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A GENERALIZATION OF A TRACE INEQUALITY FOR POSITIVE
DEFINITE MATRICES.

ELENA VERONICA BELMEGA, MARC JUNGERS, AND SAMSON LASAULCE

Abstract. In this note we generalize the trace inequality derived by [1] to the case
where the number of terms of the sum (denoted by K) is arbitrary. More precisely we

prove that TK = Tr





K∑

k=1

(Ak −Bk)




(
k∑

`=1

B`

)−1

−
(

k∑

`=1

A`

)−1





 ≥ 0 for any set of

positive definite matrices.

1. Introduction

Trace inequalities are useful in many areas like multiple input multiple output (MIMO)
systems in control theory and communications. Proving the trace inequality under inves-
tigation in this note is a sufficient condition to ensure the uniqueness of a Nash equilibrium
in certain MIMO communications game [2] where Rosen’s diagonally strict concavity con-
dition [3] is valid. The considered inequality has been proven by e.g., [4] for K = 1 and
by [1] for K = 2. Here we generalize it to K ∈ N∗. The main result of this note is as
follows.

Theorem 1.1. Let K ∈ N∗. Assume that

(i): A1 = AH
1 Â 0, B1 = BH

1 Â 0;
(ii): ∀k ∈ {2, . . . , K}, Ak = AH

k º 0 and Bk = BH
k º 0.

Then, we have that

(1.1) TK , Tr





K∑

k=1

(Ak −Bk)




(
k∑

`=1

B`

)−1

−
(

k∑

`=1

A`

)−1





 ≥ 0.

2. Auxiliary Results

In order to prove Theorem 1.1, we will use two auxiliary lemmas which are stated here
for the sake of clarity.

Lemma 2.1. [1] Let A, B be two positive definite matrices, C, D, two positive semidef-
inite matrices whereas X is only assumed to be Hermitian. Then

(2.1) Tr
{
XA−1XB−1

}− Tr
{
X(A + C)−1X(B + D)−1

} ≥ 0.

The proof is given in [1].

Lemma 2.2. Let A, B be two positive definite matrices, C, D, two positive semi-definite
matrices. Then

(2.2)
Tr {(A−B)(B + D)−1(C−D)(A + C)−1} =
Tr {(C−D)(B + D)−1(A−B)(A + C)−1} ∈ R.
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Proof. To prove the desired result, let us define E by

(2.3) E = Tr
{
(C−D)

[
(B + D)−1 − (A + C)−1

]}

and write it in two different ways.

(2.4)
E = Tr {(C−D)(B + D)−1[A + C−B−D](A + C)−1}

= Tr {(C−D)(B + D)−1(C−D)(A + C)−1}+
Tr {(C−D)(B + D)−1(A−B)(A + C)−1} .

(2.5)
E = Tr {(C−D)(A + C)−1[A + C−B−D](B + D)−1}

= Tr {(C−D)(A + C)−1(C−D)(B + D)−1}+
Tr {(C−D)(A + C)−1(A−B)(B + D)−1} .

By using the commutation property of the trace and the two expressions of E , we find
the desired result. The only thing which needs to be proven is that E is real. For this
purpose, observe that if we denote by M = (C −D)(B + D)−1(A − B)(A + C)−1 then
MH = (A + C)−1(A−B)(B + D)−1(C−D) and from the result just proven we obtain
that Tr(MH) = Tr(M) and thus we have that Tr(M) ∈ R. ¤

3. Proof of Theorem 1.1

Define Xk =
k∑

i=1

Ai, Yk =
k∑

i=1

Bi, for all k ≥ 1 which are both positive definite

matrices. Notice that TK can be re-written recursively as follows:

(3.1)





T1 = Tr
{
(A1 −B1)Y

−1
1 (A1 −B1)X

−1
1

}

TK = TK−1 + Tr
{
(AK −BK)Y−1

K (AK −BK)X−1
K

}
+

Tr
{
(AK −BK)Y−1

K (XK−1 −YK−1)X
−1
K

}

We proceed in two steps. First, we find a lower bound for TK and then we prove that this
bound is positive. First, let us prove that, for all K ≥ 1:
(3.2)

TK ≥ 1

2

K∑
i=1

Tr
{
(Ai −Bi)Y

−1
i (Ai −Bi)X

−1
i

}
+

1

2
Tr

{
(XK −YK)Y−1

K (XK −YK)X−1
K

}

To this end we proceed by induction. For all K ∈ N∗, define the proposition:
(3.3)

PK : TK ≥ 1

2

K∑
i=1

Tr
{
(Ai −Bi)Y

−1
i (Ai −Bi)X

−1
i

}
+

1

2
Tr

{
(XK −YK)Y−1

K (XK −YK)X−1
K

}
.

It is easy to check that, for K = 1, P1 is true:
(3.4)
T1 = Tr

{
(A1 −B1)Y

−1
1 (A1 −B1)X

−1
1

}

= 1
2
Tr

{
(A1 −B1)Y

−1
1 (A1 −B1)X

−1
1

}
+ 1

2
Tr

{
(X1 −Y1)Y

−1
1 (X1 −Y1)X

−1
1

}
.

Now, let us assume that PK−1 is true and then prove that this implies that PK is also
true. We have that:
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(3.5)
TK−1 ≥ 1

2

K−1∑
i=1

Tr
{
(Ai −Bi)Y

−1
i (Ai −Bi)X

−1
i

}
+

1
2
Tr

{
(XK−1 −YK−1)Y

−1
K−1(XK−1 −YK−1)X

−1
K−1

}
.

From the recursive formula (3.1) we obtain:

(3.6)

TK ≥ 1
2

K−1∑
i=1

Tr
{
(Ai −Bi)Y

−1
i (Ai −Bi)X

−1
i

}
+

1
2
Tr

{
(XK−1 −YK−1)Y

−1
K−1(XK−1 −YK−1)X

−1
K−1

}
+

Tr
{
(AK −BK)Y−1

K (AK −BK)X−1
K

}
+ Tr

{
(AK −BK)Y−1

K (XK−1 −YK−1)X
−1
K

}

≥ 1
2

K−1∑
i=1

Tr
{
(Ai −Bi)Y

−1
i (Ai −Bi)X

−1
i

}
+

1
2
Tr

{
(XK−1 −YK−1)Y

−1
K (XK−1 −YK−1)X

−1
K

}
+

Tr
{
(AK −BK)Y−1

K (AK −BK)X−1
K

}
+ Tr

{
(AK −BK)Y−1

K (XK−1 −YK−1)X
−1
K

}

= 1
2

K−1∑
i=1

Tr
{
(Ai −Bi)Y

−1
i (Ai −Bi)X

−1
i

}
+

1
2
Tr

{
(XK−1 −YK−1)Y

−1
K (XK−1 −YK−1)X

−1
K

}
+

Tr
{
(AK −BK)Y−1

K (AK −BK)X−1
K

}
+ 1

2
Tr

{
(AK −BK)Y−1

K (XK−1 −YK−1)X
−1
K

}
+

1
2
Tr

{
(XK−1 −YK−1)Y

−1
K (AK −BK)X−1

K

}

= 1
2

K∑
i=1

Tr
{
(Ai −Bi)Y

−1
i (Ai −Bi)X

−1
i

}
+

1
2
Tr

{
(XK−1 −YK−1)Y

−1
K (XK−1 −YK−1)X

−1
K

}
+

1
2
Tr

{
(AK −BK)Y−1

K (AK −BK)X−1
K

}
+ 1

2
Tr

{
(AK −BK)Y−1

K (XK−1 −YK−1)X
−1
K

}
+

1
2
Tr

{
(XK−1 −YK−1)Y

−1
K (AK −BK)X−1

K

}
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= 1
2

K∑
i=1

Tr
{
(Ai −Bi)Y

−1
i (Ai −Bi)X

−1
i

}
+

1
2
Tr

{
(XK−1 + AK −YK−1 −BK)Y−1

K (XK−1 + AK −YK−1 −BK)X−1
K

}

= 1
2

K∑
i=1

Tr
{
(Ai −Bi)Y

−1
i (Ai −Bi)X

−1
i

}
+

1

2
Tr

{
(XK −YK)Y−1

K (XK −YK)X−1
K

}

The second inequality follows from applying Lemma 2.1 for the second term on the
right and considering that XK = XK−1 + AK , YK = YK−1 + BK . The third equality
follows from Lemma 2.2. Thus, we have proven the desired result.

The second step of the proof is straightforward. From (3.2), it is easy to check that
TK ≥ 0 (all the terms of the form Tr {XB−1XA−1} with X = XH , A Â 0, B Â 0 can be
re-written as Tr(NNH) ≥ 0 with N = A−1/2XB−1/2).
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E-mail address: lasaulce@lss.supelec.fr
URL: http://samson.lasaulce.lss.supelec.fr


