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Abstract—Statistical multiplexing (SM) is a useful technique
for transmitting multiple video streams over a channel while
satisfying multiple simultaneous bandwidth and quality related
constraints. Design of efficient SM algorithms is based on Rate
and Distortion (R-D) information extracted from successive
encoded frames. Good R-D models usually take into account
inter-frame dependencies specified in terms of impact of encoding
parameters of a given frame over the next one. A highly accurate
low complexity rate and distortion model is proposed in this
paper. A minimum number of R-D measurement points per
stream is shown to be sufficient to predict the effect of inter-
frame dependencies. Design of efficient SM algorithms satisfying
the above mentioned performance constraints on the basis of the
proposed R-D model is described.

Index Terms—R-D models, H264/AVC coding, Statistical mul-
tiplexing, video broadcasting

I. INTRODUCTION

Dynamically allocating transmission bandwidth between
multiple video streams is one of the major challenges of
broadcast systems such as DVB or S-DMB. Statistical multi-
plexing [1] based on joint control of multiple video coders
offers a good quality smoothing solution in this situation.
Additionally, the attempt is made to maximize the number
of video streams sharing the same transmission channel in
the face multiple simultaneous constraints. These are related
to bandwidth usage, minimum required video quality, smooth
quality transitions over time and balanced quality between
streams [2]. Rate and Distortion (R-D) characteristics of the
transmitted streams are known to offer a useful tool for solving
the resulting constrained optimization problem.

The R-D characteristics for a video stream can be modeled
either by considering each frame as an independent unit or by
taking into account the inter-frame dependencies. The latter is
used for performingmotion compensation between a reference
and a predicted frame. Several parametric models representing
R-D behavior of video coders for independent frames have
been proposed. For example [3] introduces a quadratic model
used to solve the rate control problem for constant quality
video. Nevertheless, this model does not take into account the
control parameters of the video encoder. In [4], aρ-domain
model is proposed, whereρ indicates the number of null
coefficients in a DCT encoded/quantified image block. This

model offers a reduced complexity solution due to its linear
structure but it does not consider the inter-frame dependencies.

The quality of motion-compensated inter-Predicted (P) or
Bidirectionally-predicted (B) frames is strongly impacted by
the quality of the corresponding reference frame(s). Thus
dependent R-D models are more complex than if independence
between successive frames is considered. Moreover, the num-
ber of R-D measurement points required for a good quality fit
is higher for such models. Thedependent R-D model presented
in [5] incorporates the influence of current and previous quan-
tization parameters as well as the effect of texture and motion
information. However, a large number of R-D measurements
is needed for a good parametrical fit - 12 for the distortion
model and 16 for the rate model. The inter-frame dependency
is also considered in [6] where R-D models for an I-Frame
and a P-Frame are presented. Nevertheless, these models do
not take into account the quantization parameter (QP) of the
considered video coder.

The dependent R-D models proposed in [5] and [6] are
based on experimental analysis. An analysis of inter-frame
dependency based on the statistical properties of DCT coeffi-
cients is proposed by [7]. Thepdf of DCT coefficients follows
a Laplace distribution and it is experimentally shown to be
a function of the energy of the residual predicted frames ,
which is directly impacted by the reconstruction quality of
the reference frame.

This paper proposes a new dependent R-D Model that offers
a good prediction performance and a moderate computational
complexity i.e., requiring much less R-D measurement points
per picture than in [5]. IT focuses on the dependency between
P frames and their reference I or P frames which are assumed
to be unique in the video sequence. It analysis the impact of
quantization parameters of the reference frame on the rate and
distortion of the predicted frames.

Section II introduces the statistical multiplexing problem.
Section III introduces a R-D model considering independent
successive frames. It is shown to be sufficiently accurate for R-
D modeling of I-Frames. Then, in section IV a dependent R-D
model is introduced. Multiple regimes constituting this model
are explained in section V in terms of an independent regime
switching auto-regressive model with variable quantization pa-
rameters. The theoretical R-D curves obtained with this model



are shown in section V to be very satisfying with a dependency
behavior similar to that obtained in the experimental R-D
curves of H.264 encoded frame. The concluding section VI
presents some future perspectives on R-D models based on
very few parameters estimation.

II. PROBLEM STATEMENT

Statistical multiplexing is an efficient technique for maxi-
mizing the number of transmitted programs in broadcast sys-
tems. Figure 1 presents a broadcast system in whichN video
programs are encoded in parallel, the compressed bitstreams
are multiplexed and transmitted over a communication channel
at a constant rateRc. The video programs are encoded using a
video coder,e.g., H264/AVC [8]. In this work, only two types
of frames are considered: Intra (I) and Predictive (P) frames.
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Fig. 1. Structure of a statistical multiplexer

Apart from bandwidth constraints, the control of each
encoder involved in the statistical multiplexing has to ensure
that:

• Each decoded program offers at least a minimum speci-
fied quality (quality constraint),

• programs are decoded with more or less the same quality
(fairness constraint),

• for each program, the quality of the reconstructed video
varies smoothly (smoothness constraint).

Satisfying all constraints simultaneously may sometimes be
difficult.Due to the non-stationary content of each program.
Variations may be due,e.g to scene changes or to high activity
within a scene. In [2], a predictive control scheme multiplexing
H.264/AVC encoded video programs has been presented,
taking all previously mentioned constraints into account.The
control may be performed at a frame level (a distinct QP
is selected for each frame), or considering several frames
simultaneously (all sharing the same QP). If it is done at a
frame level, for thej-th frame, [2] introduces a control window
containing the previous, current, andw−2 future frames. The
quantization parametersQj = (Q1j , Q2j , . . . , QNj) are eval-
uated for thej-th GOP by solving the following constrained
optimization problem for the rate and quality control:

(
Q̂j , . . . , Q̂j+w−2

)
= arg min

Qj ,...,Qj+w−2

N∑

i=1

Dij (Qij) (1)

subject to





∑N

i=1 Rij(Qij) 6 Rc

Dij(Qij) 6 Dmax

|Pij(Qij) − Pj | 6 ∆Pp

|Pij(Qij) − Pij−1(Q̂ij−1)| 6 ∆Ps,
|Pij+k(Qij+k) − Pij+k−1(Qij+k−1)| 6 ∆Ps

with k = 1 . . . w − 2 and i = 1, . . . , N .

(2)

Rij(Qij) and Dij(Qij) denote the rate and distortion for
the j-th frame in thei-th program when encoded with the
quantization parameterQij . Dmax is the maximum tolerated
distortion to satisfy the minimum quality constraint. The
quality of thej-th frame in thei-th program is evaluated by
the Peak Signal-to-Noise Ratio (PSNR)

Pij(Qij) = 10 log10

(
2552

Dij(Qij)

)
(3)

A controlled variation∆PS of the PSNR between successive
frames of a given program can be allowed in view of the
smoothness constraint. The fairness constraint of the PSNR
between successive frames of a given program, whereas for the
fairness constraint, the difference of PSNR between programs
is bounded by∆Pp. Q̂i(j−1) denotes the choice of the quan-
tization parameter for thej − 1-th frame in thei-th program.

Performance of the control depends on the models for
Dij (Qij) andRij (Qij). Considering framej as Intra coded,
if the future frames (j + 1, . . . , j + w − 2) are consid-
ered independently, their corresponding R-D models will be
tuned by the quantization parameters applied to each frame
(Qj+1, . . . , Qj+w−2). Nevertheless, for a given program, the
R-D models of future frames are impacted by the choice of
the quantization parameter at framej. Therefore, R-D models
should involve the quantization parameter used for the current
frame and at least the one used in the corresponding reference
frame. In the sequel, models forDij and Rij are proposed
as function ofQij and the QP at the reference frame, usually
Qij−1. In what follows, the program indexi is omitted.

III. I NDEPENDENT RATE AND DISTORTION MODEL

The aim of this section is to provide a independent R-D
model for I frames. Experimental R-D curves for P frames
show that the previous model may not be efficiently extended
for these frames. The R-D curves of a P frame depend
significantly on the QP of the corresponding reference frame.

A. R-D model for I frames

This section introduces a R-D model suitable for I frames,
which are encoded independently of any reference. Exponen-
tial R-D models presented in [2] are considered

Rj(Qj) = aR exp(bRQj), (4)



and
Dj(Qj) = aD exp(bDQj) (5)

where j denotes the index of the current frame andQj is
the QP used to encoded it. At least two encoding trials per
frame are necessary to estimateaD, bD , aR and bR. The
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Fig. 2. Rate and distortion model fitting when 3 and 7 experimental values
are considered (Foreman)

proposed model is tested on different frames in different video
sequences. Figure 2 shows the rate and distortion functions
for the first intra frame inForeman.cif. Due to the non-
precision of the obtained models with two encoding trials, we
represent it with3 and 7 measurements whileQj vary. One
sees that3 measurements are enough to efficiently fit the R-D
models.

B. Experimental R-D curves for P frames

To determine whether the models(4) and (5) may be
extended to P frames, several R-D curves have been plotted as
a function ofQj−1, the QP of the reference frame, considering
several valuesQj , the QP of the P frame. The reference frame
is an I frame here.

Figure 3 shows the logarithm of the rate as a function
of Qj−1, parametrized withQj , for the first P-frame in
Foreman.cif sequence. Figure 4 shows the logarithm of
the distortion for the same frame. The R-D curves depend
significantly onQj−1. The parameters of the models(4) and
(5) would thus depend onQj−1.

Dependent R-D models have thus to be introduced, as done
in [5] and [6].

IV. D EPENDENTRATE AND DISTORTION MODEL

In order to propose dependent R-D models, several regimes
are first identified on the experimental curves of Figure 3 and4
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Qj in Foreman sequence

A. Rate regimes

All rate curves of Figure 3 decrease whenQj−1 decreases.
When the quality of the reference frame increases, the motion
compensation is usually more efficient, and the texture (motion
compensation residuals) contains less energy, and requires thus
less bits to be represented. Besides this tendency, three regimes
may be identified for the rate curves.

When Qj−1 6 Qj , the rate remains approximatively con-
stant. As long as the quality of the reference frame remains
good, it allows to get a texture containing mainly elements
which cannot be efficiently predicted from the reference frame,
whatever its quality. The rate is thus mainly determined by
the amount of elements which are difficult to predict in the P
frame.



When Qj−1 is much larger thanQj (Qj−1 > Qj + K),
the rate remains approximatively constant. In this regime,the
reference frame has been coarsely quantized, and is thus of
poor quality. The motion compensation is not efficient and
the amount of information in the texture is not significantly
affected by a poor or very poor reference frame. The rate is
thus essentially determined byQj .

The intermediate regime, whenQj−1 ∈ [Qj , Qj + K],
corresponds to the situation described at the beginning of this
section. Increasing the quality of the reference frame reduces
the amount of information of the texture, and thus the rate.

B. Distortion regimes

All distortion curves of Figure 4, decreases whenQj−1

decreases, as for the rate curves. The interpretation is the
same: having a better reference increases the efficiency of the
motion-compensation, and reduces the amount of information
in the texture. Even if the texture is coarsely quantized, the
reconstructed frame may be of good quality thanks to the
good quality of the reference frame. Now two regimes may
be observed.

When Qj−1 > Qj , the distortion remains approximatively
constant, since it is essentially determined byQj .

When Qj−1 6 Qj , the distortion decreases whenQj−1

decreases. In this regime, the motion-compensation residuals
of frame j are coarsely quantized compared to framej − 1.
When the motion-compensation is performed, many blocks are
well predicted, and for those blocks, the motion-compensation
residuals are negligible when compared to the quantization
step corresponding toQj . Many blocks have a distortion that
is thus determined byQj−1.

The fact that the R-D curves do not converge to the same
point whenQj−1 is small is due to the fact that independently
of the value ofQj−1, some block are not well predicted during
motion-compensation. The corresponding texture for those
blocks are thus of quite high energy. The R-D characteristics
for those blocks are actually determined byQj , and have a
behavior similar to I frames.

C. Proposed dependent model

Based on the analysis of Sections IV-A and IV-B,
the following piecewise linear models are proposed for
log (Rj(Qj , Qj−1)) and log (Dj(Qj , Qj−1))

log (Rj(Qj , Qj−1)) =




αr
j + βr

j Qj if Qj−1 6 Qj

αr
j + βr

j Qj−1 if Qj 6 Qj−1 6 Qj + K
αr

j + βr
j (Qj + K) if Qj−1 > Qj + K

(6)

WhereRj is the distortion at the predicted frame. and

log (Dj(Qj , Qj−1)) =

{
αd

j + βd
j Qj−1 if Qj−1 6 Qj

αd
j + βd

j Qj else
(7)

WhereDj is the distortion at the predicted frame.βr
j andβd

j

are constants, andαr
j and αd

j correspond to the information
linked to the current QPQj . This relationship is similar to

that shown in(4) and (5) for the rate and the distortion. In
the logarithmic scale the relationship betweenαd

j , αr
j andQj

is so represented by a linear function. This induces to an R-D
model involving a total of seven parameters.

V. A LTERNATIVE DEPENDENT MODEL

The main difficulty with the preceding models(6) and (7)
is that they require several coding trials of the P frame and
of its reference frame with several distinct values of the pair
(Qj−1, Qj) to allow their parameters to be identified. The
transform DCT coefficients can be classified into DC and
AC coefficients. The DC coefficient is the mean value of the
image block and carries most of the energy in the image block.
The AC coefficients carry energy depending on the amount of
detail in the image block. Most of the energy is compacted in
the DC coefficient and a few ac coefficients. In this section,
an alternative approach is investigated, considering a model
in the transform domain of the dependency between the DC
coefficients of blocks of the P frame and of its reference frame.

The rate due to signaling and motion vectors is not consid-
ered here. Several authors agrees on the Gaussian model of
the DC coefficient in the transform domain [9], [10]. For AC
coefficients, there is less consensus,e.g., [9] and [10] consider
a Laplace distribution, whereas [11] use a Cauchy distribution.

A. Independent regime-switching autoregressive model

Here, an independent regime-switching autoregressive (IRS-
AR) model

Yj = aXj
Yj−1 + bXj

Uj , (8)

is considered to represent the DC valueYj of a given block
of frame j and Yj−1 is the DC value of the corresponding
collocated block in the reference framej − 1 (possibly after
motion compensation). In(8), Xj is a sequence of independent
and identically distributed (iid) binary-valued random variables
with Pr (Xj = 0) = 1 − ρ andPr (Xj = 1) = ρ, Uj is a se-
quence of iid zero-mean and unit variance Gaussian variables.
The sequencesXj and Uj are assumed to be independent.
This model allows to take into account the fact that most of
the time (whenXj = 0), the DC value of collocated blocks
is quite similar, in which casea0 is close to one, and that at
some time instants (whenXj = 1), there is few correlation,
in which casea1 is close to zero (a1 = 0 in what follows).

It is assumed that the variance ofYj does not depend onj.
This imposes some constraints on the parametersa0, b0, and
b1. If Xj = 0, one gets

σ2
y = a2

0σ
2
y + b2

0

=
b2
0

1 − a2
0

(9)

and if Xj = 1, one obtains

σ2
y = b2

1. (10)

Combining(9) and (10), one gets

b2
1 =

b2
0

1 − a2
0

. (11)



The IRS-AR model is thus characterized by three parameters
a0, b0, andρ, which are assumed to be known in what follows.

This model is only a very coarse approximation of the
dependency between DC coefficients of successive frames.
Nevertheless, at low bitrate, most of rate is due to the low
frequency coefficients. The rate and distortion performance
of scalar quantizers applied toYj−1 and Yj is studied in the
following section.

B. Rate and Distortion performance

Assume thatYj−1 is simply quantized with a scalar uniform
midtread quantizerqj−1 with step size∆j−1 (intra coding).
For Yj a predictive coding is performed with

Ŷj = aXj
qj−1(Yj−1) (12)

as prediction forYj (the value ofXj is assumed to be known).
The prediction residual

E
Xj

j = Yj − Ŷj = aXj
(Yj−1 − qj−1 (Yj−1)) + bXj

Uj (13)

is then quantized with a stepsize∆j . Depending onXj , (13)
may become

E0
j = a0 (Yj−1 − qj−1 (Yj−1)) + b0Uj

whenXj = 0 and

E1
j = b1Uj

whenXj = 1.
The aim of the remainder of this section is to provide rate

and distortion curves for the model(8) as a function of∆j−1

and∆j . In the H.264/AVC standard [12], [13], characteristics
of the quantizers depend on a quantization parameterQ. The
relation between the quantization stepsize∆ and Q may be
approximated as

∆(Q) = 2
Q−4

6 /PF, (14)

wherePF is a constant which value depends of the subband,
see [14].

The distortion forYj may be written as

D
Xj

j (∆j−1,∆j) =

∫ +∞

−∞

(x − qj(x))
2
f

E
Xj
j

(x) dx, (15)

where f
E

Xj
j

(x) is the probability density function ofEXj

j .

The rate required to represent the quantizedYj is evaluated as
the entropy of the output of the quantizer fed withE

Xj

j

R
Xj

j (∆j−1,∆j) = −
+∞∑

k=−∞

Pk(∆j−1,∆j) log(Pk(∆j−1,∆j))

(16)
where

Pk(∆j−1,∆j) =

∫ (k+ 1
2
)∆j

(k− 1
2
)∆j

f
E

Xj
j

(x) dx. (17)

When Xj = 1, E1
j is zero-mean Gaussian with variance

b2
1 = σ2

y and does not depend on∆j−1,

fE1
j
(x) =

1√
2πσ2

y

exp

(
− x2

2σ2
y

)
. (18)

is thus known. High-rate approximations for(15) and(16) are
easily obtained, see [15]. At medium to low rates (large values
of ∆j compared tob1), such high-rate approximation becomes
coarse, but(15) and (16) contain only few significant terms.

When Xj = 0, fE0
j
(x) is the convolution of the pdfs of

a0 (Yj−1 − qj−1 (Yj−1)) and ofb0Uj . One may show that

fE0
j
(x) =

1√
8πσ2

y

+∞∑

k=−∞

exp

(
− (x + k∆j−1a0)

2

2σ2
y

)
G(x,∆j−1, k),

(19)
where

G(x,∆j−1, k) = erf

(
2a0x + ∆j−1

(
1 − 2k

(
1 − a2

0

))

2
√

2σy

√
1 − a2

0

)

− erf

(
2a0x − ∆j−1

(
1 + 2k

(
1 − a2

0

))

2
√

2σy

√
1 − a2

0

)
. (20)

Now, sincefE0
j
(x) andfE1

j
(x) are known, one may eval-

uate numericallyDXj

j (∆j−1,∆j) andR
Xj

j (∆j−1,∆j) using
(15) and(16). The expectation of the rate and distortion with
respect toXj is then

Dj(∆j−1,∆j) = (1 − ρ) D0
j (∆j−1,∆j) + ρD1

j (∆j) (21)

Rj(∆j−1,∆j) = (1 − ρ) R0
j (∆j−1,∆j) + ρR1

j (∆j), (22)

sinceD1
j andR1

j do not depend on∆j−1.

C. Experimental results

Figures (5) and (6) represent log Dj(Qj−1, Qj) and
log Rj(Qj−1, Qj), with a0 = 0.99, b2

0 = 3, and ρ = 0.1,
meaning that10% of DC coefficients may not be efficiently
predicted from the previous frame. The conversion between
∆ and Q is done using 14. The chosen quantization param-
eters areQj−1 ∈ [15, . . . , 50] for the referenceYj−1 and
Qj ∈ {20, 25, 30, 35, 40} for Yj .

Theoretical R-D curves shown in Figures(5) and (6)
have the same behavior as the R-D curves obtained using
H.264/AVC video coder in Figures(3) and (4). The same
regimes are observed. However, the two sets of rate curves
do not have the same values. A constant element is missing
in the theoretical curves to have the same values as in the
experimental curves. This is due to the rate of the motion
compensation residues which is not considered in the theoret-
ical model. This later has an almost constant evolution while
varying the quantization parameter, which perfectly explains
the missing part in the total rate in the theoretical curves.
Theoretical and experimental distortion curves are very close.
In this case, all distortion elements are considered and the
proposed model is able to accurately reproduce the distortion
values from the H.264/AVC video coder.
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Thus, the model(8), defined by three parameters is a viable
alternative to the much more complicated models(6) and(7)
involving seven parameters.

The estimation of the parameters of the model(8) may be
done with several coding trials for different values of the pair
(Qj−1, Qj), as would be done for the models(6) and (7).
Nevertheless, since the parameters of the model proposed in
this section have a physical meaning, one expects to be able to
perform their identification without performing several coding
trials.

VI. CONCLUSION

In this work, we propose a new rate and distortion mod-
els for the statistical multiplexing system using H.264/AVC
video encoders. These models take into account the inter-
frame dependencies used for performingmotion compensation

between a reference and a predicted frame even I and P frames
or P and P frames. In this paper, the dependencies specified
in terms of impact of encoding parameters of a given frame
over the next one is proved experimentally and interpreted
theoretically by considering the quantization of a independent
regime-switching autoregressive source model with varying
quantization parameters. Theoretical R-D curves obtainedfor
this source model show a behavior which is very similar to
the curves obtained using H.264/AVC video. The proposed
theoretical models is based on three parametersa0, b0, and
ρ. Further work, will be dedicated to the estimation of these
parameters based on several coding trials for different values
of the pair(Qj−1, Qj).
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