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Abstract

This paper presents an efficient MAP estimator for the joint source-channel decoding of data

encoded with a context adaptive binary arithmetic coder (CABAC). The decoding process is com-

patible with realistic implementations of CABAC in standards like H.264,i.e., handling adaptive

probabilities, context modeling and integer arithmetic coding. Soft decoding is obtained using

an improved sequential decoding technique, which allows toobtain various tradeoffs between

complexity and efficiency. The algorithms are simulated in acontext reminiscent of H264. Error

detection is realized by exploiting on one side the properties of the binarization scheme and on the

other side the redundancy left in the code string. As a result, the CABAC compression efficiency is

preserved and no additional redundancy is introduced in thebit stream. Simulation results outline

the efficiency of the proposed techniques for encoded data sent over AWGN and UMTS-OFDM

channels.

Keywords: Arithmetic codes, Communication system performance, Error correction cod-

ing, Source coding

I. INTRODUCTION

An increasing number of applications require data transmission through noisy packet-

switched channels,e.g., wireless Internet. To overcome problems due to noise and packet
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losses, a popular approach is to use joint source-channel (JSC) decoding schemes, which

maintain the efficiency in terms of data compression (since they decode the same bitstream

as standard decoders) while improving robustness against errors. A significant part of the

work in JSC decoding is related to the reliable decoding of variable length codes (VLC),

see,e.g., [3]–[6].

Arithmetic Coding (AC) [7] is currently the object of a growing interest as it yields higher

compression efficiency when compared to other compression methods. Nevertheless, the high

compression rate makes AC particularly vulnerable to transmission errors. This point has

motivated the recent development of JSC decoding techniques for AC encoded data [8]–[13].

In most existing works, error detection and correction is usually performed by introducing

redundancy in the compressed bitstream, thus reducing the compression efficiency. In [8], a

forbidden symbol(FS) is introduced in the coding alphabet and used as an errordetection

device. This technique is coupled with ARQ in [10]. In [11], both depth first and breadth first

decoding algorithms have been considered. Error detectionis again achieved by testing the

presence of a FS during the decoding process and error correction is based on a maximum-

likelihood (ML) criterion. Sequential decoding with maximum a posterioriMAP estimation

of the encoded sequence is combined with the use of a FS in [13]. In [14], a Trellis Coded

Modulation is used jointly with AC; the FS is exploited to discard erroneous paths during

a List Viterbi decoding process. Thequasi-arithmeticcoder used in [12] is represented by

a finite state machine, where transitions between states aremodeled by a Markov process.

Redundancy is introduced by considering a reduced precision AC and adding synchronization

markers before the encoding process. Recently, in [15], allsequences an integer AC may

generate are represented by a 3D trellis taking into accountthe presence of a FS in the

source alphabet. This trellis representation allows the use of soft output decoders such as the

BCJR algorithm [16].

Context-based Adaptive Binary Arithmetic Coding (CABAC) [17] is the encoder used in

the H.264/AVC standard [18]. By combining an adaptive binary encoding technique with

context modeling, an improved compression efficiency is achieved especially in presence of

non-stationary sources. For instance, when CABAC is used, the H.264 compression results

are up to20% better than those obtained by the baseline entropy coder of H.264/AVC, based

on variable length codes [19]. However, since CABAC uses binary AC and probabilities

stored in look-up tables, techniques similar to those citedabove cannot be applied unless

important changes are performed in the CABAC encoder implementation.
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This work deals with the MAP estimation of CABAC encoded data. Its purpose is to

provide an efficient MAP metric which is suited to an actual CABAC implementation,i.e.,

a metric taking into account the delays between the code reception and the decoded stream

emission due to the buffer-based integer implementation. For that purpose, an estimator

(observer) of the CABAC encoder state is required at decoder side. No extra redundancy

is compulsory: only redundancy introduced during the binarization step of the CABAC and

left in the code string is exploited to detect errors. Our decoder has the characteristic of using

an exact metric, in contrast with that proposed in [13], which would only be approximate on

a realistic CABAC. Moreover, this exact computation is compatible with existing ways of

adding redundancy, and a combination of both strategies would result in further improvements,

but are not considered in this paper. Decoding is achieved using sequential decoders [20],

where the improvement in terms of error resilience usually goes with an increase in decoding

complexity. This problem is addressed here by the use of objective tests based on the

MAP metric evaluation which allow an explicit adjustment ofthe tradeoff between decoding

complexity and error correction efficiency.

Section II introduces the context of the work and recalls themain features of the CABAC

implementation. Then, the way the exact MAP estimator is derived is explained in Section III.

The decoding process is put at work by means of sequential decoding algorithms introduced

in Section IV, where improvements provided to conventionalsequential decoding schemes

by allowing to adjust the complexity-efficiency tradeoff are presented. Finally, simulation

results are shown in Section V.

II. CONTEXT OF THE WORK

This section first describes the considered transmission scheme and related notations. Then,

the principles of arithmetic coding, derived from Elias Coding are recalled in Section II-B.

The practical implementation of this basic version of AC is explained in Section II-C.

A. Transmission scheme

Data are assumed to be processed by a CABAC encoder, then packetized and transmitted

over a radio mobile channel. Packets undergo some alteration during the transmission. This

paper is concerned with the means of detecting and correcting transmission errors at the

source bitstream level.
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Since CABAC handles only binary data, a binarization step consisting in converting non-

binary information into binary source symbols according toa binarization scheme[17] is

needed. The encoder is then run, and sends packets of the resulting bitstream in the channel.

Soft estimates are obtained from the output of the channel and fed to the CABAC decoder.

The input of the CABAC encoder is a sequence ofK bins denoted bySK
1 = {S1, ..., SK}.

It consists of a succession of binarized source symbols belonging to a set of binary words

denoted byC. Bins stand for bits obtained by the binarization process. The last binarized

source symbol ofSK
1 , denoted by EOS (End Of Sequence), indicates the end of the binarized

stream. LetXN
1 = {X1, ..., XN} be the succession of CABAC output bits. They are mapped

using BPSK signaling intoRN
1 = {R1, ..., RN}, with Ri = ±

√
Eb, i = 1 . . . N , and

transmitted within a single packet over a noisy memoryless channel. LetY N
1 = {Y1, ..., YN}

be the corresponding channel output.

Only N is assumed to be known at the decoder side. Capital letters are for random variables,

and small letters for their values. Integersn andk denote respectively the current length of

the received code stream (decoder input), and the current number of decoded bins (decoder

output).

B. Basic principles of binary arithmetic coding (BAC)

Basic principles of BAC are recalled here, for more details,see,e.g., [21].

At each iteration of the encoding process, a subinterval of[0, 1) is recursively constructed.

The current interval[low , high) is divided into two subintervals of lengthsL0 and L1,

respectively proportional to the probabilitiesP0 and P1 of the source bins0 and 1. One

of these two subintervals is selected, depending on the value of the current bin. Once the

last bin of EOS is encoded, the algorithm computes the real value V , belonging to the

obtained interval, which can be represented by the minimum number of bits. The binary

representation ofV forms the code string. Based onV , the decoder is able to reconstruct

intermediate intervals and to recover the source bin stream.

For sources with very dissymetric bin probabilities, and for long source sequences,L0 or

L1 may get too small to be accurately handled by a finite-precision processor. This problem

is solved with finite precision implementations of BAC.
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C. Practical implementations of BAC

To overcome the precision problem, most AC encoders are implemented using integers

[22]. Since this process is of interest in the derivation of the MAP decoder, see Section III,

the corresponding algorithm is recalled below.

The initial interval[0, 1) of reals is replaced by the interval[0, 2p) of integers, wherep > 2

is the chosen finite precision,i.e., p bits are used to representlow and high. Partition and

selection are carried out every time a source symbol is encoded. Renormalization by doubling

the size of the source interval is performed as long as one of the following conditions holds

1) If high 6 2p−1, low andhigh are doubled.

2) If 2p−1 6 high, low andhigh are doubled after subtracting2p−1.

3) If 2p−2 6 low andhigh < 3 × 2p−2, low andhigh are doubled after subtracting2p−2.

If the current interval (before renormalization) overlapsthe midpoint of[0, 2p), no bit is

output. The number of consecutive times this occurs is stored in a variable calledfollow . If

the current interval (before renormalization) lies entirely in the upper or lower half of[0, 2p),

the encoder emits the leading bit oflow (0 or 1) and follow opposite bits (1 or 0). This is

called thefollow-on procedure [22].

At decoder side, ap-bit buffer value, formed by thep first received bits, is used to

determine the divisions and selections of[0, 2p) which have been performed at encoder side.

Decoding starts after an initialization step, consisting in loadingp bits into value without

outputting any estimate of the source bins. The partition and selection operations performed

at encoder side are determined usingvalue, which helps thus estimating the source bins.

Every renormalization results in multiplying by2 the integer associated tovalue, maybe

after subtracting2p−1 or 2p−2, and thus shifting the buffervalue to the left. Therefore, the

next bit in the code stream is loaded to occupy the vacant position on the right of the buffer.

This is repeated until all the code stream has passed into thebuffer.

In the context-based BAC, interval divisions are performedaccording to bins probabilities

deduced fromcontexts. Context modeling consists in assigning probability distribution models

to the binary source symbols according to statistical dependencies between them. Each context

is characterized by itsindex, state and the value of the most probable bin (MPS: Most

Probable Symbol) [17]. The index may be specified by the current bin position in the binary

source symbol and by the type of thesyntax elementto be encoded. The state indicates the

probability estimate of the least probable bin (LPS: Least Probable Symbol), and is updated
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iteratively. Selection depends on whether the current bin is the MPS or the LPS.

III. MAP ESTIMATION OF CABAC ENCODED DATA

In [13], a MAP estimator is proposed to evaluate the lengthK and content of the CABAC

encoder input bin sequencesK
1 usingyN

1 . This estimator may be expressed as
(
K̂, ŝ

�

K
1

)
= arg max

k,sk

1

P
(
Sk

1 = sk
1|Y N

1 = yN
1

)

= arg max
k,sk

1

P
(
Sk

1 = sk
1

)
P
(
Y N

1 = yN
1 |Sk

1 = sk
1

)

P (Y N
1 = yN

1 )
. (1)

The main difficulty in using(1) lies in the evaluation ofP
(
Y N

1 = yN
1 |Sk

1 = sk
1

)
. The problem

is circumvented in [13] by using a modified version of the previous estimator
(
K̂, ŝ

�

K
1 , x̂N

1

)
= arg max

k,sk

1
,xN

1

e(sk

1)=xN

1

P
(
Sk

1 = sk
1

)
P
(
Y N

1 = yN
1 |XN

1 = xN
1

)

P (Y N
1 = yN

1 )
, (2)

wheree
(
sk
1

)
represents the output of the CABAC encoder fed with the bin sequencesk

1. The

maximisation is thus performed among all sequences which are valid outputs of the CABAC

encoder. Nevertheless, the set on which the maximisation isperformed is quite complex,

and may be described by a trellis of reasonable size only for reduced-complexity AC, such

as those presented in [12]. For realistic implementations,sequential decoders (see [20] and

Section IV) have to be put at work. These decoders perform an iterative decoding using only

a part of the observations. For example, in [13], at stepn of the decoding process,(2) is

replaced by

x̂n
1 = arg max

xn

1
∈Bn

P

(
S

k(xn

1 )
1 = d (xn

1 )

)
P (Y n

1 = yn
1 |Xn

1 = xn
1 )

P (Y n
1 = yn

1 )
, (3)

whered (xn
1 ) represent the output (formed byk (xn

1 ) bins) of the CABAC decoder fed with

xn
1 at its input. In(3), Bn is the set containing then bits long prefixes of all sequences that

could be generated by the CABAC encoder described in SectionII-C.

As will become clear at the end of Section III-B, the estimateprovided by(3) is suboptimal

when compared to thea posterioriestimate ofxn
1 which could be obtained usingyn

1 and the

fact thatxn
1 is the output of a CABAC encoder.

In [9], Sayir proposes a MAP estimation of noisy arithmetic encoded data, which has

inspired that work, though the decoding delay occurring at the CABAC decoder is not taken

into account in [9]. In our work, a different definition of theMAP estimate is adopted. As
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will be shown, this requires the estimation of some featuresof the encoder state (follow and

probability estimates) at decoder side.

A. Definition and assumptions

The aim of this work is to determine at anyn 6 N , the sequencêxn
1 maximizing thea

posteriori probability (APP) given by

x̂n
1 = arg max

xn

1
∈Bn

P (Xn
1 = xn

1 |Y n
1 = yn

1 ), (4)

As in (3), the evaluation of(4) takes into account the fact thatxn
1 is the output of a CABAC

encoder fed with binarized source symbols. OnceN is reached,̂xN
1 , maximizing (4) for

n = N , may be decoded aŝs
�

K
1 satisfying all constraints imposed by the binarization. As

there is a one-to-one mapping betweenx̂N
1 and ŝ

�

K
1 , ŝ

�

K
1 also maximizes(1).

Consider the decoder input sequencexn
1 , and the sequence of binss

k(xn

1 )
1 = d (xn

1 ) obtained

at the output of a CABAC decoder fed withxn
1 (to make notations shorter,k (xn

1 ) will be

denoted byk). The decoder input sequencexn
1 may then be decomposed into three parts:

1) x
n′(sk

1
)

1 = e
(
sk
1

)
is the code string that would be emitted by an encoder fed with

sk
1 = d (xn

1 ), n′(sk
1) being its length,

2) x
n′(sk

1
)+F (sk

1
)

n′(sk

1
)+1

are thepostponed bits[9], i.e., the F (sk
1) first bits that would be emitted

during the next follow-on procedure by an encoder fed withsk
1. The numberF (sk

1) of

postponed bits is equal tofollow + 1, keeping in mind thatfollow depends onsk
1.

Postponed bits may only take the values{1, 0, . . . , 0} and{0, 1, . . . , 1}, depending on

the coder internal state (low, range, follow, contexts) after being fed withsk
1,

3) xn
n′(sk

1
)+F (sk

1
)+1

, are bits assumed independent ofsk
1.

As n′(sk
1), F (sk

1), and the current probability estimates are not directly available at the

decoder (due to delays introduced by the encoding and decoding buffers), a possible way

to estimate them is toreencodesk
1. The additional encoder used for that purpose is called

observerto avoid confusion with the encoder at emitter side, see Figure 1. Moreover, asXN
1

is the output of an arithmetic encoder, theXi, i = 1 . . . N , are assumed equally likely,

P (Xi = 1) = P (Xi = 0) =
1

2
, ∀i ∈ {1 . . . N}. (5)

In the remainder of the paper, the notationsn′, k, andF are adopted forn′(sk
1), k (xn

1 ),

andF (sk
1) when there is no risk of confusion. Moreover, the random variablesX, Y , andS

are omitted in the expressions of the probabilities, provided that there is no ambiguity.
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B. APP metric derivation

The APP in(4) may be written as

P (Xn
1 = xn

1 |Y n
1 = yn

1 ) = P (xn
1 )

P (yn
1 |xn

1 )

P (yn
1 )

. (6)

To evaluate(6), one has to express thea priori probability P (xn
1 ) in terms ofa priori

probabilities of the source bins.

For sk
1 = d (xn

1 ), one has

P
(
Sk

1 = d (xn
1 ) |Xn

1 = xn
1

)
= 1. (7)

As

P
(
Sk

1 = d (xn
1 ) |xn

1

)
= P

(
Sk

1 = d (xn
1 ) |xn′

1 , xn
n′

)

=
P
(
Sk

1 = d (xn
1 ) |xn

n′

)
P
(
xn′

1 |xn
n′, Sk

1 = d (xn
1 )
)

P
(
xn′

1 |xn
n′

) ,

using (7), one gets

P
(
xn′

1 |xn
n′

)
= P

(
Sk

1 = d (xn
1 ) |xn

n′

)
P
(
xn′

1 |xn
n′, Sk

1 = d (xn
1 )
)

.

Sincee (d (xn
1 )) yields xn′

1 (see Section III-A),P
(
xn′

1 |xn
n′, Sk

1 = d (xn
1 )
)

= 1 and one gets

P
(
xn′

1 |xn
n′

)
= P

(
Sk

1 = d (xn
1 ) |xn

n′

)
. (8)

Therefore, using the fact thatP (xn
1 ) = P (xn′

1 , xn
n′+1), (8) leads to

P (xn
1 ) = P

(
Sk

1 = d (xn
1 ) |xn

n′

)
P
(
xn

n′+1

)

= P
(
Sk

1 = d (xn
1 ) , Xn

n′ = xn
n′

)
. (9)

Using (9), (6) may be rewritten as

P (xn
1 |yn

1 ) = P
(
Sk

1 = d (xn
1 ) , Xn

n′ = xn
n′

) P (yn
1 |xn

1 )

P (yn
1 )

= P
(
Sk

1 = d (xn
1 )
)
P
(
xn

n′+1|Sk
1 = d (xn

1 )
) P (yn

1 |xn
1 )

P (yn
1 )

. (10)

Now, the decomposition ofxN
1 into three parts may be further exploited to obtain a

computable APP. The second term of the right part of(10) may be written as

P
(
xn

n′+1|Sk
1 = d (xn

1 )
)

= P
(
xn′+F

n′+1 , xn
n′+F+1|Sk

1 = d (xn
1 )
)

= P
(
xn

n′+F+1|Sk
1 = d (xn

1 )
)
P
(
xn′+F

n′+1 |xn
n′+F+1, S

k
1 = d (xn

1 )
)
(11)
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As xn
n′+F+1 does not depend onsk

1 = d (xn
1 ) (see Section III-A),

P
(
xn

n′+F+1|Sk
1 = d (xn

1 )
)

= P
(
xn

n′+F+1

)
. (12)

Moreover, assuming thatXn
n′+F+1 does not provide more information aboutXn′+F

n′+1 thanSk
1

does, one gets

P
(
xn′+F

n′+1 |xn
n′+F+1, S

k
1 = d (xn

1 )
)

= P
(
xn′+F

n′+1 |Sk
1 = d (xn

1 )
)

. (13)

Finally, combining(10), (11), (12), and(13), the APP(6) may be expressed as

P (xn
1 |yn

1 ) = P
(
Sk

1 = d (xn
1 )
)
P
(
xn

n′+F+1

)
P
(
xn′+F

n′+1 |Sk
1 = d (xn

1 )
) P (yn

1 |xn
1 )

P (yn
1 )

. (14)

When compared to the metric adopted in [13], two additional terms are involved in(14),

namelyP
(
xn

n′+F+1

)
andP

(
xn′+F

n′+1 |Sk
1 = d (xn

1 )
)

. The evaluation of the probabilities making

up (14) is described in Section III-C .

C. Practical implementation of the MAP estimator

In this section, we show the way the MAP estimate(4) is computed and updated using

(14) for a CABAC decoder.

1) Evaluation of the bin stream probabilityP
(
Sk

1 = d (xn
1 )
)
: Here, a priori probabilities

of the formP (Sk
1 = sk

1) have to be evaluated. The source bin stream is a sequence consisting

of a succession of binarized symbols belonging toC. The probability of each source symbols

may be estimated by algorithms such as the one described in [23], or assumed to be known

and deduced from the encoding tree as in [24], [25].

As this paper deals with an adaptive context based AC, one canrely on the adaptive

probabilities of the MPS and the LPS deduced from the contexts at the decoder side. Indeed,

P (Sk
1 = sk

1) = P (S1 = s1)
k∏

i=2

P
(
Si = si|Si−1

1 = si−1
1

)
,

whereP
(
Si = si|Si−1

1 = si−1
1

)
is estimated byPLPS if si = LPS and1 − PLPS if si = MPS.

When incomplete binarization schemes are considered (i.e., when the Kraft inequality is

strict), for somesk
1, one may get

P (Sk = sk|Sk−1
1 = sk−1

1 ) = 0, (15)

which corresponds to values ofsk not consistent with the binarization tree.
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2) Evaluating probabilities related to the transmission channel: The likelihoodP (yn
1 |xn

1 )

and the channel output probabilityP (yn
1 ) are deduced from the channel model. In Section V,

the AWGN channel model and an UMTS-OFDM channel model are considered. Both chan-

nels being assumed memoryless, one may write

P (yn
1 |xn

1 ) =
n∏

i=1

P (yi|xi). (16)

For an AWGN channel,P (yn
1 ) can be approximated by2−n, as in [13], and the last term

of (14) becomes
P (yn

1 |xn
1 )

P (yn
1 )

=
2n

(2πσ2)n/2

n∏

i=1

exp

(−(ri − yi)
2

2σ2

)
,

whereri = ±
√

Eb, depending ofxi. When for each bit at channel output a Log Likelihood

Ratio (LLR) is available, for thei-th received bit one has

LLRi = log
P (Xi = 1|yi)

P (Xi = 0|yi)
.

Using (5), one gets

P (Xi = 1|yi) =
1

exp(−LLRi) + 1
(17)

P (Xi = 0|yi) =
1

exp(LLRi) + 1
. (18)

Consequently, for such channels, one obtains

P (yn
1 |xn

1 )

P (yn
1 )

=
n∏

i=1

2

exp
(
− ri√

Eb

LLRi

)
+ 1

.

3) EvaluatingP
(
xn

n′+F+1

)
: All sequencesxn

n′+F+1 are assumed to have equala priori

probability, i.e., P (xn
n′+F+1) = 2−n+(n′+F+1). If more information is available (provided in

the context of iterative decoding, for example), it may obviously be used.

4) Evaluating the postponed bits probabilityP
(
xn′+F

n′+1 |Sk
1 = d (xn

1 )
)

: In this case, the

k (xn
1 ) first encoder input bins are assumed to be equal tosk

1 = d (xn
1 ). Under that hypothesis,

the aim is to determine the probability thatXn′+F
n′+1 = xn′+F

n′+1 . F represents the number

of bits to be output as soon as a follow-on procedure is performed. More binssk′

k+1 are

necessary to perfectly determinexn′+F
n′+1 at the observer output. A possible way to estimate

P
(
xn′+F

n′+1 |Sk
1 = sk

1

)
= P

(
xn′+F

n′+1 |sk
1

)
is to write this probability as

P
(
xn′+F

n′+1 |sk
1

)
=
∑

sk′
k+1

P
(
sk′

k+1|sk
1

)
P (xn′+F

n′+1 |sk′

k+1, s
k
1),
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which requires to feed the observer with all possiblesk′

k+1 until a follow-on procedure is

performed.

This procedure has a combinatorial complexity. Here, the procedure for a single additional

bin s is described, its generalization to more bins is straightforward.

For a given value ofk (xn
1 ), the tail of sk

1 corresponds to the beginning of a binarized

source symbol. According to the binarization scheme, the following bin may take two values

(MPS or LPS). If incomplete binarization schemes are involved, only one value ofSk+1 may

be possible. Considering both casesSk+1 = MPS andSk+1 = LPS, P
(
xn′+F

n′+1 |sk
1

)
becomes,

P
(
xn′+F

n′+1 |sk
1

)
= PMPSP

(
xn′+F

n′+1 |Sk+1 = MPS, sk
1

)

+ PLPSP
(
xn′+F

n′+1 |Sk+1 = LPS, sk
1

)
,

wherePMPS = P (Sk+1 = MPS|sk
1) and PLPS = P (Sk+1 = LPS|sk

1) are deduced from the

contexts estimated at the observer. If postponed bits are emitted, their values may be either

{0, 1, . . . , 1} or {1, 0, . . . , 0}. If xn′+F
n′+1 is not equal to one of these two sequences, one has

P (xn′+F
n′+1 |sk

1) = 0. (19)

Now, if xn′+F
n′+1 is equal to{0, 1, . . . , 1} or {1, 0, . . . , 0}, and

• only a MPS producesxn′+F
n′+1 thenP (xn′+F

n′+1 |sk
1) = PMPS,

• only a LPS producesxn′+F
n′+1 thenP (xn′+F

n′+1 |sk
1) = PLPS,

• both MPS and LPS producexn′+F
n′+1 thenP (xn′+F

n′+1 |sk
1) = 1.

In all other cases, it is assumed thatP (xn′+F
n′+1 |sk

1) = 1
2
.

Practical implementations could fed the observer with morethan a single bit to improve

the evaluation ofP (xn′+F
n′+1 |sk

1). In practical situations, satisfactory results are obtained with

less than3 additional bits. The additional complexity remains thus limited.

IV. SEQUENTIAL DECODING

In order to compute the MAP estimator(14), the APP has to be evaluated for all paths of

the decoding tree. To an observationY n
1 , one may assign up to2n paths representing possible

estimates of the code stringXn
1 . For relatively largen, examining the whole decoding tree

is infeasible. The purpose of sequential decoders is to find the best path, according to a

chosen metric, without examining too many branches. The most popular sequential decoding

algorithms are the stack algorithm (SA) [26], [27], the M-algorithm (MA) [20] and their

variants, such as thegeneralized stack algorithm[28].
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A. Stack Algorithm

The stack algorithm (SA) [26], [27] is ametric firstsearch performed iteratively: an ordered

stack containing previously examined paths (of different lengths) is maintained. The best path

(located in the top of the stack) is expanded by the exploration of the two branches following

the current node. The top path is then removed and the two new paths are merged in the

stack.

Algorithm 1: Basic Stack Algorithm

Step 1. Initialize the stack with a single line containing the root of the

decoding tree.

Step 2. Extend the top path by creating two new paths, one for each

possible value of the following emitted bit.

Step 3. Store the two created paths in the stack with their corresponding

metric. Sort the stack according to the metric. Drop paths lying

beyond the stack size limit.

Step 4. If the top path reaches the maximum depth on the decoding tree,

stop. Otherwise, go to 2.

Many variations of this basic version have been proposed in the literature, such as the

generalized stack algorithm[28], which extends the first̀ ≥ 2 paths in the stack instead

of only the first one. This allows packet loss reduction especially when the beginning of

the received sequence is strongly disturbed. Themultiple stack algorithm[29] is another

approach claiming theoretically packet loss free decoding.

B. M-Algorithm

The M-algorithm (MA) is abreadth firstsearch, the breadth beingM . The decoding tree

exploration is performed by iteratively incrementing the depth of the paths, keeping only the

bestM paths according to the metric.
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Algorithm 2: Basic M-Algorithm

Step 1. Initialize the list with a single line containing the root ofthe

decoding tree to which a null metric is assigned.

Step 2. Extend all paths to the following branches, creating 2 new paths

from each stored path.

Step 3. Keep only theM best paths in terms of metric.

Step 4. Stop if one of theM maintained paths reaches the maximum

depth. Otherwise, go to 2.

C. Adapting sequential decoding to CABAC

In this section, the proposed sequential decoder is detailed. First, a metric based on thea

posteriori probability derived in Section III-B is adopted. Then, dropconditions are put at

work in order to lighten the decoding tree and avoid false tracks. These conditions can be

considered as tools to detect errors in some transmitted bitstreams, without any additional

redundancy. Finally, the way the decoding process stops is explained.

1) Decoding metric:Let I(it) be the set of paths maintained at theit-th iteration of a

sequential decoding algorithm. For a breadth-first search,all stored paths inI(it) have the

same lengthn = it. For a metric first search, paths with unequal lengths may be considered.

Thus, both lengthn and values of bits composingxn
1 vary from one path belonging toI(it)

to an other. The metric assigned to every pathxn
1 is derived from(14) and given by

MMAP(xn
1 ) = log P (xn

1 |yn
1 ). (20)

The best estimator of the beginning ofXN
1 at theit-th iteration is the patĥxn

1 maximizing

the APP among all paths belonging toI(it), and given by

(x̂n
1 )it = arg max

xn

1
∈I(it)

M(xn
1 ).

2) Drop conditions: Drop conditions allow the decoder to identify some paths notde-

serving to be stored. Such paths are removed from the decoding tree. The most used drop

conditions are those related to the complexity restrictionas a maximum number of simulta-

neously stored paths is fixed. When this number is reached, any path having a metric smaller

than the metric of the last path is dropped. If the correct path is dropped in this way, the

decoding fails and decoder may not output any solution. Thisevent is callederasure. Note,

however, that this is a somewhat different definition compared to the classical one.
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A constraint onsK
1 results from the assumption that the length of the code string (N bits)

is known and that the last binarized symbol is the EOS symbol.This constraint leads to two

dropping situations. First, if a pathxN
1 of N bits is examined over the decoding tree, and if

the associatedsk
1 is not ended by EOS, the sequencesk

1 is then deemed erroneous andxN
1

is dropped. Second, ifsk
1 contains EOS while less thanN bits have been decoded, an error

is detected and the path is dropped. In these cases, paths aredropped without any risk of

packet loss as the decoded stream cannot correspond toŝ
�

K
1 .

Other drop conditions are directly deduced from the metric evaluation. Indeed, when the

APP probability of a given path is equal to zero, it is very likely to be automatically discarded

when explored paths are sorted and that the constraint on themaximum number of stored

paths is applied. The APP can be equal to zero in the followingcases: First, as CABAC

mostly relies on incomplete binarization schemes (single infinite extended binarized symbol

set consisting of zero order Exp-Golomb codes [17]), the situation described in(15) is likely

to occur leading to a null APP. Second, when the case described by (19) occurs, a null APP

is assigned to the corresponding path on the decoding tree. Notice that this drop condition

exploits the little amount of redundancy left by the CABAC encoder in the semantic of the

code string.

3) Stop conditions:The decoding tree exploration stops when a pathxN
1 of N bits yields

a sequence of binarized symbolssk
1 ending with EOS. Then,xN

1 is the path maximizing

MMAP (xN
1 ) among all the stored paths at the current iteration. The sequence sk

1 is the

solution output by the decoder. In some cases, decoding stops when all paths have been

dropped, or when the maximum allowed computational effort has been reached. Both of

these situations may lead to the occurrence of an erasure. The lost packet may be re-emitted

if ARQ is allowed.

D. Objective adjustment of the efficiency-complexity tradeoff

The decoding performance in terms of error resilience efficiency is improved when more

paths are explored in the decoding tree. This is especially true when the beginning of the

code string is strongly corrupted. Nevertheless, this improvement usually goes with increasing

decoding complexity. Therefore, in order to judiciously adjust a tradeoff between decoding

complexity and efficiency, an objective test providing a newdrop condition is proposed.

Assume that the path to be extended isxn−1
1 . Two extensions can be considered,xn = 1

andxn = 0. The hard decoder discards systematically one extension and thus, explores only
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one path on the decoding tree. The idea is to derive a test allowing to decide if both of the

two choices deserve being considered or if a hard decision onthe current bit is sufficient. In

[11], a 2∆ width null zoneis used to determine whether a hard decision onyn is reliable,

error detection is then performed by means of a FS. Here, we consider that if a path has a

relatively low metric, it is very likely to be dropped in the next iterations. Thus, omitting

exploring and storing such paths saves computational effort. The idea is to derive an objective

criterion in order to characterize alow metric for a controlled amount of decision errors.

At the node corresponding toxn−1
1 on the decoding tree, three actions may be taken:

• An
0 : only the branch corresponding toxn = 0 is explored.

• An
1 : only the branch corresponding toxn = 1 is explored.

• An
0|1 : both extensions are explored.

Let

Λn = MMAP(xn−1
1 , 1) −MMAP(xn−1

1 , 0)

be the logarithm of thea posterioriprobability ratio. The purpose is to derive a thresholdT

such that

Λn

An

0|1

≶
An

1

T (21)

−Λn

An

0

≶
An

0|1

T (22)

According to(20), and using the assumption that the channel is memoryless, one may write

Λn = log P (xn−1
1 , Xn = 1|yn

1 ) − log P (xn−1
1 , Xn = 0|yn

1 )

= log P (yn|Xn = 1) − log P (yn|Xn = 0). (23)

The probability of errorPe, corresponding to the probability of loosing the correct path,

may be evaluated as

Pe = P (An
0 , Xn = 1) + P (An

1 , Xn = 0)

= P (Λn < −T, Xn = 1) + P (Λn > T, Xn = 0)

= P (Xn = 1)P (Λn < −T |Xn = 1) + P (Xn = 0)P (Λn > T |Xn = 0)

=
1

2
P (Λn < −T |Xn = 1) +

1

2
P (Λn > T |Xn = 0).

Similarly, the probabilityPf of useless extension of a the path with two branches is

Pf = P (A0|1, Xn = 1) + P (A0|1, Xn = 0)

=
1

2
P (−T < Λn < T |Xn = 1) +

1

2
P (−T < Λn < T |Xn = 0).
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To getT , one minimizesPf for a given tolerated value ofPe.

Let us derive the thresholdT assuming that the channel is AWGN, of varianceσ2. For

other kinds of symmetric channels, such as the UMTS channel,an equivalent AWGN channel

may be estimated. Code bits are assumed to be mapped into a BPSK symmetric signaling

such thatrn = ±
√

Eb. For such channel, whenxn is considered at the decoder output and

yn is received,(23) gets

Λn =
2
√

Eb

σ2
yn.

Thus,(21) and (22) become

yn

An
0|1

≶

An
1

σ2

2
√

Eb

T andyn

An
0

≶

An
0|1

− σ2

2
√

Eb

T

ThenPe andPf are expressed as

Pe =
1

2

(

1 − erf

(√
Eb

2σ2

(−Tσ2

2Eb
+ 1

)))

.

Pf = erf

(√
Eb

2σ2

(
Tσ2

2Eb
+ 1

))
+ erf

(√
Eb

2σ2

(
Tσ2

2Eb
− 1

))
.

where erf(z) = 2√
π

∫ z

0
e−t2dt. One can finally express the thresholdT as

T (σ, Pe) = 2

√
Eb

σ2

((√
2erf−1 (1 − Pe)

)
−
√

Eb

σ2

)

.

Several choices may be considered forPe. We constrain the probability of making a wrong

decision to be a fraction of the probabilityPHard(σ) that the hard decoder locally fails,

expressed in the AWGN case by

PHard(σ) =

∫ +∞

0

P (y|Xn = 0)dy +

∫ 0

−∞
P (y|Xn = 1)dy.

= 1 − erf

(√
Eb

2σ2

)

. (24)

Then,Pe can be expressed as

Pe(σ, n) = α · PHard(σ, n), with α < 1. (25)

The parameterα allows one to adjust the decoding complexity-efficiency tradeoff, as shown

in Section V.
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V. SIMULATIONS

Simulation are performed using the CABAC defined in the H.264/AVC standard. Binarized

source symbols belong to the first9 binary codewords of the zero-order Exp-Golomb scheme

(EG0) [17]. A simplified context modeling with three contexts is considered.

Simulations using an AWGN channel and Pedestrian-B UMTS soft error patterns, see,

e.g., [30] are considered. For the AWGN channel, no channel coding is used and error

correction relies only on the redundancy due to the EG0 binarization scheme (see Figure 1).

For the Pedestrian-B channel, the CABAC is followed by a rate1/2 convolutionnal code

with constraint length9 and generators(561, 753)o. A standard UMTS interleaver of length

640 is also considered. At the channel output, a SOVA decoder is implemented, providing

log-likelihood ratios (LLRn).

The Symbol Error Sate (SER) is evaluated for different values of the SNR. Hard decoding

provides the bit valuexn using the sign of the channel outputyn in the AWGN case, and

of the LLRn in the UMTS case. Hard decoding fails if debinarization fails or if the EOS

is not decoded from this bitstream (erasure). When an erasure occurs, the decoder does not

output any solution and all symbols emitted by the source areconsidered as erroneous, and

are included in the SER evaluation.

A. Performances of the MAP estimator

Figure 2 compares the results obtained using the proposed exact MAP decoder and the one

based on the metric proposed by [13] on specific source sequences. These source sequences

contain100 binarized source symbols and every sequence is transmittedwithin packets of

640 bits. They were chosen in such a way that the number offollow-onprocedures performed

during encoding and the mean value offollow is much higher than for totally random

sequences. An M-algorithm withM = 10 is used for decoding. For a SER of10−3, an

improvement of0.6 dB is achieved. The purpose, here is to show that the proposedMAP

estimator derivation is, indeed more efficient than the previously proposed ones.

It is clearly seen on Figure 2 that the exact computation may lead to improved decoding

in some situations. Note that the approximation used in the previous works is often quite

accurate, and that, on many sequences, both computations provided almost the same perfor-

mance. However, as illustrated, on some sequences the phenomenon shown on Figure 2 was

observed. This clearly illustrates the usefulness of usingan exact computation rather than an

approximate one.
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Figure 3 illustrates the results obtained using source sequences of100 binarized source

symbols and the M-algorithm withM = 20. The performance of a MAP decoder using

(4) is compared to that obtained using a Maximum-Likelihood (ML) decoder. For a SER

of 10−3, the improvement (in dB) obtained when using(4), compared to the ML metric is

about0.7 dB for both channels. The gain achieved by the soft decoding when compared to

the hard one is up to4 dB for the AWGN channel and2 dB for the UMTS channel.

B. Adjustment of the complexity-efficiency tradeoff

MAP decoders based on both SA and MA are considered, and the following abbreviations

are adopted. BSA and BMA(M) stand for the basic SA and MA,M being the number of paths

kept at each MA iteration. GSA(`) is the generalized SA, extending` paths at each iteration.

Finally FGSA(̀ , α) and FMA(M , α) denote the Fast SA and the Fast MA embedding the

test presented in Section IV-D.

Figure 5 illustrates the error resilience, in terms of SER, and complexity performance, in

terms of average number of visited branches during erasure-free decoding, of four versions

of the decoder using the SA. Figure 6 presents the same performance for four versions of

the decoder using the MA.

When compared to a standard decoder carrying out hard decisions on noisy bits, the

sequential decoders present an important gain (up to3 dB for the SA based decoders and4 dB

for the MA) in error correction. The performance is improvedas the number of simultaneously

explored paths (̀andM) increases, and asα decreases.

On the other hand, one may notice that the more efficient is thedecoding in recovering

errors, the higher is the complexity. Compared to the BSA, the FGSA(3, 10−4) reaches a

gain of 1.8 dB, at SER= 10−3 for a doubled complexity at12 dB. For the same SNR,

FMA(20, 10−4) presents a20 times lower complexity when compared to MA(10), with a

gain of 2.5 dB at SER= 10−3. This shows that the effects ofα and` or M on the tradeoff

between the complexity and the robustness may be combined inorder to design JSCD schemes

according to application needs.

Figure 4 depicts the packet erasure rate related to decodingfailures for the same versions of

the sequential algorithms. For the FGSA and FMA decoders, packet losses are mainly caused

by the dropping strategy introduced in Section IV-D. Indeed, for low values of the SNR, the

number of stored paths often reaches zero before any solution is obtained. Nevertheless,

one can note, for example, that for a SNR of10 dB, FGSA(3, 10−4) presents a packet loss

November 14, 2006 DRAFT



19

rate 200 times lower than the BSA. This avoids too frequent use of ARQ.For instance,

supposing that the channel rate is equal to64 kb/s, the effective rate available to the source,

at SNR= 9 dB and taking the ARQ into account, is57.6 kb/s using a BSA,63.7 kb/s using

a FGSA(3, 10−4), 62.08 kb/s using a MA(10), and63.93 kb/s using a FMA(20, 10−4).

VI. CONCLUSIONS

The main drawback of the high compression rate CABAC is its vulnerability to transmission

errors. In this paper, we have presented a soft decoding technique based on a MAP estimator,

exploiting binarization scheme, information given by context modeling, and the semantic of

the code string. This estimator is associated to sequentialdecoding algorithms to carry out a

reliable soft CABAC decoder. An objective test allowing to adjust the decoding complexity

according to the desired performances is elaborated, and shown to provide better performance

in terms of symbol error rates for a given complexity.

In all variants of the decoder, the small redundancy presentafter the binarization step is

exploited and no extra redundancy is added. The proposed sequential decoders can handle

adaptive probabilities and context modeling, and can be directly embedded into a standard

implementation of CABAC without impairing its compressionefficiency. Current work is

dedicated to embedding the soft MAP decoder and the objective test within the full H.264

decoder.
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Fig. 1. Transmission block diagram

Fig. 2. Performance of the proposed MAP vs. the approximatedMAP proposed in citeGrangetto05

Fig. 3. MAP performance vs. hard and ML decoding for AWGN channel (without channel coding), and UMTS channel

(with convolutional coding).
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Fig. 4. Packet erasure rate using SA and MA based decoders

Fig. 5. Performance in terms of error resilience and complexity of the decoder using the SA

Fig. 6. Performance in terms of error resilience and complexity of the decoder using the MA
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