))}{\pi(Z_k - x)}.$$

3.2. Risk for a fixed cut-off parameter. Next, let us define

$$h_m(x) = \frac{1}{2\pi} \int_{-\pi m}^{\pi m} e^{-iux}h^*(u)du.$$

Then we can prove the following result

Proposition 3.1. Assume that (H1)-(H2)(4) and (H3) hold. Then we have

$$\mathbb{E}(\|\hat{h}_m - h\|^2) \leq \|h_m - h\|^2 + 72\mathbb{E}(Z_\Delta^4/\Delta)\frac{m}{n\Delta} + \frac{4\Delta^2}{\pi} \int_{-\pi m}^{\pi m} u^2 c^2(u)|h^*(u)|^2 du.$$

And,

$$\mathbb{E}(\|\tilde{h}_m - h\|^2) \leq \|h_m - h\|^2 + \mathbb{E}(Z_\Delta^4/\Delta)\frac{m}{n\Delta} + \frac{2\Delta^2}{\pi} \int_{-\pi m}^{\pi m} u^2 c^2(u)|h^*(u)|^2 du + C\Delta^2 B_m,$$

with C a constant, $c(u)$ is defined in Lemma 2.2, B_m is defined in (16) and satisfies $B_m = O(m)$ if $h^* \in L_1(\mathbb{R})$ and $B_m = O(m^5)$ otherwise.
Proof. First, the Parseval formula gives \(||\hat{h}_m - h||^2 = (1/(2\pi))||\hat{h}_m^* - h^*||^2 \) and we can note that \(h^*(u) - \hat{h}_m^*(u) = h^*(u)1_{|u| \geq \pi m} \) is orthogonal to \(\hat{h}_m^* - h^*_m \) which has its support in \([-\pi m, \pi m]\). Thus,

\[
||\hat{h}_m - h||^2 = \frac{1}{2\pi}((||h^* - \hat{h}_m^*||^2 + ||h^*_m - \hat{h}_m^*||^2)).
\]

The first term \((1/(2\pi))||h^* - \hat{h}_m^*||^2 = ||h - h_m||^2\) is a classical squared bias term. Next,

\[
\hat{h}_m^*(u) - h^*_m(u) = \left(\hat{h}_m^*(u) - \mathbb{E}(\hat{h}_m^*(u))\right) + \left[\mathbb{E}(\hat{h}_m^*(u)) - h^*_m(u)\right]
\]

Bounding the norm of \(||\hat{h}_m^* - h^*_m||^2 \) by twice the sum of the norms of the two elements of the decomposition, we get

\[
\mathbb{E}(||\hat{h}_m - h_m||^2) \leq \frac{1}{\pi} \mathbb{E} \left(\int_{-\pi m}^{\pi m} |\hat{h}^*(u) - \mathbb{E}\hat{h}^*(u)|^2 du \right) + \frac{1}{\pi} \int_{-\pi m}^{\pi m} |\psi_\Delta^2(u) - 1|^2 |h^*(u)|^2 du
\]

(see Lemma 2.2 for the upper bound of \(|\psi_\Delta(u) - 1| \) and note that \(|\psi_\Delta(u)| \leq 1 \)). Now, we use the decomposition:

\[
\Delta(\hat{h}^*(u) - \mathbb{E}\hat{h}^*(u)) = \left(\hat{\psi}_{\Delta,1}^{(1)}(u) - \psi_\Delta(u)\right)(\hat{\psi}_{\Delta,2}^{(1)}(u) - \psi_\Delta(u)) + \left(\hat{\psi}_{\Delta,1}^{(2)}(u) - \psi_\Delta(u)\right)(\hat{\psi}_{\Delta,2}^{(2)}(u) - \psi_\Delta(u)) - \left(\hat{\psi}_{\Delta,1}^{(2)}(u) - \psi_\Delta(u)\right)(\hat{\psi}_{\Delta,2}^{(0)}(u) - \psi_\Delta(u)) - \left(\hat{\psi}_{\Delta,1}^{(0)}(u) - \psi_\Delta(u)\right)(\hat{\psi}_{\Delta,2}^{(0)}(u) - \psi_\Delta(u)).
\]

(13)

Considering each term consecutively and exploiting the independence of the samples, we obtain

\[
\mathbb{E}(||\hat{h}_m - h||^2) \leq \frac{6}{\Delta^2} \left(\frac{\mathbb{E}(Z_1^2)}{n^2} + 2\frac{\mathbb{E}(Z_1^2)}{n^2} + \frac{\mathbb{E}(Z_1^4)}{n^2} + 2\frac{\mathbb{E}(Z_1^4)}{n} \right) \leq 36\frac{\mathbb{E}(Z_1^4/\Delta)}{n\Delta}.
\]

Thus, the first risk bound is proved.

Analogously, we have

\[
\mathbb{E}(||\hat{h}_m - h||^2) \leq ||h_m - h||^2 + \frac{1}{\pi} \int_{-\pi m}^{\pi m} ||\hat{h}^*(u) - h^*(u)||^2 du + \frac{1}{\pi} \mathbb{E} ||\hat{h}^*(u)||^2 du
\]

For the variance of \(\hat{h}^*(u) \), we use:

\[
\hat{h}^*(u) - \mathbb{E}\hat{h}^*(u) = -\frac{1}{\Delta} \left(\hat{\psi}_{\Delta}^{(2)}(u) - \psi_\Delta(u)\right).
\]

Thus,

\[
\text{Var}(\hat{h}^*(u)) \leq \frac{1}{2n\Delta} \mathbb{E}(Z_1^4/\Delta).
\]

Next, for the bias of \(\hat{h}^*(u) \), we use (see (9)-(5)):

\[
||\mathbb{E}\hat{h}^*(u) - h^*(u)||^2 \leq 2|h^*(u)|^2||\psi_\Delta(u) - 1|^2 + 2\Delta^2|\phi(u)|^2.
\]

Hence, there is an additional term in the risk bound equal to

\[
\mathbb{E} \left(\int_{-\pi m}^{\pi m} |\phi(u)| du \right) = \Delta^2 B_m.
\]

If \(h^* \) is integrable, \(|\phi(u)| \leq C \), and \(B_m = O(m) \). Otherwise, \(|\phi(u)| \leq C|u|^4 \), and \(B_m = O(m^5) \). \(\square\)
Assume that (H1)-(H2)(4) and (H3) hold and that Proposition 3.2.

Remark 3.2.\[\tag{17} C(a, L) = \{ f \in (L^1 \cap L^2)(\mathbb{R}), \int (1 + u^2)^a |f^*(u)|^2 du \leq L \} \]

Then we can prove the following result:

Proposition 3.2. Assume that (H1)-(H2)(4) and (H3) hold and that \(h \) belongs to \(C(a, L) \) with \(a > 1/2 \). Consider the asymptotic setting where \(n \to +\infty \), \(\Delta \to 0 \), \(n\Delta \to +\infty \) and assume that \(m \leq n\Delta \). If \(n\Delta^2 \leq 1 \), then, for the optimal choice \(m = O((n\Delta)^{1/(2a+1)}) \), we have:

\[\mathbb{E}(\| \hat{h}_m - h \|^2) \leq O((n\Delta)^{-2a/(2a+1)}) . \]

If \(a \geq 1 \), the condition \(n\Delta^2 \leq 1 \) can be replaced by \(n\Delta^3 \leq 1 \).

The same result holds for \(\bar{h}_m \).

Proof. As \(\|h - h_m\|^2 = (1/\pi) \int_{|u| \geq \pi m} |h^*(u)|^2 du \), the definition of \(C(a, L) \) implies clearly that \(\|h - h_m\|^2 \leq (L/2\pi)(\pi m)^{-2a} \). The compromise between this term and the variance term of order \(m/(n\Delta) \) is standard: it leads to choose \(m = O((n\Delta)^{1/(2a+1)}) \) and yields the order \(O((n\Delta)^{-2a/(2a+1)}) \).

For \(a > 1/2 \), we have

\[\left| \int_0^u |h^*(v)| dv \right| \leq \left(\int |h^*(v)|^2 (1 + v^2)^{a/2} (1 + v^2)^{-a/2} dv \right)^{1/2} \leq \sqrt{L} \int (1 + v^2)^{-a} dv, \]

where \(\int (1 + v^2)^{-a} dv < +\infty \). Therefore, \(h^* \) is integrable and \(|\phi(u)| \leq |b| + |h^*|_1 \).

The last term in the risk bound (11) is less than

\[K\Delta^2 \int_{|u| \geq \pi m} u^2 |h^*(u)|^2 du \leq L\Delta^2 (\pi m)^{2(1-a)+}. \]

If \(a \geq 1 \) and \(n\Delta^3 \leq 1 \), we have \(\Delta^2 (\pi m)^{2(1-a)+} = \Delta^2 \leq (n\Delta)^{-1} \).

If \(a \in (1/2, 1) \), the inequality \(\Delta^2 m^{2(1-a)} \leq m^{-2a} \) is equivalent to \(\Delta^2 m^2 \leq 1 \). As \(m \leq n\Delta \), \(\Delta^2 m^2 \leq 1 \) holds if \(n\Delta^2 \leq 1 \).

For the additional bias term appearing in the risk bound of \(\bar{h}_m \), we have \(B_m = O(m) \). Thus, \(m\Delta^2 \leq m^{-2a} \) holds, for \(m = O((n\Delta)^{1/(2a+1)}) \), if \(m^{1+2a}\Delta^2 = (n\Delta)\Delta^2 \leq 1 \) which in turn holds if \(n\Delta^3 \leq 1 \).

Remark 3.2. We can also discuss the case where \(a \in (0, 1/2] \). If \(a \leq 1/2 \), \(|\int_0^u |h^*(v)| dv| = O(|u|^{1/2-a}) \). Hence, the last term in (11) is of order \(\Delta^2 m^{-3+2a} \) which is less than \(m^{-2a} \) if \(\Delta^2 m^{-3+2a} \leq 1 \) and thus \(\Delta^2 m^3 \leq 1 \). This requires \(n\Delta^{5/3} \leq 1 \). The same constraint appears for \(\bar{h}_m \) by looking at the exact formula for \(\Delta^2 B_m \) (see (16)).
3.4. Adaptation. The estimators \(\hat{h}_m, \bar{h}_m \) are deconvolution estimators that can also be described as minimum contrast estimators and projection estimators. For details, the reader is referred to Comte and Genon-Catalot (2009a, 2009b). For \(m > 0 \), let
\[
S_m = \{ f \in L^2(\mathbb{R}), \text{ support}(f^*) \subset [-\pi m, \pi m] \}.
\]
The space \(S_m \) is generated by an orthonormal basis, the sinus cardinal basis, defined by:
\[
\varphi_{m,j}(x) = \sqrt{m} \varphi(mx - j), j \in \mathbb{Z}, \quad \varphi(x) = \frac{\sin(\pi x)}{\pi x} \quad (\varphi(0) = 1).
\]
This is due to the fact that
\[
\varphi^*_{m,j}(u) = \frac{\cos(\pi u/j)}{\sqrt{m}} 1_{[-\pi m, \pi m]}(u), j \in \mathbb{Z}.
\]
For a function \(f \in L^2(\mathbb{R}) \), \(f_m(x) = 1/2 \int_{-\pi m}^{\pi m} e^{-ixu} f^*(u) du \) is the orthogonal projection of \(f \) on \(S_m \). Introducing, for a function \(t \in S_m \),
\[
\gamma_n(t) = ||t||^2 - \frac{1}{\pi} < \hat{h}^*, t^* > = ||t||^2 - 2 < \hat{h}_m, t >,
\]
we get:
\[
\hat{h}_m = \arg \min_{t \in S_m} \gamma_n(t),
\]
and \(\gamma_n(\hat{h}_m) = -||\hat{h}_m||^2 \). We have
\[
\hat{h}_m = \sum_{j \in \mathbb{Z}} \hat{a}_{m,j} \varphi_{m,j}, \quad \text{with} \quad \hat{a}_{m,j} = \frac{1}{2\pi} \int_{-\pi m}^{\pi m} \hat{h}^*(u) \varphi^*_{m,j}(-u) du.
\]
and
\[
||\hat{h}_m||^2 = \frac{1}{2\pi} \int_{-\pi m}^{\pi m} |\hat{h}^*(u)|^2 du.
\]
The coefficients \(\hat{a}_{m,j} \) of the series as well as \(||\hat{h}_m||^2 \) can be explicitly computed by integration. In the same way, we set
\[
\Gamma_n(t) = ||t||^2 - \frac{1}{\pi} < \bar{h}^*, t^* > = ||t||^2 - 2 < \bar{h}_m, t >,
\]
and obtain:
\[
\bar{h}_m = \arg \min_{t \in S_m} \Gamma_n(t),
\]
Analogously, \(\bar{h}_m \) has a series expansion on the sinus cardinal basis with explicit coefficients and \(||\bar{h}_m||^2 \) has a closed-form formula. We give the explicit expression of \(||\hat{h}_m||^2 \) which is less cumbersome than \(||\bar{h}_m||^2 \):
\[
(18) \quad ||\hat{h}_m||^2 = \frac{m}{4n^2 \Delta^2} \sum_{1 \leq k,l \leq 2n} Z_k^2 Z_l^2 \varphi(m(Z_k - Z_l)).
\]
Now, we need to select the best \(m \) as possible, in a set \(\mathcal{M}_n = \{ m \in \mathbb{N}, 1 \leq m \leq n \Delta \} = \{1, \ldots, m_n \} \). For the estimators \(\hat{h}_m \), we propose to take
\[
\hat{m} = \arg \min_{m \in \mathcal{M}_n} \left(-||\hat{h}_m||^2 + \text{pen}(m) \right)
\]
with
\[
\text{pen}(m) = \frac{m}{n^2 \Delta^2} \left(\frac{1}{n} \sum_{k=1}^{n} Z_k^2 \left(\frac{1}{n} \sum_{k=n+1}^{2n} Z_k^2 + \frac{1}{n} \sum_{k=1}^{n} Z_k^4 \right) \right).
\]
The intuition for this choice is the following. The expression of \(\text{pen}(m) \) is an estimator of the variance term of the risk bound \((11)\) as close as possible of the variance (see \((14)\)). The term \(-\| \hat{h}_m \|^2\) is an estimator of \(-\| h - h_m \|^2 - \| h \|^2\), which is up to a constant, the bias term of the bound \((11)\). This is why \(\hat{m} \) mimics the optimal bias-variance compromise.

For the estimators \(\hat{h}_m \), we define

\[
(20) \quad \hat{m} = \arg \min_{m \in M_n} \left(-\| \hat{h}_m \|^2 + \kappa \frac{m}{n \Delta^2} \left(\frac{1}{2n} \sum_{k=1}^{2n} Z_k \right) \right).
\]

The following result shows that the above data-driven choices of the cut-off parameter are indeed relevant.

Theorem 3.1. Assume (H1)-(H2)/(16)-(H3)-(H4). If, moreover, \(h^* \in L^1(\mathbb{R}) \) and \(n \Delta^3 \leq 1 \), there exist a numerical constants \(\kappa, \kappa' \) such that

\[
\mathbb{E}(\| \hat{h}_m - h \|^2) \leq C \inf_{m \in M_n} \left(\| h - h_m \|^2 + \kappa(\Delta \mathbb{E}(Z^2/\Delta)) \frac{m}{n \Delta} \right) + \frac{\Delta^2}{\pi} \int_{-\pi m}^{\pi m} u^2 |h^*(u)|^2 \, du + \mathbb{E}(Z^4/\Delta) \frac{m}{n \Delta},
\]

\[
\mathbb{E}(\| \hat{h}_m - h \|^2) \leq C \inf_{m \in M_n} \left(\| h - h_m \|^2 + \kappa'(\Delta \mathbb{E}(Z^4/\Delta)) \frac{m}{n \Delta} \right) + \frac{\Delta^2}{\pi} \int_{-\pi m}^{\pi m} u^2 |h^*(u)|^2 \, du + \Delta^2 B_{mn} + \mathbb{E}(Z^4/\Delta) \frac{m}{n \Delta},
\]

where \(B_{mn} = O(m_n) \) (\(B_{mn} \) is defined in \((16)\)).

The numerical constants \(\kappa, \kappa' \) have to be calibrated via simulations (see discussion in Comte and Genon-Catalot (2009a)).

By computations analogous to those in the proof of Proposition 3.2, we obtain the following Corollary.

Corollary 3.1. Assume that the assumptions of Theorem 3.1 are fulfilled. If, for some positive \(L, h \in C(a, L) \) with \(a > 1/2 \), then \(\mathbb{E}(\| \hat{h}_m - h \|^2) = O((n \Delta)^{-2a/(2a+1)}) \) provided that \(n \Delta^2 \leq 1 \). The same holds for \(\mathbb{E}(\| \hat{h}_m - h \|^2) \). If \(a \geq 1 \), the constraint \(n \Delta^3 \leq 1 \) is enough.

4. Study of the general case \((\sigma^2 \neq 0) \)

In this section, we assume (H1)-(H2)/(3) and study the estimation of the function \(p(x) = x^3 n(x) \).

We suppose that we have a sample of size \(3n \), \((Z_k)_{1 \leq k \leq 3n}, Z_k = L_{k \Delta} - L_{(k-1) \Delta} \). As previously, we can build two estimators of \(p^* \), one is simpler but has more bias than the other one.

4.1. Definition of the estimators.

We have to compute the three first derivatives of \(\psi_{\Delta} \) to get rid of \(\sigma^2 \) (see \((5)\)):

\[
\frac{\psi'_{\Delta}(u)}{\psi_{\Delta}(u)} = \Delta (ib - u \sigma^2 + i \int \frac{e^{itx} - 1}{x} h(x) \, dx) = \Delta (\phi(u) - u \sigma^2)
\]

Deriving again gives:

\[
\frac{\psi''_{\Delta}(u) \psi_{\Delta}(u) - (\psi'_{\Delta}(u))^2}{(\psi_{\Delta}(u))^2} = \Delta (\phi'(u) - \sigma^2) = -\Delta (\sigma^2 + \int e^{itx} x^2 n(x) \, dx),
\]
and lastly

\[\frac{\psi^{(3)}_\Delta(u)\psi^2_\Delta(u) - 3\psi''_\Delta(u)\psi'_\Delta(u)\psi_\Delta(u) + 2[\psi'_\Delta(u)]^3}{\psi^3_\Delta(u)} = -\Delta ip^*(u). \]

Therefore, we get the formulae:

\[p^*(u) = \frac{i}{\Delta} \left(\frac{\psi^{(3)}_\Delta(u)\psi^2_\Delta(u) - 3\psi''_\Delta(u)\psi'_\Delta(u)\psi_\Delta(u) + 2[\psi'_\Delta(u)]^3}{\psi^3_\Delta(u)} \right) \]

where \(p^*(u) \) is close to one. We define empirical estimators of \(\psi_\Delta(u) \), \(\psi'_\Delta(u) \), \(\psi''_\Delta(u) \), and \(\psi^{(3)}_\Delta(u) \) using the independent subsamples:

\[\hat{\psi}_\Delta(u) = \frac{1}{n} \sum_{k=1}^{n} (iZ_k)^j e^{iuZ_k}, \quad j = 0, 1, 2, 3, \quad q = 1, 2, 3. \]

The following estimator of \(p^* \) is obtained by replacing expressions in the numerator of \(p^* \) by their empirical counterpart (using the independent subsamples); moreover, the denominator is replaced by 1. We get

\[\hat{p}^*(u) = \frac{i}{\Delta} \left(\hat{\psi}^{(3)}_\Delta(u)\hat{\psi}^2_\Delta(u)\hat{\psi}^2_\Delta(u) - 3\hat{\psi}''_\Delta(u)\hat{\psi}'_\Delta(u)\hat{\psi}_\Delta(u) + 2[\hat{\psi}'_\Delta(u)]^3 \right) \prod_{q=1}^{3} \hat{\psi}_\Delta,q(u). \]

The bias of \(\hat{p}^*(u) \) is given by

\[\mathbb{E}\hat{p}^*(u) - p^*(u) = (\psi^3_\Delta(u) - 1)p^*(u) \]

Note that, as \(|\psi_\Delta(u)| \leq 1, |\psi^3_\Delta(u) - 1| \leq 3|\psi_\Delta(u) - 1| \). The estimator of \(p \) associated to \(\hat{p}^*(u) \) with cut-off parameter \(m \) is:

\[\hat{p}_m(x) = \frac{1}{2\pi} \int_{-\pi_m}^{\pi_m} e^{-iux} \hat{p}^*(u)du, \]

which has a closed-form formula obtained by integration. We also define, based on all the observations,

\[\hat{\psi}^{(3)}_\Delta(u) = \frac{1}{3n} \sum_{k=1}^{3n} (iZ_k)^3 e^{iuZ_k}. \]

And

\[\hat{p}^*(u) = \frac{i}{\Delta} \hat{\psi}^{(3)}_\Delta(u) \quad \text{and} \quad \hat{p}_m(x) = \frac{1}{2\pi} \int_{-\pi_m}^{\pi_m} e^{-iux} \hat{p}^*(u)du. \]

Here,

\[\mathbb{E}\hat{p}^*(u) - p^*(u) = (\psi_\Delta(u) - 1)p^*(u) + 3i\frac{\psi''_\Delta(u)\psi'_\Delta(u)}{\Delta\psi_\Delta(u)} - 2i\frac{[\psi'_\Delta(u)]^3}{\Delta\psi^2_\Delta(u)} \]

Let us set:

\[\tilde{\phi}(u) = \phi(u) - u\sigma^2 = ib - \int_0^u h^*(v)dv - u\sigma^2. \]

Using \(\psi'_\Delta(u) = \Delta\psi_\Delta(u)\tilde{\phi}(u) \) and some computations, we get:

\[\mathbb{E}\hat{p}^*(u) - p^*(u) = (\psi_\Delta(u) - 1)p^*(u) - 3i\Delta\psi_\Delta(u)\tilde{\phi}(u)(\sigma^2 + h^*(u)) + i\Delta^2\psi_\Delta(u)(\tilde{\phi}(u))^3, \]
which shows additional terms in comparison with the bias (23). The corresponding estimator has the expression:

\[(27) \hat{p}_m(x) = \frac{1}{3n\Delta} \sum_{k=1}^{3n} Z_k^3 \sin(\pi m(Z_k - x)) / \pi(Z_k - x).\]

4.2. Risk of the estimators. Let

\[p_m(x) = \frac{1}{2\pi} \int_{-\pi m}^{\pi m} e^{-iux} p^*(u) du\]

denote the orthogonal projection of \(p\) on \(S_m\). The risk of the estimators with fixed cut-off parameter is bounded as follows.

Proposition 4.1. Under (H1)-(H2)(6) and (H5),

\[(28) \mathbb{E}(\|\hat{p}_m - p\|^2) \leq \|p - p_m\|^2 + C_0 \mathbb{E}(Z_1^6 / \Delta) \frac{m}{n\Delta} + C \frac{\Delta^2}{\pi} \int_{-\pi m}^{\pi m} u^2(1 + u^2)|p^*(u)|^2 du\]

where \(C_0\) in a numerical constant much larger than 1.

We also have

\[\mathbb{E}(\|\hat{p}_m - p\|^2) \leq \|p - p_m\|^2 + \mathbb{E}(Z_1^6 / \Delta) \frac{m}{n\Delta} + C(\Delta^2 \int_{-\pi m}^{\pi m} u^2(1 + u^2)|p^*(u)|^2 du + \Delta^2 m^3 + \Delta^4 m^7).\]

Proof. As previously,

\[\|\hat{p}_m - p\|^2 = \frac{1}{2\pi}(\|p^* - p_m^*\|^2 + \|p_m^* - \hat{p}_m^*\|^2).\]

The first term \((1/(2\pi))(\|p^* - p_m^*\|^2 = \|p - p_m\|^2\) is the projection bias on \(S_m\). Next,

\[\hat{p}_m^*(u) - p_m^*(u) = [p_m^*(u) - \mathbb{E}(\hat{p}_m^*(u))] + \mathbb{E}(\hat{p}_m^*(u) - p_m^*(u)]\]

\[= [p_m^*(u) - \mathbb{E}(\hat{p}_m^*(u))] + [(\psi_\Delta(u))^3 - 1]|p^*(u)|1_{|u| \leq \pi m}.\]

Using Lemma 2.2 and (23), we get

\[\mathbb{E}(\|\hat{p}_m - p_m\|^2) \leq \frac{1}{\pi} \int_{-\pi m}^{\pi m} C \Delta^2 u^2(1 + u^2)|p^*(u)|^2 du + \frac{1}{\pi} \mathbb{E}\left(\int_{-\pi m}^{\pi m} |p^*(u) - \mathbb{E}\hat{p}^*(u)|^2 du\right)\]

\[\leq C \frac{\Delta^2}{\pi} \int_{-\pi m}^{\pi m} u^2(1 + u^2)|p^*(u)|^2 du + \frac{1}{\pi} \left(\int_{-\pi m}^{\pi m} \text{Var}(\hat{p}^*(u)) du\right).\]

The estimator \(\hat{p}^*\) is the sum of three terms, each term being the product of three independent variables. To bound the variance of \(\hat{p}^*\), for each term, we subtract the corresponding expectation and use a decomposition with only centered terms. For instance, the first centered term of \(\hat{p}^*\) is split as follows:

\[\hat{\psi}_{\Delta,1}^{(3)} \hat{\psi}_{\Delta,2}^{(0)} \hat{\psi}_{\Delta,3}^{(0)} - \psi_{\Delta}^{(3)} \psi_{\Delta}^{(3)} \psi_{\Delta}^{(3)}\]

\[= (\hat{\psi}_{\Delta,1}^{(3)} - \psi_{\Delta}^{(3)})(\hat{\psi}_{\Delta,2}^{(0)} - \psi_{\Delta}^{(0)})(\hat{\psi}_{\Delta,3}^{(0)} - \psi_{\Delta}^{(0)})\]

\[+ (\hat{\psi}_{\Delta,1}^{(3)} - \psi_{\Delta}^{(3)})(\hat{\psi}_{\Delta,2}^{(0)} - \psi_{\Delta}^{(0)})\psi_{\Delta}^{(3)} + (\hat{\psi}_{\Delta,1}^{(3)} - \psi_{\Delta}^{(3)})(\hat{\psi}_{\Delta,3}^{(0)} - \psi_{\Delta}^{(0)})\psi_{\Delta}^{(3)} + \psi_{\Delta}^{(3)}(\hat{\psi}_{\Delta,2}^{(0)} - \psi_{\Delta}^{(0)})(\hat{\psi}_{\Delta,3}^{(0)} - \psi_{\Delta}^{(0)})\]

\[+ (\hat{\psi}_{\Delta,1}^{(3)} - \psi_{\Delta}^{(3)})(\hat{\psi}_{\Delta,2}^{(0)} - \psi_{\Delta}^{(0)})(\hat{\psi}_{\Delta,3}^{(0)} - \psi_{\Delta}^{(0)})\psi_{\Delta}^{(3)} + \psi_{\Delta}^{(3)}(\hat{\psi}_{\Delta,2}^{(0)} - \psi_{\Delta}^{(0)})(\hat{\psi}_{\Delta,3}^{(0)} - \psi_{\Delta}^{(0)}),\]

and analogously for the two other terms in the formula of the estimator.
The asymptotic setting where

Proof. Moreover, if

If

We have

This ends the study of \(\hat{\mu} \).

Now, let us study \(\hat{h}_m \). Here, the variance satisfies:

As previously,

where the first term is bounded by \(\mathbb{E}(Z^0_\Delta)^m/(n\Delta) \). It remains to study the bias term using (26). We have \(|h^*(u)| \leq h_1 \). By Lemma 2.2, \(|\tilde{\phi}(u)| \leq |b| + |u|(h_1 + \sigma^2) \leq C(1 + |u|) \). Inserting these bounds in (26) implies

Gathering the terms gives the announced bound for the risk of \(\hat{p}_m \). This ends the proof of proposition 4.1.

Remark 4.1. Again here, both estimators have the same rate of variance with different constants. The simpler estimator has additional bias terms.

We can state the result analogous to the one of Proposition 3.2.

Proposition 4.2. Assume that (H1), (H2)(6), (H5) hold and that \(p \) belongs to \(C(a, L) \). Consider the asymptotic setting where \(n \to +\infty \), \(\Delta \to 0 \) and \(n\Delta \to +\infty \). If \(n\Delta^3/2 \leq 1 \), then we have, for the optimal choice \(m = O((n\Delta)^{1/(2a+1)}) \),

\[
\mathbb{E}(\|\tilde{\mu}_m - \mu\|^2) \leq O((n\Delta)^{-2a/(2a+1)}).
\]

If \(a \geq 1/2 \), the condition \(n\Delta^3/2 \leq 1 \) can be replaced by \(n\Delta^2 \leq 1 \).

If \(a \geq 3/2 \), the condition \(n\Delta^3/2 \leq 1 \) can be replaced by \(n\Delta^3 \leq 1 \).

Moreover, if \(n\Delta^{11/7} \leq 1 \), then

\[
\mathbb{E}(\|\tilde{\mu}_m - \mu\|^2) \leq O((n\Delta)^{-2a/(2a+1)}).
\]

If \(a \geq 1/2 \), the condition \(n\Delta^{7/3} \leq 1 \) can be replaced by \(n\Delta^2 \leq 1 \).

Proof. Let us take \(m = O((n\Delta)^{1/(2a+1)}) \). When \(p \in C(a, L) \), the first two terms of (28) are of order \(O((n\Delta)^{-2a/(2a+1)}) \). The last term is \(O(\Delta^2 n^2(2a_0+1)^2) \). If \(a \geq 2 \), its order is \(\Delta^2 \) and is less than \(1/(n\Delta) \) if \(n\Delta^3 \leq 1 \).

If \(a \in (0, 2) \), \(\Delta^2 n^{2(2-a)} = O(\Delta^2 n^2(2-a)\gamma/(1+2a)) \) which has lower rate than \(O((n\Delta)^{-2a/(2a+1)}) \) if \(\Delta^2(n\Delta)^{1/(1+2a)} \leq O(1) \), that is \(n\Delta^{1+2a+1}/2 = n\Delta^{3/2+a} \leq O(1) \). This gives the results for \(\tilde{\mu}_m \)
For \tilde{p}_m, we must consider in addition the terms $\Delta^2 m^3$ and $\Delta^4 m^7$. As previously, $\Delta^2 m^3 \leq (n\Delta)^{-2a/(2a+1)}$ if $n\Delta(6a+5)/(2a+3) \leq O(1)$ that is $n\Delta^{5/3} \leq 1$ if $a > 0$ and $n\Delta^2$ if $a \geq 1/2$. Moreover, $\Delta^4 m^7 \leq (n\Delta)^{-2a/(2a+1)}$ if $n\Delta(10a+11)/(2a+7) \leq 1$ that is $n\Delta^{11/7} \leq 1$ if $a > 0$ and $n\Delta^2 \leq 1$ if $a \geq 1/2$. □

4.3. Adaptive strategy. The adaptive selection of the best possible m imposes here a restricted collection of models. We choose $M_n = \{m \in \mathbb{N}/\{0\}, m \leq \sqrt{n\Delta} := \mu_n\}$.

From the bias point of view, the estimator to consider is \hat{p}_m with:

$$m = \text{arg min}_{m \in M_n} (-\|\hat{p}_m\|^2 + \text{pen}(m))$$

and

$$\text{pen}(m) = \kappa \frac{m}{n\Delta^2} \left(\frac{1}{n} \sum_{k=1}^{n} Z_k^6 + \frac{1}{n} \sum_{k=1}^{n} Z_k^8 \right),$$

where the penalty follows closely the variance term of the risk bound of \hat{p}_m. For simplicity and under additional restrictions, we can also consider the estimator \overline{p}_m where

$$\bar{m} = \text{arg min}_{m \in M_n} (-\|\bar{p}_m\|^2 + \text{pen}(m)) \text{ with } \text{pen}(m) = \kappa' \frac{m}{n\Delta^2} \left(\frac{3}{3n} \sum_{k=1}^{n} Z_k^6 \right).$$

We can prove the following result:

Theorem 4.1. Under assumption (H1), (H2)/(24), (H5), (H6) and with $n\Delta^2 \leq 1$. There exist numerical constants κ, κ' such that

$$\mathbb{E}(\|\hat{p}_m - p\|^2) \leq C \frac{\Delta^2}{\pi} \int_{-\pi \mu_n}^{\pi \mu_n} u^2 (1 + u^2) |p^*(u)|^2 du + C \frac{\ln^2(n\Delta)}{n\Delta}.$$

$$\mathbb{E}(\|\bar{p}_m - p\|^2) \leq C \frac{\Delta^2}{\pi} \int_{-\pi \mu_n}^{\pi \mu_n} u^2 (1 + u^2) |p^*(u)|^2 du + C \frac{\Delta^2 \mu^3_n + \Delta^4 \mu^7_n + \ln^2(n\Delta)}{n\Delta}.$$

($\mu_n = \sqrt{n\Delta}$).

The result is given for \hat{p}_m but only proved for \overline{p}_m to avoid technicalities analogous to those studied in the case of estimation of h.

The consequence of Theorem 4.1 is that the adaptive estimators reach automatically the optimal rate of convergence when p belongs to a Sobolev class. This can be seen by computations analogous to those of Proposition 4.2.

5. Parameter estimation

Under (H1), the observed process may be written as $L_t = bt + \sigma W_t + X_t$ where (W_t) is a standard Brownian motion, (X_t) is a Lévy process, independent of (W_t), of the form

$$X_t = \int_{[0,t]} \int_{\mathbb{R}} x(\tilde{p}(ds, dx) - dsn(x)dx),$$

where $\tilde{p}(ds, dx)$ is the random jump measure of (L_t) (and (X_t)) which has compensator $dsn(x)dx$.

If moreover,
\[\int |x| n(x) dx < \infty, \]
then, the observed process may be written as \(L_t = b_0 t + \sigma W_t + \Gamma_t \) where \(b_0 = b - \int x n(x) dx \) and
\[\Gamma_t = \int_{[0,t]} \int_{\mathbb{R}} x \hat{p}(ds, dx) = X_t + t \int x n(x) dx = \sum_{s \leq t} \Gamma_s - \Gamma_{s_{-}} \]
is of bounded variation on compact sets. We consider here a sample of size \(n \). By using empirical means of the data \(\hat{Z}_k^n \), it is possible to obtain consistent and asymptotically Gaussian estimators of \(b (\ell = 1) \) and, under suitable integrability assumptions on the Lévy density, of \(\int x^2 n(x) dx \) for \(\ell \geq 2 \). But this method fails to estimate \(\sigma \) for \(\ell = 2 \) (see below). For this, one has to use another approach either based on power variations or deduced for the nonparametric estimation.

5.1. Some small time properties. To study estimators of \(b \) and \(\sigma \), small time properties of moments are required.

In Figueroa-López (2008), conditions under which \(\frac{1}{n} \mathbb{E} f(L_{\Delta}) \) converges, as \(\Delta \) tends to 0, to \(\int f(x) n(x) dx \) for unbounded functions \(f \) are investigated (with new results and an exhaustive review of previous ones). We sum up below some of these.

First, we recall that a non-negative locally bounded function \(g \) is said to be submultiplicative (resp. subadditive) if there exists a constant \(K > 0 \) such that, for all \(x, y \), \(g(x+y) \leq K g(x) g(y) \) (resp. \(g(x+y) \leq K (g(x) + g(y)) \)). Let
\[S(n) = \{ g(x) := p(x) k(x), p \text{ subadditive, } k \text{ submultiplicative, and } \int_{|x| > 1} g(x) n(x) dx < \infty \}. \]

Theorem 5.1. Let \(f \) be locally bounded, \(n(x) dx \)-a.e. continuous and such that there exists a function \(g \in S(n) \) such that \(\lim \sup_{|x| \to \infty} |f(x)|/g(x) < \infty \). If moreover, \(f(x) = o(x^2) \) as \(x \to 0 \), then, as \(\Delta \to 0 \),
\[\frac{1}{\Delta} \mathbb{E} f(L_{\Delta}) \to \int f(x) n(x) dx. \]
If instead \(f(x) \sim x^2 \) as \(x \to 0 \), then
\[\frac{1}{\Delta} \mathbb{E} f(L_{\Delta}) \to \sigma^2 + \int f(x) n(x) dx. \]

This is Theorem 1.1 of Figueroa-López (2008). In particular, if for \(k \geq 2 \), \(\int |x|^k n(x) dx < \infty \), the functions \(f_u(x) = e^{iu x} x^k \), \(u \in \mathbb{R} \), satisfy the assumptions. Of course, the result can be obtained directly by deriving the characteristic function \(\psi_{\Delta} \) as seen above. If for \(r \) real number, \(r \geq 2 \), \(\int |x|^r n(x) dx < \infty \), \(f(x) = |x|^r \) satisfies the assumptions.

For the case of \(f(x) = |x|^r \) with \(r < 2 \), which is not included in the previous theorem, we state the two following special propositions.

Proposition 5.1. (i) Let \((\Gamma_t) \) be a Lévy process with no continuous component and Lévy measure \(n(\gamma) d\gamma \). If \(\int |\gamma| n(\gamma) d\gamma < \infty \), \(b = \int \gamma n(\gamma) d\gamma \) and for \(r \leq 1 \), \(\int |\gamma|^r n(\gamma) d\gamma < \infty \). There exists a constant \(C \) such that, for all \(\Delta \),
\[\mathbb{E} |\Delta|^r \leq C \Delta. \]
(Under the assumption, \((\Gamma_t) \) has finite mean and bounded variation on compact sets).

(ii) Let \(X_t = B_{\Gamma_t} \) where \((\Gamma_t) \) is a subordinator with Lévy density \(n_\Gamma \) satisfying \(b = \int_0^{+\infty} \gamma n_\Gamma(\gamma) d\gamma < \infty \).
Proposition 5.2. Assume (H1) and we prove now that \(\hat{b} \) is consistent and asymptotically Gaussian in distribution to
\[
\sqrt{n\Delta}(\hat{b} - b) \xrightarrow{d} N(0, c_2).
\]

(iii) Let \((X_t)\) be a Lévy process with no Gaussian component. Then, \(X_\Delta/\sqrt{\Delta} \rightarrow 0 \) as \(\Delta \rightarrow 0 \) in probability and in \(L^r \) for all \(r < 2 \).

5.2. Estimator of \(b \). Consider a Lévy process \((L_t)\) satisfying (H1) and set \(Z_k = L_{k\Delta} - L_{(k-1)\Delta} \) as above. Let us define the empirical means:
\[
\hat{b} = \frac{1}{n\Delta} \sum_{k=1}^{n} Z_k, \quad \hat{c}_\ell = \frac{1}{n\Delta} \sum_{k=1}^{n} Z_k^\ell \quad \text{for} \quad \ell \geq 2.
\]

We prove now that \(\hat{b}, \hat{c}_\ell, \ell \geq 2 \) are consistent and asymptotically Gaussian estimators of the quantities \(b, c_\ell, \ell \geq 2 \) where
\[
c_2 = \sigma^2 + \int x^2 n(x) dx, \quad c_\ell = \int x^\ell n(x) dx, \quad \text{for} \quad \ell \geq 3.
\]

Proposition 5.2. Assume \((H1)\) and \(n \) tends to infinity, \(\Delta \) tends to 0, \(n\Delta \) tends to infinity.

(i) Under (H2)/(2 + \(\varepsilon \)) for some positive \(\varepsilon \),
\[
\sqrt{n\Delta}(\hat{b} - b) \xrightarrow{d} N(0, c_2).
\]

(ii) Under (H2)/(2(\(\ell + \varepsilon \))) for some positive \(\varepsilon \), and if \(n\Delta^3 \) tends to 0, \(\sqrt{n\Delta}(\hat{c}_\ell - c_\ell) \xrightarrow{d} N(0, c_{2\ell}) \).

Proof. We have \(\mathbb{E}(Z_k) = \Delta b \) and, for \(\ell \geq 2 \), \(\mathbb{E}(Z_k^\ell) = \Delta c_\ell + o(\Delta) \). Therefore, \(\hat{b} \) is an unbiased estimator of \(b \) and, for \(\ell \geq 2 \), \(\sqrt{n\Delta} |\mathbb{E}(\hat{c}_\ell - c_\ell)| = \sqrt{n\Delta} O(\Delta) \). Hence, the additional condition \(n\Delta^3 = o(1) \) to erase the bias.

Setting \(c_1 = b, c_1 = \hat{b} \), as \(\text{Var}Z_k^\ell = \Delta c_\ell + o(\Delta) \) for \(\ell \geq 1 \), we have \(n\Delta \text{Var}\hat{c}_\ell = c_{2\ell} + O(\Delta) \).

Writing
\[
\sqrt{n\Delta}(\hat{c}_\ell - \mathbb{E}(\hat{c}_\ell)) = \frac{1}{\sqrt{n\Delta}} \sum_{k=1}^{n} (Z_k^\ell - \mathbb{E}(Z_k^\ell)) = \sum_{k=1}^{n} \chi_{k,n},
\]
it is now enough to prove that \(\sum_{k=1}^{n} \mathbb{E} |\chi_{k,n}|^{2+\varepsilon} \) tends to 0. Under the assumption, we have
\[
\sum_{k=1}^{n} \mathbb{E} |\chi_{k,n}|^{2+\varepsilon} \leq \frac{C}{n^{3/2} \Delta^{1+\varepsilon/2}} \left(\mathbb{E}|Z_k|^\ell(1+\varepsilon) + |\mathbb{E}(Z_k^\ell)|^{2+\varepsilon} \right) \leq \frac{C}{(n\Delta)^{\varepsilon/2}},
\]
which gives the result. \(\square \)

We stress that this method provides an estimator of \(b \) which is easy to compute and very good in practice (see Section 7), but cannot provide an estimator of \(\sigma^2 \).

5.3. Estimation of \(\sigma^2 \).
5.3.1. Power variations. Estimators of σ based on power variations of (L_t) have been proposed and mostly studied in the case where $n\Delta = 1$. They are studied for high frequency data within a long time interval in Aït-Sahalia and Jacod (2007). In the latter paper, the context is more general than ours, which implies that proofs are of high complexity. For Lévy processes fitting in our set of assumptions, we can derive the asymptotic properties of power variations estimators with a specific proof given in Section 9. Consider

$$\hat{\sigma}_n^{(r)} = \frac{1}{m_r n \Delta^{r/2}} \sum_{k=1}^n |Z_k|^r,$$

where $m_r = \mathbb{E}|X|^r$ for X a standard Gaussian variable (recall that $Z_k = L_{k\Delta} - L_{(k-1)\Delta}$).

Proposition 5.3. As n tends to infinity, Δ tends to 0 and $n\Delta$ tends to infinity, if $n\Delta^{2-r} = o(1)$, $\sqrt{n}(\hat{\sigma}_n^{(r)} - \sigma^r)$ converges in distribution to a $\mathcal{N}(0, \sigma^{2r}(m_{2r}/m_r^2 - 1))$ for:

(i) (L_t) a Lévy process satisfying (H1) and such that $\int |x| n(x) dx < \infty$ and $\int |x|^r n(x) dx < \infty$ for $r < 1$.

(ii) $(L_t = bt + \sigma W_t + X_t)$, with $X_t = B_{\Gamma_t}$, where W, B, Γ are independent processes, W, B are Brownian motions, Γ is a subordinator with Lévy measure n_Γ satisfying $\int_{0+} \gamma n_\Gamma(\gamma) d\gamma < \infty$ and $\int_{0+} \gamma^r/2 n_\Gamma(\gamma) d\gamma < \infty$ for $r < 1$.

For other cases of Lévy processes, the result depends on the rate of convergence to 0 of $\mathbb{E}|X|^{r}/\Delta^{r/2}$ (see Proposition 5.1 (iii)) and will still hold if $\sqrt{n\Delta}\mathbb{E}|X|^r/\Delta^{r/2}$ tends to 0.

Remark 5.1.

- It is worth noting that the rate of convergence of the estimators $\hat{\sigma}_n^{(r)}$ is \sqrt{n}. For $r = 1$, the estimator $\hat{\sigma}_n^{(1)}$ is consistent but not asymptotically Gaussian (because of its asymptotic bias). We have implemented these estimators for $r = 1/2$, $r = 1/4$ (see Section 7) for processes satisfying $\int |x|^r n(x) dx < +\infty$ for all positive r.

- Other estimators based on truncated power variations can be considered (see Aït-Sahalia and Jacod (2007)).

- We always give integrability conditions on \mathbb{R} for the Lévy density. This simplifies the presentation but induces some redundancies. One should distinguish integrability conditions near 0 and near infinity to avoid these redundancies.

5.3.2. Another estimator of σ^2. The previous power variation estimators depend on r and have rate \sqrt{n} under the condition that $n\Delta^{2-r} = o(1)$ where the value $r < 1$ is such that $\int |x|^r n(x) dx < \infty$. This imposes a stronger integrability condition around 0 than (H1).

Under (H1) and (H2)(3), using an estimator of p^* and empirical mean estimators, we can build an estimator of σ^2 with rate $\sqrt{n\Delta}$. As seen above, estimators of $c_2 = \sigma^2 + \int x^2 h(x) dx = \sigma^2 + h^*(0)$ are available. Using a sample of size $3n$, we get an unbiased estimator of c_2 by setting (see Proposition 5.2):

$$\hat{c}_2 = \frac{1}{3n\Delta} \sum_{k=1}^{3n} Z_k^2 - \Delta \left(\frac{1}{n\Delta} \sum_{k=1}^n Z_k \right) \left(\frac{1}{n\Delta} \sum_{\ell=n+1}^{2n} Z_\ell \right).$$

Following the same proof as above, we can prove that $\sqrt{n\Delta}(\hat{c}_2 - c_2)$ converges in distribution to the centered Gaussian law with variance c_4 as Δ tends to 0, $n\Delta$ tends to infinity with no additional condition on Δ. We build an estimator of σ^2 by subtracting an estimator of $h^*(0)$.

In addition to (H1)-(H2)(3), assume that $p^*(u)$ belongs to $L_1(\mathbb{R})$.

Note that $h^*(u) = \int e^{iu} x^2 n(x) dx$ is such that $(d/du)(h^*(u)) = ip^*(u)$. Integrating from u to ∞, and using that $\lim_{|u| \to +\infty} h^*(u) = 0$ yields $h^*(u) = -i \int_u^{+\infty} p^*(v) dv$ and thus $h^*(0) =$
−i \int_{0}^{+\infty} p^*(v)dv. Since \(h^*(0) \) is a real number, we must have:

\[
h^*(0) = \int_{0}^{+\infty} \text{Im} p^*(v)dv.
\]

Therefore, for \(M \) to be chosen adequately later on, we propose to estimate \(\sigma^2 \), using the estimator \(\bar{p}^* \) of \(p^* \), by:

\[
\hat{\sigma}^2_M = \tilde{c}_2 - \int_{0}^{M} \text{Im} \bar{p}^*(v)dv.
\]

Integration yields

\[
\int_{0}^{M} \text{Im} \bar{p}^*(v)dv = \frac{1}{3n\Delta} \sum_{k=1}^{3n} Z_k^2 (1 - \cos MZ_k).
\]

Thus

\[
\hat{\sigma}^2_M = \frac{1}{3n\Delta} \sum_{k=1}^{3n} Z_k^2 \cos MZ_k - \Delta \left(\frac{1}{n\Delta} \sum_{k=1}^{n} Z_k \right) \left(\frac{1}{n\Delta} \sum_{\ell=\ell+1}^{2n} Z_\ell \right).
\]

Then we can prove the following result:

Proposition 5.4. Assume (H1)-(H2)(4), (H5) and that \(p^* \) belongs to \(L_1(\mathbb{R}) \). If, in addition, \(p \in C(a,L) \) with \(a > 5/2 \), \(M = M(\Delta) = \Delta^{-1/4} \) and \(n\Delta^2 \) tends to 0, \(\sqrt{n\Delta} (\hat{\sigma}^2_M - \sigma^2) \) converges in distribution to a centered Gaussian law with variance \((1/2) \int x^4 n(x) dx = c_4/2)\).

6. Examples

In this section, we give examples of models fitting in our framework.

Example 1. Drift + Brownian motion + Compound Poisson process. Let

\[
L_t = b_0 t + \sigma W_t + \sum_{i=1}^{N_t} Y_i
\]

where \(N_t \) is a Poisson process with constant intensity \(c \) and \(Y_i \) is a sequence of i.i.d. random variables with density \(f \), independent of the process \((N_t) \). Then, \(\sum_{i=1}^{N_t} Y_i \) is a compound Poisson process and \((L_t) \) is a Lévy process with Lévy density \(n(x) = cf(x) \). Note that \(\mathbb{E} L_1 = b = b_0 + \int x n(x) dx \). For the estimation of \(p \), the rates that can be obtained depend on the density \(f \) provided that \(f \) satisfies the assumptions of Theorem 4.1, which are essentially here moment assumptions for the r.v.'s \(Y_i \). Any order can be obtained as shown in Table 1 where optimal rates are computed for \(f \) a standard Gaussian, an exponential with parameter 1 and a Beta distribution with parameters \((1,3)\) (for \(p \) to be regular enough).

As \(\int |x|^r n(x) dx < \infty \) for all \(r < 1 \) (actually, for all \(r \leq 2 \), estimation of \(\sigma^r \) is possible using \(\hat{\sigma}^r_n \) for any value of \(0 < r < 1 \) (provided that \(n\Delta^{2-r} = o(1) \)). The estimator \(\hat{\sigma}^2_M \) is possible if \(p \) is regular enough \((p \in C(a,L) \) with \(a > 5/2) \).

Example 2. Drift + Brownian motion + Lévy-Gamma process. Consider \(L_t = b_0 t + \sigma W_t + \Gamma_t \) where \((\Gamma_t) \) is a Lévy gamma process with parameters \((\beta, \alpha)\), i.e. is a subordinator such that, for all \(t > 0 \), \(\Gamma_t \) has distribution Gamma with parameters \((\beta t, \alpha)\).
\[
p(x) = cx^3 f(x)
\]
\[
p^*(u) = \alpha x^3 e^{-x^2}
\]
\[
\int_{|u| \geq \pi \mu} |p^*(u)|^2 du = O((\pi \mu)^3 e^{-(\pi \mu)^2})
\]
\[
\int_{|u| \leq \pi \mu} u^4 |p^*(u)|^2 du = O(1)
\]
\[
\tilde{m} \text{ (best choice of } m) = \frac{\sqrt{\log(n\Delta)} - \frac{5}{2} \log \log(n\Delta) / \pi}{\sqrt{\log(n\Delta)}}
\]
\[
\text{Rate } \propto \frac{\sqrt{\log(n\Delta)}}{n\Delta}
\]

<table>
<thead>
<tr>
<th>(f(x))</th>
<th>(N(0,1))</th>
<th>(E(1))</th>
<th>(\beta(1, 3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p(x) = cx^3 f(x))</td>
<td>(\propto x^3 e^{-x^2})</td>
<td>(\propto x^3 e^{-x} I_{x>0})</td>
<td>(\propto x^3(1-x)^2 I_{[0,1]}(x))</td>
</tr>
<tr>
<td>(p^*(u))</td>
<td>(\propto (u^3 - 3u)e^{-u^2/2})</td>
<td>(\propto 1/(1-iu)^4)</td>
<td>(O(1/</td>
</tr>
<tr>
<td>(\int_{</td>
<td>u</td>
<td>\geq \pi \mu}</td>
<td>p^*(u)</td>
</tr>
<tr>
<td>(\int_{</td>
<td>u</td>
<td>\leq \pi \mu} u^4</td>
<td>p^*(u)</td>
</tr>
</tbody>
</table>

Table 1. Rates for different “Drift+ Brownian motion + Compound Poisson process”.

and density: \(a^\beta x^{\beta-1} e^{-ax}/\Gamma(\beta t) I_{x>0}\). The Lévy density of \((L_t)\) is \(n(x) = \beta x^{\beta-1} e^{-ax} I_{x>0}\). We have \(E L_t = b = b_0 + \int x n(x) dx \) and \(p(x) = \beta x^{\beta-1} e^{-ax} I_{x>0}\).

We find \(p^*(u) = 2\beta/(\alpha - iu)^3\), \(\int_{|u| \geq \pi \mu} |p^*(u)|^2 du = O(m^{-5})\) and \(\int_{|u| \leq \pi \mu} u^4 |p^*(u)|^2 du = O(1)\). Therefore the rate for estimating \(p\) is \(O((n\Delta)^{-5/6})\) for a choice \(\tilde{m} = O((n\Delta)^{1/6})\).

As for all \(r > 0\), \(\int x^r n(x) dx < \infty\), \(\tilde{s}_n^{(r)}\) is authorized, for any value of \(0 < r < 1\), to estimate \(\sigma^r\).

Example 2 (continued). Drift + Brownian motion + A specific class of subordinators.

Let \(L_t = b_0 t + \sigma W_t + \Gamma_t\) where \((\Gamma_t)\) is a subordinator of pure jump type with Lévy density of the form \(n(x) = \beta x^{\delta-1} x e^{-\alpha x} I_{x>0}\) with \(\delta > -1/2\) (thus \(\int x n(x) dx < \infty\)). This class of subordinators includes compound Poisson processes \((\delta > 1/2)\) and Lévy Gamma processes \((\delta = 1/2)\). When \(\delta > 0\), the function \(x n(x)\) is both integrable and square integrable. This case was discussed in Genon-Catalot and Comte (2009) where the estimation of \(x n(x)\), when \(b_0 = 0\), \(\sigma = 0\), is studied. Here, we consider the case \(-1/2 < \delta \leq 0\) which includes the Lévy Inverse Gaussian process \((\delta = 0)\). Assumptions (H1)-(H6) are satisfied. The function \(p(x) = x^3 n(x)\) can be estimated in presence (or not) of additional drift and Brownian component. We can compute

\[
p^*(u) = \beta \frac{\Gamma(\delta + 5/2)}{(\alpha - iu)^{\delta+5/2}}.
\]

Thus, \(\int_{|u| \geq \pi \mu} |p^*(u)|^2 du = O(m^{-2\delta+4})\). As \(2\delta + 1 \leq 1\), \(u^4 |p^*(u)|^2\) is not integrable and we have \(\Delta^2 \int_{|u| \leq \pi \mu} u^4 |p^*(u)|^2 du = \Delta^2 (\mu_n) = O(\Delta^{3/2})\). The best rate for estimating \(p\) is \(O((n\Delta)^{-2\delta+4}/(\Delta^{2\delta+5}))\) for a choice \(\tilde{m} = O((n\Delta)^{1-2\delta+5})\). Note that \(\Delta^{3/2} \leq (n\Delta)^{-2\delta+4}/(\Delta^{2\delta+5})\) for \(n\Delta^2 \leq 1\) and \(-1/2 < \delta \leq 0\).

We have \(\int x^r n(x) dx < \infty\) for \(r > 1/2 - \delta\). Hence, to estimate \(\sigma^r\) using \(s_n^{(r)}\), we must choose \(1/2 - \delta < r < 1\).

Example 3. Drift + Brownian motion + Pure jump martingale.

Consider \(L_t = b_t + \sigma W_t + B_{\Gamma_t}\), where \(W, B, \Gamma\) are independent processes, \(W, B\) are standard Brownian motion, and \(\Gamma\) is a pure-jump subordinator with Lévy density \(n_{\Gamma}(\gamma) = \beta \gamma^{\delta-1/2} \gamma^{-\alpha} e^{-\alpha x} I_{\gamma>0}\) as above (assuming \(\delta > -1\)). The Lévy density \(n_{\Gamma}\) of \((L_t)\) (and of \((X_t = B_{\Gamma_t}\)) is linked with \(n_{\Gamma}\) (see (33))) and can be computed as the norming constant of a Generalized Inverse Gaussian
distribution:

\[n(x) = \frac{2\beta}{\sqrt{2\pi}} K_{\delta-1}(\sqrt{2\alpha}x)(\frac{|x|}{\sqrt{2\alpha}})^{\delta-1}, \]

where \(K_{\nu} \) is a Bessel function of third kind (MacDonald function) (see e.g. Barndorff-Nielsen and Shephard (2001)). For \(\delta = 1/2 \), \(B_{1}\) is a symmetric bilateral Lévy Gamma process (see Madan and Seneta (1990), Küchler and Tappe (2008)). For \(\delta = 0 \), \(B_{1}\) is a normal inverse Gaussian Lévy process (see Barndorff-Nielsen and Shephard (2001)). The relation (33) allows to check that the function \(p(x) = x^3n(x) \) belongs to \(L^1 \cap L^2 \) and satisfies (H6) for \(\delta > -3/4 \). Moreover, we can obtain

\[p^*(u) = -i\beta \left(\frac{u^3\Gamma(\delta+5/2)}{(\alpha+u^2/2)^{5/2}} - \frac{3u\Gamma(\delta+3/2)}{(\alpha+u^2/2)^{3/2}} \right), \]

Thus, \(f_{|u|\geq\pi\mu} |p^*(u)|^2 du = O(m^{-3}) \) and \(\Delta^2 f_{|u|\leq\pi\mu} u^4|p^*(u)|^2 du = \Delta^2 O(\mu_n) = O(\Delta^{3/2}) \). The best rate for estimating \(p \) is \(O((n\Delta)^{-3/4}) \) obtained for \(\bar{m} = O((n\Delta)^{1/4}) \). We have \(\Delta^{3/2} \leq (n\Delta)^{-3/4} \) as \(n\Delta^2 \leq 1 \). As \(\int \gamma^{r/2} h_{\nu}(\gamma)d\gamma < \infty \) for \(r > 1 - \delta/2 \), the estimation of \(\sigma^r \) by \(\hat{\sigma}_n^{(r)} \) requires \(1 - \delta/2 < r < 1 \). Therefore, we must have \(\delta < 0 \).

7. Simulations

In this section, we present numerical results for simulated Lévy processes corresponding to Examples 1 and 2 (see Section 6). For these models, the functions \(g(x) = xn(x) \), \(h \) and \(p \) belong to \(L^1 \cap L^2(\mathbb{R}) \). Thus, we can apply the method of Comte and Genon-Catalot (2009a), to estimate \(g \) when \(b_0 = 0 \), \(\sigma = 0 \), and the method developed here to estimate \(h \) when \(\sigma = 0 \) and \(p \) when \(\sigma \neq 0 \). For simplicity, we have implemented the estimators \(\hat{m}, \hat{p}_{\nu} \) defined by (10)-(20) and (27)-(32). The numerical constant \(\kappa^\prime \) appearing in the penalties has been set to 7.5 for \(g \), 4 for \(h \) and 3 for \(p \); its calibration is done by preliminary experiments. The cutoff \(\bar{m} \) is chosen among 100 equispaced values between 0 and 10.

Figure 1 shows estimated curves for models with jump part coming from compound Poisson processes (see (39)) where the \(\gamma_i \)’s are standard Gaussian, Exponential \(\mathcal{E}(1) \), \(\beta(1,3) \), and \(\beta(3,3) \) rescaled on \([-4,4] \). The intensity \(\kappa \) is equal to 0.5, except for the \(\beta(1,3) \) \(\gamma_i \)’s where \(\kappa = 4 \).

Figure 2 shows estimated curves for jump part of Lévy Gamma and bilateral Lévy Gamma type. The bilateral Lévy Gamma process is the difference \(\Gamma_t - \Gamma'_t \) of two independent Lévy Gamma processes.

On top of each graph, we give the mean value of the selected cutoff with its standard deviation in parentheses. This value is surprisingly small. As expected, the presence of a Gaussian component deteriorates the estimation, which remains satisfactory on the whole.

Tables 2 and 3 show the means of the estimation results for \(b = E(L_1) = b_0 + \int xn(x)dx \) (see (34)) and \(\sigma \), with standard deviations in parentheses. We have set \(\hat{\sigma}(r) = [\hat{\sigma}_n^{(r)}]^{1/r} \) to denote the estimator of \(\sigma \), see (35).

The estimation of \(b \) is good in all cases, and especially when \(n\Delta \) is large. The estimation of \(\sigma \) is clearly more difficult, with noticeable differences according to the values of \(n \) and \(\Delta \). When \(\Delta \) is not small enough, the estimation can be heavily biased. In accordance with the theory, when \(r \) is smaller, the estimator of \(\sigma \) is slightly better (smaller bias). Table 4 shows the values of \(n\Delta^2 \) and \(n\Delta^{2-r} \), which should be small for the performance of the estimator to be satisfactory. It is worth noting that \(\sigma \) is constantly over-estimated. We also implemented \(\hat{\sigma}_M \) (see (38)) on some of the same simulated data, see Table 5; the performances of the estimator are strongly related to the asymptotic conditions: \(n\Delta \) large, and \(n\Delta^2 \) small. This is why the results when \(n\Delta^2 = 125,5 \) (see Table 4) are not reported. When negative values occurred, the estimate is
Estimation of $g(x) = x^n(x)$

$b_0 = 0, \sigma = 0$

(a1) $\tilde{m} = 0.91 (0.03)$

(b1) $\tilde{m} = 0.88 (0.08)$

(c1) $\tilde{m} = 4.75 (0.33)$

(d1) $\tilde{m} = 0.60 (0.00)$

Estimation of $h(x) = x^2n(x)$

$b_0 = 0.25, \sigma = 0$

(a2) $\tilde{m} = 1.01 (0.05)$

(b2) $\tilde{m} = 0.62 (0.09)$

(c2) $\tilde{m} = 3.34 (0.11)$

(d2) $\tilde{m} = 0.75 (0.11)$

Estimation of $p(x) = x^3n(x)$

$b_0 = 0.25, \sigma = 0.5$

(a3) $\tilde{m} = 0.86 (0.19)$

(b3) $\tilde{m} = 0.45 (0.09)$

(c3) $\tilde{m} = 3.59 (0.52)$

(d3) $\tilde{m} = 0.87 (0.12)$

\[\] set to 0, which explains the large standard deviations. In such case, the median is preferable. Contrary to $\hat{\sigma}(r)$, $\hat{\sigma}_M$ always under-estimates σ.

Figure 1. Variability bands for the estimation of g, h, p for a compound Poisson process with Gaussian (first line), Exponential $\mathcal{E}(1)$ (second line), $\beta(1, 3)$ (third line) and rescaled on $[-4, 4] \beta(3, 3)$ (fourth line) Y_i's, with $c = 0.5$, except for the third line $c = 4$. True (bold black line) and 50 estimated curves (dotted red), $\Delta = 0.05$, $n = 5 \times 10^4$.

Estimating $g(x) = xn(x)$
\[b_0 = 0, \sigma = 0 \]
(a1) $\hat{m} = 3.58$ (0.36)

Estimating $h(x) = x^2n(x)$
\[b_0 = 0.25, \sigma = 0 \]
(a2) $\hat{m} = 0.93$ (0.09)

Estimating $p(x) = x^3n(x)$
\[b_0 = 0.25, \sigma = 0.5 \]
(a3) $\hat{m} = 0.58$ (0.09)

\[
\begin{align*}
\text{Model} & & (n, \Delta) & & (5.10^4, 0.05) & & (5.10^4, 0.01) & & (5.10^4, 10^{-3}) & & (10^4, 10^{-3}) \\
Poisson & b & (b = 1) & & 1.000 (0.02) & & 0.997 (0.04) & & 0.995 (0.123) & & 1.001 (0.280) \\
Gaussian & \hat{\sigma}(1/2) & & 0.602 (0.03) & & 0.527 (0.002) & & 0.504 (0.002) & & 0.504 (0.005) \\
& \hat{\sigma}(1/4) & & 0.589 (0.03) & & 0.521 (0.002) & & 0.505 (0.002) & & 0.503 (0.002) \\
Poisson & b & (b = 1.5) & & 1.412 (0.03) & & 1.380 (0.01) & & 1.341 (0.03) & & 1.341 (0.03) \\
Exp(1) & \hat{\sigma}(1/2) & & 0.648 (0.003) & & 0.531 (0.003) & & 0.507 (0.002) & & 0.507 (0.005) \\
& \hat{\sigma}(1/4) & & 0.594 (0.003) & & 0.522 (0.003) & & 0.501 (0.002) & & 0.503 (0.002) \\
Gamma & b & (b = 2) & & 2.01 (0.02) & & 2.000 (0.05) & & 1.998 (0.177) & & 2.018 (0.335) \\
(1,1) & \hat{\sigma}(1/2) & & 0.720 (0.004) & & 0.563 (0.003) & & 0.517 (0.002) & & 0.513 (0.005) \\
& \hat{\sigma}(1/4) & & 0.637 (0.004) & & 0.528 (0.003) & & 0.507 (0.002) & & 0.505 (0.005) \\
Bilateral & b & (b = 1.4286) & & 1.26 (0.03) & & 1.286 (0.076) & & 1.449 (0.264) & & 1.405 (0.619) \\
Gamma & \hat{\sigma}(1/2) & & 0.862 (0.005) & & 0.626 (0.004) & & 0.526 (0.003) & & 0.526 (0.006) \\
(0.7,1), (1,1) & \hat{\sigma}(1/4) & & 0.798 (0.004) & & 0.593 (0.003) & & 0.516 (0.002) & & 0.515 (0.006) \\
\end{align*}
\]

Table 2. Estimation of (b, σ), $b_0 = 1$, the true value of b in parenthesis, $\sigma = 0.5$, $K = 200$ replications.

Figure 2. Variability bands for the estimation of g, h, p for jumps from a Lévy-Gamma process with $\beta = 1, \alpha = 1$ (first line), a bilateral Lévy-Gamma process with $(\beta, \alpha) = (0.7,1), (\beta', \alpha') = (1,1)$ (second line). True (bold black line) and 50 estimated curves (dotted red), $\Delta = 0.05$, $n = 5.10^4$.
Table 3. Estimation of \((b, \sigma)\), \(b_0 = 1\), the true value of \(b\) in parenthesis, \(\sigma = 1\), power variation method for estimation of \(\sigma\), \(K = 200\) replications.

<table>
<thead>
<tr>
<th>Model</th>
<th>((n, \Delta))</th>
<th>((5.10^4, 0.05))</th>
<th>((5.10^4, 0.01))</th>
<th>((5.10^4, 10^{-3}))</th>
<th>((10^4, 10^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poisson</td>
<td>(b (1))</td>
<td>0.999 (0.025)</td>
<td>1.005 (0.059)</td>
<td>0.998 (0.178)</td>
<td>1.025 (0.85)</td>
</tr>
<tr>
<td>Gaussian</td>
<td>(\hat{\sigma}(1/2))</td>
<td>1.082 (0.005)</td>
<td>1.026 (0.004)</td>
<td>1.006 (0.004)</td>
<td>1.005 (0.009)</td>
</tr>
<tr>
<td></td>
<td>(\hat{\sigma}(1/4))</td>
<td>1.072 (0.005)</td>
<td>1.020 (0.005)</td>
<td>1.004 (0.004)</td>
<td>1.003 (0.01)</td>
</tr>
<tr>
<td>Poisson</td>
<td>(b (1.5))</td>
<td>1.510 (0.026)</td>
<td>1.498 (0.06)</td>
<td>1.481 (0.190)</td>
<td>1.485 (0.442)</td>
</tr>
<tr>
<td>Exp(1)</td>
<td>(\hat{\sigma}(1/2))</td>
<td>1.096 (0.005)</td>
<td>1.030 (0.004)</td>
<td>1.006 (0.004)</td>
<td>1.006 (0.009)</td>
</tr>
<tr>
<td></td>
<td>(\hat{\sigma}(1/4))</td>
<td>1.080 (0.005)</td>
<td>1.022 (0.004)</td>
<td>1.003 (0.004)</td>
<td>1.003 (0.010)</td>
</tr>
<tr>
<td>Gamma</td>
<td>(b (2))</td>
<td>2.00 (0.026)</td>
<td>1.995 (0.068)</td>
<td>1.991 (0.196)</td>
<td>2.023 (0.195)</td>
</tr>
<tr>
<td>((1,1))</td>
<td>(\hat{\sigma}(1/2))</td>
<td>1.172 (0.005)</td>
<td>1.062 (0.005)</td>
<td>1.014 (0.004)</td>
<td>1.014 (0.004)</td>
</tr>
<tr>
<td></td>
<td>(\hat{\sigma}(1/4))</td>
<td>1.152 (0.005)</td>
<td>1.050 (0.005)</td>
<td>1.010 (0.005)</td>
<td>1.010 (0.004)</td>
</tr>
<tr>
<td>Bilateral</td>
<td>(b (1.4286))</td>
<td>1.425 (0.04)</td>
<td>1.431 (0.10)</td>
<td>1.429 (0.28)</td>
<td>1.492 (0.63)</td>
</tr>
<tr>
<td>Gamma</td>
<td>(\hat{\sigma}(1/2))</td>
<td>1.330 (0.006)</td>
<td>1.136 (0.005)</td>
<td>1.033 (0.005)</td>
<td>1.033 (0.01)</td>
</tr>
<tr>
<td>((0.7,1), (1,1))</td>
<td>(\hat{\sigma}(1/4))</td>
<td>1.284 (0.006)</td>
<td>1.105 (0.005)</td>
<td>1.022 (0.005)</td>
<td>1.022 (0.01)</td>
</tr>
</tbody>
</table>

Table 4. Values of \(n, \Delta, n\Delta^2, n\Delta^{2-r}\) for \(r = 1/2\) and \(r = 1/4\).

<table>
<thead>
<tr>
<th>((n, \Delta))</th>
<th>((5.10^4, 0.05))</th>
<th>((5.10^4, 0.01))</th>
<th>((5.10^4, 10^{-3}))</th>
<th>((10^4, 10^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n\Delta)</td>
<td>2500</td>
<td>500</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>(n\Delta^2)</td>
<td>125</td>
<td>5</td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>(n\Delta^{2-1/2})</td>
<td>559</td>
<td>50</td>
<td>1.6</td>
<td>0.3</td>
</tr>
<tr>
<td>(n\Delta^{2-1/4})</td>
<td>264</td>
<td>16</td>
<td>0.3</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Table 5. Estimation of \(\sigma\) with second method, \(b_0 = 1\), \(\sigma = 1\), \(K = 200\) replications.

\((n, \Delta)\)	\(\text{Model} \quad \text{Poisson-} \quad \text{Poisson-} \quad \text{Gamma} \quad \text{Expon.} \quad (1,1)\)			
\((10^4, 10^{-3})\)	\text{mean (std)}	0.95 (0.18)	0.91 (0.34)	0.93 (0.30)
	\text{median}	0.98	0.96	0.96
\((5.10^4, 10^{-3})\)	\text{mean (std)}	0.98 (0.06)	0.94 (0.20)	0.96 (0.13)
	\text{median}	0.98	0.97	0.96

8. Concluding remarks

In this paper, we consider a general Lévy process and discrete observations of the sample paths, with sampling interval \(\Delta\). The asymptotic framework \(\Delta \to 0, n\Delta \to +\infty\) is especially well fitted to produce simple adaptive nonparametric estimators of the Lévy density, showing nice performances on simulated data. For the other parameters of the characteristic triple, central limit theorems for empirical means based on the increments (including power variations) are given. The practical implementation confirms the theoretical results: the drift is very well estimated, the variance of the Gaussian component requires a large number of observations.
9. Proofs

9.1. Proof of Theorem 3.1. We only study \(\hat{h}_n \) as the result for \(\hat{h}_{\hat{m}} \) can be proved analogously (and is even simpler).

The proof is given in two steps. We define, for some \(\varrho, 0 < \varrho < 1 \),

\[
\Omega_\varrho := \left\{ \left| \frac{(1/n\Delta) \sum_{k=1}^{n} Z_k^2}{(E(Z_k^2/\Delta))^2} - 1 \right| \leq \varrho/2 \right\} \cap \left\{ \left| \frac{(1/n\Delta) \sum_{k=n+1}^{2n} Z_k^2}{(E(Z_k^2/\Delta))^2} - 1 \right| \leq \varrho/2 \right\},
\]

so that \(E(\|\hat{h}_m - h\|^2) = E(\|\hat{h}_m - h\|^2 I_{\Omega_\varrho}) + E(\|\hat{h}_m - h\|^2 I_{\Omega_\varrho}^c) \).

Step 1. For the study of \(E(\|\hat{h}_m - h\|^2 I_{\Omega_\varrho}) \), we refer to the analogous proof given in Comte and Genon-Catalot (2009) (see Section A4 therein). Using that \(E(Z_k^4) < +\infty \), we can prove \(E(\|\hat{h}_m - h\|^2 I_{\Omega_\varrho}^c) \leq C/(n\Delta) \). For this, we make use of the Rosenthal inequality recalled in the Appendix.

Step 2. Study of \(E(\|\hat{h}_m - h\|^2 I_{\Omega_\varrho}^c) \).

The proof relies on the following decomposition of \(\gamma_n \)

\[
\gamma_n(t) - \gamma_n(s) = \|t - h\|^2 - \|s - h\|^2 + 2(t - s, h) - \frac{1}{\pi} \langle \hat{h}^*, t^* - s^* \rangle = \|t - h\|^2 - \|s - h\|^2 - 2\nu_n(t - s) - 2R_n(t - s),
\]

where

\[
\nu_n(t) = \frac{1}{2\pi} \langle \hat{h}^* - E(\hat{h}^*), t^* \rangle, \quad R_n(t) = \frac{1}{2\pi} \langle E(\hat{h}^*) - h^*, t^* \rangle.
\]

As \(\gamma_n(\hat{h}_m) = -\|\hat{h}_m\|^2 \), we deduce from (19) that, for all \(m \in M_n \),

\[
\gamma_n(\hat{h}_m) + \text{pen}(\hat{m}) \leq \gamma_n(h_m) + \text{pen}(m).
\]

This yields:

\[
\|\hat{h}_m - h\|^2 \leq \|h - h_m\|^2 + \text{pen}(m) - \text{pen}(\hat{m}) + 2\nu_n(\hat{h}_m - h_m) + 2R_n(\hat{h}_m - h_m)
\]

Then, for \(\phi_n = \nu_n, R_n \), we use the inequality:

\[
2\phi_n(\hat{h}_m - h_m) \leq 2\|\hat{h}_m - h_m\| \sup_{t \in S_m + S_m, \|t\| = 1} |\phi_n(t)| \leq \frac{1}{8} \|\hat{h}_m - h_m\|^2 + 8 \sup_{t \in S_m + S_m, \|t\| = 1} |\phi_n(t)|^2
\]

Using that \(\|\hat{h}_m - h_m\|^2 \leq 2\|\hat{h}_m - h\|^2 + 2\|\hat{h}_m - h\|^2 \) and some algebra, we find

\[
\frac{1}{4} \|\hat{h}_m - h\|^2 \leq \frac{7}{4} \|h - h_m\|^2 + \text{pen}(m) - \text{pen}(\hat{m}) + 8 \sup_{t \in S_m + S_m, \|t\| = 1} |R_n(t)|^2 + 8 \sup_{t \in S_m + S_m, \|t\| = 1} |\nu_n(t)|^2
\]

We have to study the terms containing a supremum, which are of different nature. First, for \(R_n(t) \), we have:

Lemma 9.1. We have: \(\sup_{t \in S_m + S_m, \|t\| = 1} |R_n(t)|^2 \leq C\Delta^2 \int_{-\pi m}^{\pi m} u^2 |h^*(u)|^2 du. \)
Proof. We have $R_n(t) = \frac{1}{2\pi} \langle t^*, (1 - \psi_\Delta^2)h^* \rangle$. By using Lemma 2.2, we find
\[
\sup_{t \in S_{m_1} + S_{m_2}, ||t|| = 1} |\langle t^*, (1 - \psi_\Delta^2)h^* \rangle|^2 \leq \sup_{t \in S_{m_1}, ||t|| = 1} |\langle t^*, (1 - \psi_\Delta^2)h^* \rangle|^2 \\
\leq 2\pi \| (1 - \psi_\Delta^2)h^* I_{[-\pi m_1, \pi m_1]} \|^2 \\
\leq C \Delta^2 \int_{-\pi m_1}^{\pi m_1} u^2 |h^*(u)|^2 du.
\]
\[\square\]

On the other hand, ν_n must be decomposed into $\nu_n(t) = \sum_{j=1}^4 \nu_{n,j}(t) + r_n(t)$ with
\[
r_n(t) = \frac{1}{2\pi \Delta} \langle t^*, (\psi_{\Delta,1}^{(1)}(u) - \psi_{\Delta}^{(1)}(u))(\psi_{\Delta,2}^{(1)}(u) - \psi_{\Delta}^{(1)}(u)) \rangle \\
- \frac{1}{2\pi \Delta} \langle t^*, (\psi_{\Delta,1}^{(2)}(u) - \psi_{\Delta}^{(2)}(u))(\psi_{\Delta,2}^{(2)}(u) - \psi_{\Delta}^{(2)}(u)) \rangle,
\]
and
\[
\nu_{n,1}(t) = \frac{1}{2\pi \Delta} \langle t^*, (\psi_{\Delta}^{(1)} - \psi_{\Delta}^{(2)})\psi_{\Delta} \rangle, \quad \nu_{n,2}(t) = \frac{1}{2\pi \Delta} \langle t^*, (\psi_{\Delta}^{(1)} - \psi_{\Delta}^{(2)})\psi_{\Delta} \rangle, \\
\nu_{n,3}(t) = \frac{1}{2\pi \Delta} \langle t^*, (\psi_{\Delta,1}^{(1)} - \psi_{\Delta}^{(1)})\psi_{\Delta} \rangle, \quad \nu_{n,4}(t) = \frac{1}{2\pi \Delta} \langle t^*, (\psi_{\Delta,2}^{(1)} - \psi_{\Delta}^{(1)})\psi_{\Delta} \rangle.
\]

Lemma 9.2. We have: $\mathbb{E} \left(\sup_{t \in S_{m_1} + S_{m_2}, ||t|| = 1} |r_n(t)|^2 \right) \leq \frac{C}{n}$.

Proof. Using the independence of the subsamples, we can write:
\[
\mathbb{E} \left(\sup_{t \in S_{m_1} + S_{m_2}, ||t|| = 1} |r_n(t)|^2 \right) \leq \mathbb{E} \left(\sup_{t \in S_{m_1}, ||t|| = 1} |r_n(t)|^2 \right) \\
\leq \frac{1}{2\pi \Delta^2} \mathbb{E} \left[\left| (\hat{\psi}_{\Delta,1}^{(1)} - \hat{\psi}_{\Delta}^{(1)})(\hat{\psi}_{\Delta,2}^{(1)} - \hat{\psi}_{\Delta}^{(1)}) I_{[-\pi m_1, \pi m_1]} \right|^2 \right] \\
+ \frac{1}{2\pi \Delta^2} \mathbb{E} \left[\left| (\hat{\psi}_{\Delta,1}^{(2)} - \hat{\psi}_{\Delta}^{(2)})(\hat{\psi}_{\Delta,2}^{(2)} - \hat{\psi}_{\Delta}^{(2)}) I_{[-\pi m_1, \pi m_1]} \right|^2 \right] \\
\leq \frac{1}{2\pi \Delta^2} \int_{-\pi m_1}^{\pi m_1} \mathbb{E} \left[\left| \hat{\psi}_{\Delta,1}^{(1)}(u) - \hat{\psi}_{\Delta}^{(1)}(u) \right|^2 \right] \mathbb{E} \left[\left| \hat{\psi}_{\Delta,2}^{(1)}(u) - \hat{\psi}_{\Delta}^{(1)}(u) \right|^2 \right] du \\
+ \frac{1}{2\pi \Delta^2} \int_{-\pi m_1}^{\pi m_1} \mathbb{E} \left[\left| \hat{\psi}_{\Delta,1}^{(2)}(u) - \hat{\psi}_{\Delta}^{(2)}(u) \right|^2 \right] \mathbb{E} \left[\left| \hat{\psi}_{\Delta,2}^{(2)}(u) - \hat{\psi}_{\Delta}^{(2)}(u) \right|^2 \right] du \\
\leq \frac{m_n}{\pi \Delta^2} \left(\frac{\mathbb{E} \left(Z_1^2 \right)}{n^2} + \frac{\mathbb{E} \left(Z_1^4 \right)}{n^2} \right) \leq \frac{C}{n}
\]
because $m_n \leq n \Delta$ and $\mathbb{E}(Z_1^2)$ and $\mathbb{E}(Z_1^4)$ have order Δ.
\[\square\]

Now, the study of the $\nu_{n,j}$'s relies on Lemma 10.1. Let us first study the process $\nu_{n,1}$. We must split $Z_k^2 = Z_k^2 I_{Z_k^2 \leq k_n \sqrt{\Delta}} + Z_k^2 I_{Z_k^2 > k_n \sqrt{\Delta}}$ with k_n to be defined later. This implies that $\nu_{n,1}(t) = \nu_{n,1}^P(t) + \nu_{n,1}^R(t)$ (P for Principal, R for residual) with
\[
\nu_{n,1}^P(t) = \frac{1}{n} \sum_{k=1}^{n} \left[f_k(Z_k) - \mathbb{E}(f_k(Z_k)) \right] \text{ with } f_k(z) = \frac{1}{2\pi \Delta} z^2 I_{z^2 \leq k_n \sqrt{\Delta}} \langle t^*, \hat{\psi}_{\Delta} \rangle,
\]
and $\nu_{n,1}^R(t) = \nu_{n,1}(t) - \nu_{n,1}^P(t)$.

We prove the following result:
Proposition 9.1. Under the assumptions of Theorem 3.1, choose \(k_n = C \frac{\sqrt{n}}{\ln(m)} \) and define

\[
p(m, m') = 4\mathbb{E}(Z_1^2/\Delta) \frac{m \vee m'}{\Delta},
\]

then

\[
\mathbb{E} \left(\sup_{t \in S_m + S_n, ||t||=1} [\nu_{n,1}(t)]^2 - p(m, \hat{m}) \right) + \mathbb{E} \left[\sup_{t \in S_m, ||t||=1} |\nu_{n,1}(t)|^2 \right] \leq C \frac{\ln^2(n\Delta)}{n\Delta},
\]

where \(C \) is a constant.

For \(\nu_{n,2} \), we have

Proposition 9.2. Under the assumptions of Theorem 3.1,

\[
\mathbb{E} \left(\sup_{t \in S_m + S_n, ||t||=1} [\nu_{n,2}(t)]^2 - p(m, \hat{m}) \right) \leq \frac{C}{n\Delta},
\]

where \(C \) is a constant.

For both \(\nu_{n,3} \) and \(\nu_{n,4} \), which are similar, we have to split again \(Z_k = Z_k 1_{|Z_k| \leq k_n \sqrt{\Delta}} + Z_k 1_{|Z_k| > k_n \sqrt{\Delta}} \) with the same \(k_n \) as above. We define \(\nu_{n,j}(t) = \nu_{n,j}^F(t) + \nu_{n,j}^R(t) \) as previously, for \(j = 3, 4 \).

Proposition 9.3. Under the assumptions of Theorem 3.1, define for \(j = 3, 4 \)

\[
q(m, m') = 4\mathbb{E}(Z_1^2)/\Delta) \frac{m \vee m'}{\Delta},
\]

then

\[
\mathbb{E} \left(\sup_{t \in S_m + S_n, ||t||=1} [\nu_{n,j}(t)]^2 - q(m, \hat{m}) \right) + \mathbb{E} \left[\sup_{t \in S_m, ||t||=1} |\nu_{n,j}(t)|^2 \right] \leq C \frac{\ln^2(n\Delta)}{n\Delta},
\]

where \(C \) is a constant.

Now, on \(\Omega_\epsilon \), the following inequality holds (by bounding the indicator by 1), for any choice of \(\kappa \),

\[
(1 - \epsilon)\text{pen}_{\kappa}(m) \leq \text{pen}(m) \leq (1 + \epsilon)\text{pen}_{\kappa}(m),
\]

where \(\text{pen}_{\kappa}(m) = \mathbb{E}(\text{pen}(m)) \). It follows from (40) that

\[
\frac{1}{4} \mathbb{E}((\hat{h}_m - h)^2 1_{\Omega_\epsilon}) \leq \frac{7}{4} ||h - h_m||^2 + \text{pen}_{\kappa}(m) - \mathbb{E}(\text{pen}(m)) 1_{\Omega_\epsilon} + C\Delta^2 \int_{-\pi m}^{\pi m} u^2 |h^*(u)|^2 du + 8\mathbb{E} \left(\sup_{t \in S_m + S_n, ||t||=1} |\nu_n(t)|^2 \right) 1_{\Omega_\epsilon}.
\]

Recalling that

\[
\nu_n(t) = r_n(t) + \nu_{n,1}^P(t) + \nu_{n,1}^R(t) + \nu_{n,2}(t) + \nu_{n,3}(t) + \nu_{n,3}(t) + \nu_{n,4}(t) + \nu_{n,4}(t),
\]

```
we have
\[
\mathbb{E}(\sup_{t \in S_m + S_n, ||t|| = 1} |\nu_n(t)|^2 \mathbf{1}_{\omega_n}) \leq 8 \left( \frac{C}{n\Delta} + \sum_{j \in \{1, 3, 4\}} \mathbb{E}(\sup_{t \in S_m + S_n, ||t|| = 1} |\nu_{n,j}(t)|^2 \mathbf{1}_{\omega_n}) \right) + \mathbb{E}(\sup_{t \in S_m + S_n, ||t|| = 1} |\nu_{n,2}(t)|^2 \mathbf{1}_{\omega_n})
\]
(47)
\[
\leq 8\left( \frac{C'}{n\Delta} + 2\mathbb{E}[(p(m, \hat{m}) + q(m, \hat{m})) \mathbf{1}_{\Omega_e}] \right)
\]
We note that
\[
p(m, m') + q(m, m') = \frac{1}{4\kappa}(\text{pen}_{th}(m) + \text{pen}_{th}(m')).
\]
Thus
\[
\text{pen}_{th}(m) - \mathbb{E}(\text{pen}(\hat{m}) \mathbf{1}_{\Omega_e}) + 128\mathbb{E}[(p(m, \hat{m}) + q(m, \hat{m})) \mathbf{1}_{\Omega_e}]
\leq \text{pen}_{th}(m) - (1 - \theta)\mathbb{E}(\text{pen}_{th}(\hat{m}) \mathbf{1}_{\Omega_e}) + \frac{32}{\kappa}\mathbb{E}[(\text{pen}_{th}(m) + \text{pen}_{th}(\hat{m})) \mathbf{1}_{\Omega_e}]
\leq (1 + \frac{32}{\kappa}\text{pen}_{th}(m) + \frac{32}{\kappa} - (1 - \theta)\mathbb{E}[\text{pen}_{th}((\hat{m})) \mathbf{1}_{\Omega_e}].
\]
Therefore we choose \( \kappa \) such that \((32/\kappa - (1 - \theta)) \leq 0, \) that is \( \kappa \geq 32/(1 - \theta) \). This together with (46) and (47) yields
\[
\frac{1}{4}\mathbb{E}(\|\hat{h} - h\|^2 \mathbf{1}_{\omega_e}) \leq \frac{7}{4}\|h - h_m\|^2 + (2 - \theta)\text{pen}_{th}(m) + C\Delta^2 \int_{-\pi m}^{\pi m} u^2|h^*(u)|^2 du + \frac{C'}{n\Delta}
\]

Proof of Proposition 9.1. Let \( m'' = m \lor m' \), and note that \( S_m + S_m' = S_m'' \). We evaluate the constants \( M, H, v \) to apply 10.1 to \( \nu_{n,1}^P(t) \) (see (43)).

\[
\sup_{z \in \mathbb{R}} |f_t(z)| \leq \frac{k_n}{2\pi \sqrt{\Delta}} \sup_{z \in \mathbb{R}} \int_{-\pi m''}^{\pi m''} t^*(u)e^{izu} \psi(u) du
\leq \frac{k_n}{2\pi \sqrt{\Delta}} \int_{-\pi m''}^{\pi m''} |t^*(u)| du \leq \frac{k_n}{2\pi \sqrt{\Delta}} (2\pi m'' \int_{-\pi m''}^{\pi m''} t^*(u)^2 du)^{1/2}
\]
\[
= \frac{k_n}{\sqrt{\Delta}} (m'')^{1/2} \leq \frac{k_n \sqrt{m''}}{\Delta} := M
\]

Moreover
\[
\mathbb{E}(\sup_{t \in S_m + S_m', ||t|| = 1} |\nu_{n,1}^P(t)|^2) \leq \frac{1}{2\pi n \Delta^2} \int_{-\pi m''}^{\pi m''} \mathbb{E}(Z_1^4) \psi^2(u) du \leq \frac{m'' \mathbb{E}(Z_1^4/\Delta)}{n\Delta} := H^2.
\]

The most delicate term is \( v \).

\[
\text{Var}(f_t(Z_1)) = \frac{1}{4\pi^2 \Delta^2} \mathbb{E} \left( \int_{-\pi \vee \sqrt{n} \vee \Delta} e^{ixZ_1} t^*(-x) \psi(x) dx \right)^2
\leq \frac{1}{4\pi^2 \Delta^2} \mathbb{E} \left( \int_{\mathbb{R}^2} e^{i(x-y)Z_1} t^*(-x) t^*(y) \psi(x) \psi(-y) dx dy \right)
\]
\[
= \frac{1}{4\pi^2 \Delta^2} \int_{\mathbb{R}^2} \psi^4(x-y) t^*(-x) t^*(y) \psi(x) \psi(-y) dx dy.
\]
where we recall that $\psi^{(4)}(x) = \mathbb{E}(Z^2 e^{ixZ_1})$. Making use of the basis $(\varphi_{m''}, j \in \mathbb{Z})$ of $S_{m''}$, we have $t = \sum_{j \in \mathbb{Z}} t_j \varphi_{m''}, j$ with $\|t\|^2 = \sum_{j \in \mathbb{Z}} t_j^2 = 1$,

$$
\text{Var}(f_t(Z_1)) \leq \frac{1}{4\pi^2 \Delta^2} \sum_{j,k \in \mathbb{Z}} t_j t_k \iint \psi^{(4)}(x-y) \varphi_{m''}, j(-x) \varphi_{m''}, k(y) \psi_\Delta(x) \psi_\Delta(-y) dx dy
$$

$$
\leq \frac{1}{4\pi^2 \Delta^2} \left( \sum_{j,k \in \mathbb{Z}} \iint \psi^{(4)}(x-y) \varphi_{m''}, j(-x) \varphi_{m''}, k(y) \psi_\Delta(x) \psi_\Delta(-y) dx dy \right)^{1/2}
$$

$$
= \frac{1}{4\pi^2 \Delta^2} \left( \iint_{[-2m'', 2m'']} |\psi^{(4)}(x-y)\psi_\Delta(x)\psi_\Delta(-y)| dx dy \right)^{1/2}
$$

$$
\leq \frac{\sqrt{2\pi m''}}{4\pi^2 \Delta^2} \left( \iint_{[-2\pi m'', 2\pi m'']} |\psi^{(4)}(z)|^2 dz \right)^{1/2}.
$$

(48)

Therefore, we need to study $\int_{[-2m'', 2m'']} \psi^{(4)}(z)^2 dz$. Recall that $\phi(u) = ib - \int_0^u h^*(v) dv$. We have

$$
\psi^{(4)} = \Delta |\phi^{(3)} + \Delta (4\phi'' + 3(\phi')^2) + 6\Delta^2 \phi'\phi'' + \Delta^3 \phi''| \psi_\Delta,
$$

where

$$
\phi'(u) = -h^*(u), \phi''(u) = -i \int e^{iux} x^3 n(x) dx, \phi^{(3)}(u) = \int e^{iux} x^4 n(x) dx
$$

satisfy: $\int |\phi'(u)|^2 du = \|n\|^2, |\phi'(u)| \leq |h|_1$,

$$
\int |\phi''(u)|^2 du = \int x^6 n^2(x) dx = \int x^2 h^2(x) dx, \int |\phi^{(3)}(u)|^2 du = \int x^8 n^2(x) dx = \int x^4 h^2(x) dx.
$$

By assumption, $h^*$ is in $L_1(\mathbb{R})$, thus, $|\phi(u)| \leq |b| + |h^*|_1 := M_\phi$. Therefore

$$
|\psi^{(4)}|^2 \leq C \Delta^2 (|\phi^{(3)}|^2 + \Delta^2 ((\phi'')^2 + (\phi')^4) + \Delta^4 (\phi')^2 + \Delta^6),
$$

where $C$ is a constant depending on $M_\phi$ and $|h|_1$. Therefore,

$$
\int_{-2\pi m''}^{2\pi m''} |\psi^{(4)}(u)|^2 du \leq C \Delta^2 \left[ \int x^2 h^2(x) dx + \Delta^2 \left( \int x^2 h^2(x) dx + 4\pi m'' |h|_1^4 + \Delta^4 ||n||^2 + 4\pi m'' \Delta^6 \right) \right]
$$

$$
\leq C_1 \Delta^2 \left[ \int x^4 h^2(x) dx + \Delta^2 \left( \int x^2 h^2(x) dx + \Delta^4 ||n||^2 \right) + C_2 m'' \Delta^4 \right]
$$

Thus, using Assumptions (H1), (H3), (H4),

$$
\int_{-2\pi m''}^{2\pi m''} |\psi^{(4)}(u)|^2 du \leq K (\Delta^2 + m'' \Delta^4).
$$

As $m'' \Delta^4 \leq n \Delta^5$ and $n \Delta^3 \leq 1$ we get

$$
\int_{-2\pi m''}^{2\pi m''} |\psi^{(4)}(u)|^2 du \leq 2K \Delta^2.
$$

This together with (48) yields

$$
v = c \sqrt{m'' \Delta}
$$
where $c$ is a constant.

Applying Lemma 10.1 yields, for $\epsilon^2 = 1/2$ and $p(m, m')$ given by (44) yields

$$
E \left( \sup_{t \in S_m + S_{m'}, ||t|| = 1} [\nu_{n,1}^P(t)]^2 - p(m, m') \right) \leq C_1 \left( \frac{\sqrt{m'}}{n \Delta} e^{-C_2 \sqrt{m'}} + \frac{k^2_{n,m'} m'}{n^2 \Delta} e^{-C_3 \sqrt{m'/k_n}} \right)
$$

as $p(m, m') = 4H^2$. We choose

$$
k_n = \frac{C_3 \sqrt{n}}{4 \ln(n \Delta)},
$$

and as $m \leq n \Delta$, we get

$$
E \left( \sup_{t \in S_m + S_{m'}, ||t|| = 1} [\nu_{n,1}^P(t)]^2 - p(m, m') \right) \leq C_1' \left( \frac{\sqrt{m'}}{n \Delta} e^{-C_2 \sqrt{m'}} + \frac{1}{(n \Delta)^{3/2} \ln^2(n \Delta)} \right).
$$

Therefore

$$
\sum_{m' = 1}^{m_n} E \left( \sup_{t \in S_m + S_{m'}, ||t|| = 1} [\nu_{n,1}^P(t)]^2 - p(m, m') \right) \leq C_1' \left( \sum_{m' = 1}^{n \Delta} \frac{\sqrt{m'}}{n \Delta} e^{-C_2 \sqrt{m'}} + \frac{1}{(n \Delta)^{3/2} \ln^2(n \Delta)} \right).
$$

As $C_2 e^{-C_2 x}$ is decreasing for $x \geq 1/C_2$, and its maximum is $1/(eC_2)$, we get

$$
\sum_{m' = 1}^{m_n} \sqrt{m'} e^{-C_2 \sqrt{m'}} \leq \sum_{m' \leq 1/C_2} (eC_2)^{-1} + \sum_{1/C_2 \leq m'} \sqrt{m'} e^{-C_2 \sqrt{m'}}
$$

$$
\leq \frac{1}{eC_2^2} + \sum_{m' = 1}^{\infty} \sqrt{m'} e^{-C_2 \sqrt{m'}} < +\infty.
$$

It follows that

$$
\sum_{m' = 1}^{m_n} E \left( \sup_{t \in S_m + S_{m'}, ||t|| = 1} [\nu_{n,1}^P(t)]^2 - p(m, m') \right) \leq \frac{C}{n \Delta}.
$$

Let us now study the second term $\nu_{n,j}^{(R)}$ in the decomposition of $\nu_{n,j}(t)$. The cases $j = 3, 4$ being similar, we consider only $\nu_{n,j}^{(R)}(t)$ for $j = 1$.

$$
E \left[ \sup_{t \in S_m + S_{m'}, ||t|| = 1} [\nu_{n,1}^{(R)}(t)]^2 \right] \leq \frac{1}{4 \pi^2 \Delta^2} E \left( \int_{-\pi m_n}^{\pi m_n} \left| \frac{1}{n} \sum_{k=1}^{n} (Z_k^2 I_{Z_k^2 > k_n \sqrt{\Delta}} e^{iuZ_k} - E(Z_k^2 I_{Z_k^2 > k_n \sqrt{\Delta}} e^{iuZ_k})) \right|^2 |\psi_\Delta^2(u)|^2 du \right)
$$

$$
\leq \frac{E(Z_1^2 I_{Z_1^2 > k_n \sqrt{\Delta}})}{4n \pi^2 \Delta^2} \int_{-\pi m_n}^{\pi m_n} du \leq \frac{m_n E(Z_1^{4+2p})}{2 \pi n \Delta^2 (k_n \sqrt{\Delta})^p}
$$

$$
\leq K \frac{E(Z_1^{4+2p}/\Delta) \ln^p(n \Delta)}{2 \pi (n \Delta)^{p/2}},
$$

using $m_n \leq n \Delta$ and recalling that $k_n = (C_3/4)(\sqrt{n}/\ln(n \Delta))$. Taking $p = 2$, which is possible because $E(Z_1^8) < +\infty$, gives a bound of order $\ln^2(n \Delta)/(n \Delta)$.

Proposition 9.1 is proved. □
Proof of Proposition 9.2. For $\nu_{n,2}$, the variables are bounded without splitting, and the function $f_t$ is replaced by $\tilde{f}_t = (2\pi \Delta)^{-1}(t^*, e^{iz_\Delta})$. We just check the orders of $M$, $H^2$ and $v$ for the application of Lemma 10.1. For $t \in S_m = S + S_{m'}$ and $\|t\| \leq 1$, we have

$$
\sup_{z \in \mathbb{R}} |\tilde{f}_t(z)| \leq \frac{1}{2\pi \Delta} \sqrt{\int_{-\pi m''}^{\pi m''} |t^*(-u)|^2 du \int_{-\pi m''}^{\pi m''} |\psi''_{\Delta}(u)|^2 du}
$$

$$
\leq \sqrt{m'^2 \mathbb{E}\left(\frac{Z_i^2}{\Delta}\right)} \leq C\sqrt{m'} := M.
$$

Next

$$
\mathbb{E}\left( \sup_{t \in S_m + S_{m''}, \|t\|=1} [\nu_{n,2}(t)]^2 \right) \leq \frac{1}{2\pi n \Delta^2} \int_{-\pi m''}^{\pi m''} |\psi''_{\Delta}(u)|^2 du \leq \frac{m'' \mathbb{E}\left(\frac{Z_i^2}{\Delta}\right)}{n\Delta} := H^2.
$$

Following the same line as previously for $v$, we get

$$
\text{Var}(\tilde{f}_t(Z_1)) \leq \frac{1}{4\pi^2 \Delta^2} \left( \int_{-\pi m''}^{\pi m''} [\psi''_{\Delta}(u-v)]^2 du \int_{-\pi m''}^{\pi m''} [\psi''_{\Delta}(u)]^2 du dv \right)^{1/2}.
$$

As $\psi''_{\Delta} = \Delta(\phi + \Delta \phi^2)\psi_{\Delta}$, we get (recall that $M_\phi = |b| + |h|^2$ is the upper bound of $|\phi(u)|$):

$$
\text{Var}(\tilde{f}_t(Z_1)) \leq \frac{1}{4\pi^2 \Delta^2} \int_{-\pi m''}^{\pi m''} [\psi''_{\Delta}(x)]^2 dx
$$

$$
\leq \frac{2\Delta^2 (|h|^2 + 2\pi m'' \Delta^2 M_\phi^2)}{4\pi^2 \Delta^2} \leq \frac{1}{\pi} (\|h\|^2 + M_\phi^2 m_n \Delta^2)
$$

$$
\leq \frac{\|h\|^2 + M_\phi^2}{\pi} := v
$$

as $m_n \Delta^2 \leq n \Delta^3 \leq 1$. □

Proof of Proposition 9.3. Here $f_t$ is replaced by $\tilde{f}_t(z) = z I_{|z| \leq k_\nu \sqrt{\Delta}(t^*, e^{iz_\Delta})}$. Using now that $|\psi''_{\Delta}(u)| \leq \mathbb{E}(|Z_1|) \leq \sqrt{\mathbb{E}(Z_1^2)}$, we obtain here that $M = k_\nu \sqrt{m'} \sqrt{\mathbb{E}(Z_1^2)/\Delta}$. On the other hand, we find $H^2 = m'' \mathbb{E}\left(\frac{Z_i^2}{\Delta}\right)/(n \Delta^2)$. Lastly, we find

$$
\text{Var}(\tilde{f}_t(Z_1)) \leq \frac{1}{4\pi^2 \Delta^2} \left( \int_{-\pi m''}^{\pi m''} [\psi''_{\Delta}(u-v)]^2 du \int_{-\pi m''}^{\pi m''} [\psi''_{\Delta}(u)]^2 du dv \right)^{1/2}.
$$

With the bounds for $|\psi''_{\Delta}|$ and $\int_{-\pi m''}^{\pi m''} |\psi''_{\Delta}(z)|^2 dz$, we obtain $v = c\mathbb{E}(Z_1^2/\Delta) \sqrt{m'}$. □

9.3. Proof of Theorem 4.1. The proof follows the same lines as for the adaptive estimator of $h$. We introduce, for $0 < \varrho < 1$,

$$
\Omega_h := \left\{ \left| \frac{1}{\mathbb{E}(Z_i^4)} \sum_{k=1}^{3n} Z_k^4 \right| - 1 \leq \varrho \right\}.
$$

Provided that $\mathbb{E}(Z_i^2) < \infty$, we can make use of the Rosenthal inequality to obtain:

$$
\mathbb{E}(\|\bar{h} - p\|^2 I_{\Omega_h}) \leq C/n \Delta.
$$

For the study of $\mathbb{E}(\|\bar{h} - p\|^2 I_{\Omega_h})$, the decomposition is similar to the previous case (see (40))
where \( \dot{h}_{\dot{m}}, h \) are now replaced by \( \bar{p}_{m}, p \). The processes \( R_n(t) \) and \( \nu_n(t) \) are given by:

\[
\nu_n(t) = \frac{1}{2\pi} (p - E(p^2), t^*), \quad R_n(t) = \frac{1}{2\pi} (E(p^2) - p^2, t^*).
\]

The term \( R_n(t) \) is dealt using (30). For the term containing \( \nu_n(t) \), we need apply 10.1. So, \( \nu_n \) is split into the sum of a principal and a residual term, respectively denoted by \( \nu_n^P \) and \( \nu_n^R \) with

\[
\nu_n^P(t) = \frac{1}{3n} \sum_{k=1}^{3n} [f_t(Z_k) - E(f_t(Z_k))] \quad \text{with} \quad f_t(z) = \frac{1}{2i\Delta} \cdot 3^3 \mathbb{1}_{|z| \leq k\sqrt{n\Delta}}(t^*, e^{iz}),
\]

and \( \nu_n^R(t) = \nu_n(t) - \nu_n^P(t) \). Everything is analogous. The difference is that, for applying 10.1, we have to bound \( \int_{-2\pi m^*}^{2\pi m^*} |\psi_{\Delta}^{(6)}(u)|^2 du \) (instead of \( \int_{-2\pi m^*}^{2\pi m^*} |\psi_{\Delta}^{(4)}(u)|^2 du \) previously). Using \( \psi_{\Delta} = \Delta \tilde{\phi}_{\Delta} \) (see (5)-(25)), we find

\[
\psi_{\Delta}^{(6)} = \Delta^2 \tilde{\phi}_{\Delta}^{(5)} + \Delta^2 \tilde{\phi}_{\Delta} [6\tilde{\phi}_{\Delta}^{(4)} + 15\phi^{(3)}(\phi' - \sigma^2)] + \Delta^2 \tilde{\phi}_{\Delta} [15\phi^{(3)} \phi'' + 60\phi''(\phi' - \sigma^2) + 15(\phi''(\phi' - \sigma^2))]
\]

\[
+ \Delta^4 \tilde{\phi}_{\Delta} [17\phi'''' \phi^{(3)} + 36\phi''(\phi' - \sigma^2)] + 12\Delta^2 \tilde{\phi}_{\Delta} \tilde{\phi}_{\Delta}^{(4)}(\phi' - \sigma^2) + \Delta^6 \tilde{\phi}_{\Delta}^4 \phi^2.
\]

Now, \( \tilde{\phi}(u) \leq C(1 + |u|) \) and all the derivatives of \( \tilde{\phi}, \phi \) are bounded. Moreover, under (H6), \( \int |\phi^{(5)}(u)|^2 du = \int x^6 |p(x)|^2 dx < +\infty \). Thus, we find the following bound

\[
\int_{-2\pi m^*}^{2\pi m^*} |\psi_{\Delta}^{(6)}|^2 \leq C \Delta^2 (1 + \Delta^2 m^3 + \Delta^4 m^5 + \Delta^6 m^7 + \Delta^8 m^9 + \Delta^{10} m^{13}) = O(\Delta^2),
\]

as \( m \leq \sqrt{n\Delta} \). The proof may then be completed as for \( \dot{h}_{\dot{m}}. \)

\[ \square \]

9.4. Proof of Proposition 5.1.

Proof of (i). The assumptions and the fact that \( r \leq 1 \) imply

\[
|\Gamma_{\Delta}|^r = | \sum_{s \leq \Delta} \Gamma_s - \Gamma_{s-} |^r \leq \sum_{s \leq \Delta} |\Gamma_s - \Gamma_{s-}|^r.
\]

Taking expectations yields

\[
E|\Gamma_{\Delta}|^r \leq \Delta \int |\gamma|^r n(\gamma) d\gamma.
\]

Proof of (ii). Consider \( f \) a non-negative function such that \( f(0) = 0 \). We have:

\[
E \sum_{s \leq t} f(X_s - X_{s-}) = E \sum_{s \leq t} f(B_{\Gamma_s} - B_{\Gamma_{s-}}).
\]

Then,

\[
\sum_{s \leq t} E f(B_{\Gamma_s} - B_{\Gamma_{s-}}) = \sum_{s \leq t} \int f(x) \left( E e^{-x^2/2(\Gamma_s - \Gamma_{s-})} \frac{1}{\sqrt{2\pi(\Gamma_s - \Gamma_{s-})}} \right) dx.
\]

Since, for all \( x \),

\[
E \sum_{s \leq t} e^{-x^2/(2(\Gamma_s - \Gamma_{s-}))} \frac{1}{\sqrt{2\pi(\Gamma_s - \Gamma_{s-})}} = t \int_0^{+\infty} e^{-x^2/2\gamma} \frac{1}{\sqrt{2\pi\gamma}} n_\Gamma(\gamma) d\gamma,
\]

we get the formula for \( n_X \). Setting \( m_\alpha = E|X|^\alpha \), for \( X \) a standard Gaussian variable, yields

\[
\int_{\mathbb{R}} |x|^\alpha n_X(x) dx = m_\alpha \int_0^{+\infty} \gamma^{\alpha/2} n_\Gamma(\gamma) d\gamma.
\]
Thus

\[ \mathbb{E}|X_\Delta|^r = m_r \mathbb{E}(\Gamma_\Delta^{r/2}) . \]

As \( r/2 \leq 1 \),

\[ \Gamma_\Delta^{r/2} = \left( \sum_{s \leq \Delta} (\Gamma_s - \Gamma_{s-})^{r/2} \right) \leq \sum_{s \leq \Delta} (\Gamma_s - \Gamma_{s-})^{r/2} . \]

Taking expectation gives the result.

Proof of (iii) The result is proved e.g. in Barndorff-Nielsen et al. (2006) (Theorem 1, p. 804) (see also Aït-Sahalia and Jacod (2007)). \( \Box \)

9.5. **Proof of proposition 5.3.** The study of (35) relies on the following result which is standard for \( r = 2 \).

**Lemma 9.3.** Let \( Y_i = \theta t + \sigma W_i \) for \( \theta \) a constant and consider

\[ \hat{\sigma}_n^{(r)} = \frac{1}{m_r n^{r/2}} \sum_{k=1}^{n} |Y_{k,\Delta} - Y_{(k-1)\Delta}|^r . \]

Then, for all \( r \), \( \sqrt{n}(\hat{\sigma}_n^{(r)} - \sigma^r) \) converges in distribution to a centered Gaussian distribution with variance \( \sigma^{2r}(m_{2r}/m_r^2 - 1) \) as \( n \) tends to infinity, \( \Delta \) tends to 0, \( n\Delta \) tends to infinity, and \( n\Delta^2 \) tends to 0.

**Proof.** We have

\[ \mathbb{E}\hat{\sigma}_n^{(r)} = \frac{1}{m_r} \mathbb{E}|\theta \sqrt{\Delta} + \sigma X|^r , \]

for \( X \) a standard Gaussian variable. We get, after a change of variables,

\[ \mathbb{E}\hat{\sigma}_n^{(r)} = \frac{1}{m_r} \int |u|^r \exp \left( -\frac{(u - \theta \sqrt{\Delta})^2}{2\sigma^2} \right) \frac{du}{\sigma \sqrt{2\pi}} . \]

Thus,

\[ \mathbb{E}\hat{\sigma}_n^{(r)} - \sigma^r = \sigma^r \left( e^{-\theta^2 \Delta/2\sigma^2} - 1 \right) + \frac{1}{m_r} e^{-\theta^2 \Delta/2\sigma^2} \int |u|^r \left( e^{\theta u \sqrt{\Delta}/\sigma^2} - 1 \right) e^{-\frac{u^2}{2\sigma^2}} \frac{du}{\sigma \sqrt{2\pi}} . \]

Noting that

\[ e^{\theta u \sqrt{\Delta}/\sigma^2} - 1 = \theta u \sqrt{\Delta}/\sigma^2 + \Delta \sum_{n \geq 2} \frac{1}{n!}(u\theta/\sigma^2)^n \Delta^{n/2-1} \]

and that \( \int |u|^r e^{-\frac{u^2}{2\sigma^2}} \frac{du}{\sigma \sqrt{2\pi}} = 0 \), we easily obtain

\[ |\mathbb{E}\hat{\sigma}_n^{(r)} - \sigma^r| \leq c \Delta . \]

Thus, \( \sqrt{n}|\mathbb{E}\hat{\sigma}_n^{(r)} - \sigma^r| = o(1) \) if \( \sqrt{n} \Delta = (n\Delta^2)^{1/2} = o(1) \). Noting that \( \mathbb{E}|\theta \sqrt{\Delta} + \sigma X|^k \) converges to \( \sigma^k m_k \) as \( \Delta \) tends to 0, we get

\[ n \text{Var}\hat{\sigma}_n^{(r)} \to \sigma^{2r}(m_{2r}/m_r^2 - 1) . \]

Finally, we look at

\[ \chi_{k,n} = \frac{1}{n} \left( (\theta \sqrt{\Delta} + \sigma(W_{k\Delta} - W_{(k-1)\Delta})/\sqrt{\Delta})^r - \mathbb{E}|\theta \sqrt{\Delta} + \sigma X|^r \right) , \]

which satisfies

\[ n \mathbb{E}\chi_{k,n} \leq \frac{c}{n^3} . \]

Hence, \( \sqrt{n}(\hat{\sigma}_n^{(r)} - \mathbb{E}\hat{\sigma}_n^{(r)}) \) converges in distribution to the centered Gaussian with the announced variance which completes the proof. \( \Box \)
Proof of (i). As noted above, \( L_t = b_0 t + \sigma W_t + \Gamma_t \) with \( b_0 = b - \int x n(x) dx \). Using that, for \( r \leq 1, ||\sum a_i + b_i||^r - ||\sum a_i||^r \leq \sum |b_i|^r \), we get
\[
|\tilde{\sigma}_n^{(r)} - \tilde{\sigma}_n^{(r)}| \leq \frac{1}{m_r n^{\Delta r/2}} \sum_{\Delta} \sum_{k=1}^{\Delta} |\Gamma_k - \Gamma_{(k-1)}|^r,
\]
where \( \tilde{\sigma}_n^{(r)} \) is built with \( Y_t = b_0 t + \sigma W_t \) as in the previous Lemma. Thus, applying Proposition 5.1 (i),
\[
\mathbb{E} \sqrt{n} |\tilde{\sigma}_n^{(r)} - \tilde{\sigma}_n^{(r)}| \leq \frac{1}{m_r} \sqrt{n\Delta^{1-r/2}} \int |x|^r n(x) dx.
\]
Since \( r < 1 \), the constraint \( n\Delta^{2-r} = o(1) \) can be fulfilled and implies \( n\Delta^2 = o(1) \). Hence, the result follows from the previous proposition.

Proof of (ii). The proof is analogous to the previous one (using Proposition 5.1 (ii)) and is omitted. \( \square \)

9.6. Proof of Proposition 5.4. Let us set
\[
\tilde{\sigma}_M^2 = \frac{1}{3n\Delta} \sum_{k=1}^{3n} Z_k^2 \cos M Z_k, \quad \tilde{b}_1 = \frac{1}{n\Delta} \sum_{k=1}^{n} Z_k, \quad \tilde{b}_2 = \frac{1}{n\Delta} \sum_{\ell=n+1}^{2n} Z_{\ell}.
\]
We need choose \( M \) tending to infinity in such a way that the right handside above tends to a limit. For this, we use:
\[
\mathbb{E}(Z_k^2 \cos M Z_1) = -\text{Re} \psi_M^{(4)}(M),
\]
\[
\mathbb{E}(Z_k^4 \cos^2 M Z_1) = \frac{1}{2} \mathbb{E}(Z_k^4(1 + \cos 2M Z_1)) = \frac{1}{2}(\mathbb{E}(Z_k^4) + \text{Re} \psi_M^{(4)}(2M)).
\]
We know that \( (1/\Delta)\mathbb{E}(Z_k^4) \) tends to \( \int x^4 n(x) dx \) as \( \Delta \) tends to 0. Some elementary computations yield (see (5)-(25)):
\[
\psi_M''(u) = -\psi_M(u)(h^*(u) + \sigma^2) + \Delta^2 \psi_M(u) \phi^2(u),
\]
\[
\psi_M^{(4)}(u) = \psi_M(u) \left[ \Delta \phi^{(3)}(u) + \Delta^2 \left( 4\phi''(u) \phi(u) + 3(h^*(u) + \sigma^2)^2 \right) - 6\Delta^3 \phi(u) (h^*(u) + \sigma^2) + \Delta^4 \phi(u) \right].
\]
We have |\psi_M| \leq 1, |\phi(u)| \leq |u| |\sigma^2| |h_1|, \phi', \phi'', \phi^{(3)} are Fourier transforms of integrable functions and thus tend to 0 as |u| tends to infinity. Hence, as \( M \) tends to infinity,
\[
\frac{1}{\Delta} |\psi_M^{(3)}(2M)| \leq C(\Delta M + \Delta^2 M^2 + \Delta^3 M^4).
\]
Choosing \( M \) such that \( \Delta^3 M^4 \) tends to 0, we obtain that the above term tends to 0. This choice implies also that \( \Delta^{-1/2} \psi_M^{(4)}(M) \) tends to 0. Hence, \( 3n\Delta \text{Var} \tilde{\sigma}_M^2 \) tends to \( \int x^4 n(x) dx/2 \).

For the Lindeberg condition, we write
\[
\sqrt{n\Delta} (\tilde{\sigma}_M^2 - \mathbb{E}(\tilde{\sigma}_M^2)) = \sum_{k=1}^{3n} \chi_{k,n},
\]
where \( n\mathbb{E}|\chi_{k,n}|^4 \leq \frac{C}{n^{2}} (\mathbb{E}Z_k^4/\Delta) \) tends to 0. So, we have the convergence in distribution result for \( \sqrt{3n\Delta}(\tilde{\sigma}_M^2 - \mathbb{E}\tilde{\sigma}_M^2) \). Finally,
\[
\sqrt{3n\Delta}(\tilde{\sigma}_M^2 - \mathbb{E}\tilde{\sigma}_M^2) - \sqrt{3n\Delta}(\tilde{\sigma}_M^2 - \mathbb{E}\tilde{\sigma}_M^2) = -\Delta \sqrt{3n\Delta}(\tilde{b}_1 \tilde{b}_2 - \tilde{b}^2).
\]
As the righthand side above tends to 0 in probability, we obtain the convergence in distribution of $\sqrt{n}(\hat{\sigma}_M^2 - \overline{\sigma}_M^2)$.

It remains to study the bias of $\hat{\sigma}_M^2$. From definition (36), we deduce

$$
\mathbb{E}(\hat{\sigma}_M^2) = \sigma^2 + h^*(0) - \int_0^M \text{Im}(\hat{p}^*(v)) - \int_0^M \text{Im}(\hat{p}^*(v) - \overline{\sigma}_M^2) dv.
$$

Therefore,

$$
|\mathbb{E}(\hat{\sigma}_M^2) - \sigma^2| \leq \int_0^M |\text{Im}(\hat{p}^*(v)) - \text{Im}(\hat{p}^*(v))| dv + \int_M^{+\infty} |\text{Im}(\hat{p}^*(v))| dv.
$$

It follows from (30) that

$$
|\mathbb{E}(\hat{\sigma}_M^2) - \sigma^2| \leq C \int_0^M \Delta|p^*(v)|(1 + |v|)dv + \Delta(1 + |v|)dv + \Delta^2(1 + |v|)dv + \int_M^{+\infty} |p^*(v)|dv
$$

$$
\leq C' \left( \int_0^M |p^*(v)|(1 + v^2)dv + \Delta M^2 + \Delta^2 M^4 \right) + \int_M^{+\infty} |p^*(v)|dv
$$

Assume now that $p \in C(a, L)$, then

$$
|\mathbb{E}(\hat{\sigma}_M^2) - \sigma^2| \leq C' \left( \Delta \int_0^M |p^*(v)|(1 + v^2)a^2(1 + v^2)^{1-a/2}dv + \Delta M^2 + \Delta^2 M^4 \right)
$$

$$
+ \int_M^{+\infty} |p^*(v)|(1 + v^2)dv(1 + v^2)^{1-a/2}dv
$$

$$
\leq C' \Delta \sqrt{L} \left( \int_0^M (1 + v^2)^{2-a}dv \right)^{1/2} + C' \Delta M^2 + C' \Delta^2 M^4
$$

$$
+ \sqrt{L} \left( \int_M^{+\infty} (1 + v^2)^{-a}dv \right)^{1/2}
$$

If $a > 5/2$, we get

$$
|\mathbb{E}(\hat{\sigma}_M^2) - \sigma^2| \leq K(\Delta + \Delta M^2 + \Delta^2 M^4 + M^{-a+1/2})
$$

$$
\leq K(\Delta + \Delta M^2 + \Delta^2 M^4 + M^{-2}).
$$

Thus, choosing $M = \Delta^{-1/4}$ will give a bias of order $\Delta^{1/2}$. As $n\Delta^2$ tends to 0, and $M^4\Delta^3 = \Delta^2 \to 0$, we get the result. $\Box$

10. Appendix

10.1. Two classical results. The Talagrand inequality. The following result follows from the Talagrand concentration inequality given in Klein and Rio (2005) and arguments in Birgé and Massart (1998) (see the proof of their Corollary 2 page 354).

Lemma 10.1. (Talagrand Inequality) Let $Y_1, \ldots, Y_n$ be independent random variables, let $\nu_{n,Y}(f) = (1/n) \sum_{i=1}^n [f(Y_i) - \mathbb{E}(f(Y_i))]$ and let $\mathcal{F}$ be a countable class of uniformly bounded measurable functions. Then for $\epsilon^2 > 0$

$$
\mathbb{E} \left[ \sup_{f \in \mathcal{F}} \left| \nu_{n,Y}(f) \right|^2 - 2(1 + 2\epsilon^2)H^2 \right] \leq \frac{4}{K_1} \left( \frac{\epsilon}{n} e^{-K_1 \epsilon^2 n H^2} + \frac{98 M^2}{K_1 n^2 C^2(\epsilon^2)} e^{-2K_1 C(\epsilon^2) n H^2} \right),
$$

with $C(\epsilon^2) = \sqrt{1 + \epsilon^2} - 1$, $K_1 = 1/6$, and

$$
\sup_{f \in \mathcal{F}} \|f\|_\infty \leq M, \quad \mathbb{E} \left[ \sup_{f \in \mathcal{F}} \left| \nu_{n,Y}(f) \right| \right] \leq H, \quad \sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{k=1}^n \text{Var}(f(Y_k)) \leq v.
$$
By standard density arguments, this result can be extended to the case where $\mathcal{F}$ is a unit ball of a linear normed space, after checking that $f \mapsto \nu_n(f)$ is continuous and $\mathcal{F}$ contains a countable dense family.

**The Rosenthal inequality.** (see e.g. Hall and Heyde (1980, p.23)) Let $(X_i)_{1 \leq i \leq n}$ be $n$ independent centered random variables, such that $E(|X_i|^p) < +\infty$ for an integer $p \geq 1$. Then there exists a constant $C(p)$ such that

$$E \left( \sum_{i=1}^{n} |X_i|^p \right) \leq C(p) \left( \sum_{i=1}^{n} E(|X_i|^p) + \left( \sum_{i=1}^{n} E(X_i^2) \right)^{p/2} \right).$$

**References**


