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Efficient MAP estimation of CABAC
encoded data with objective adjustment of the

complexity/efficiency tradeoff

Salma Ben Jamaa, Michel Kieffer and Pierre Duhamel
LSS — CNRS — Suglec — Univ Paris-Sud,

3 rue Joliot-Curie - 91192 Gif-sur-Yvette cedex, France

Abstract

This paper presents an efficient MAP estimator for the jomntree-channel decoding of data
encoded with a context adaptive binary arithmetic coderB88). The decoding process is com-
patible with realistic implementations of CABAC in standarlike H.264,i.e., handling adaptive
probabilities, context modeling and integer arithmetiadiog. Soft decoding is obtained using
an improved sequential decoding technique, which allowsltain various tradeoffs between
complexity and efficiency. The algorithms are simulated inoatext reminiscent of H264. Error
detection is realized by exploiting on one side the propertif the binarization scheme and on the
other side the redundancy left in the code string. As a rethdt CABAC compression efficiency is
preserved and no additional redundancy is introduced irbthstream. Simulation results outline
the efficiency of the proposed techniques for encoded dathaser AWGN and UMTS-OFDM

channels.

Keywords: Arithmetic codes, Communication system performance, rezoorection cod-

ing, Source coding

. INTRODUCTION

An increasing number of applications require data transimsthrough noisy packet-

switched channelse.g, wireless Internet. To overcome problems due to noise amc#éepa
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especially I. Siaud and Dr M. Jeanne for providing the safbrepatterns in the software platform of the NEWCOM NoE.
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losses, a popular approach is to use joint source-chan8€l) (decoding schemes, which
maintain the efficiency in terms of data compression (sihey decode the same bitstream
as standard decoders) while improving robustness agairmtseA significant part of the
work in JSC decoding is related to the reliable decoding ofatde length codes (VLC),
see,e.g, [3]-[6].

Arithmetic Coding (AC) [7] is currently the object of a gravg interest as it yields higher
compression efficiency when compared to other compressathads. Nevertheless, the high
compression rate makes AC particularly vulnerable to trassion errors. This point has
motivated the recent development of JSC decoding techsifueAC encoded data [8]—[13].
In most existing works, error detection and correction igally performed by introducing
redundancy in the compressed bitstream, thus reducingaim@ression efficiency. In [8], a
forbidden symbo(FS) is introduced in the coding alphabet and used as an detection
device. This technique is coupled with ARQ in [10]. In [11§tb depth first and breadth first
decoding algorithms have been considered. Error deteiagain achieved by testing the
presence of a FS during the decoding process and error torrés based on a maximum-
likelihood (ML) criterion. Sequential decoding with maximm a posterioriMAP estimation
of the encoded sequence is combined with the use of a FS inlf18l4], a Trellis Coded
Modulation is used jointly with AC; the FS is exploited to cisd erroneous paths during
a List Viterbi decoding process. Thguasi-arithmeticcoder used in [12] is represented by
a finite state machine, where transitions between statemadeled by a Markov process.
Redundancy is introduced by considering a reduced precAi®and adding synchronization
markers before the encoding process. Recently, in [15]sedluences an integer AC may
generate are represented by a 3D trellis taking into accthentpresence of a FS in the
source alphabet. This trellis representation allows tleeaisoft output decoders such as the
BCJR algorithm [16].

Context-based Adaptive Binary Arithmetic Coding (CABAQ)/] is the encoder used in
the H.264/AVC standard [18]. By combining an adaptive bjnancoding technique with
context modeling, an improved compression efficiency ideast especially in presence of
non-stationary sources. For instance, when CABAC is usexlH.264 compression results
are up t020% better than those obtained by the baseline entropy coder284#AVC, based
on variable length codes [19]. However, since CABAC usesatyirAC and probabilities
stored in look-up tables, techniques similar to those cabdve cannot be applied unless

important changes are performed in the CABAC encoder imefeation.
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This work deals with the MAP estimation of CABAC encoded ddta purpose is to
provide an efficient MAP metric which is suited to an actualBAC implementationj.e.,

a metric taking into account the delays between the codetieceand the decoded stream
emission due to the buffer-based integer implementatianm. tkRat purpose, an estimator
(observef of the CABAC encoder state is required at decoder side. Nmeedundancy
is compulsory: only redundancy introduced during the baadion step of the CABAC and
left in the code string is exploited to detect errors. Ouradier has the characteristic of using
an exact metric, in contrast with that proposed in [13], whiould only be approximate on
a realistic CABAC. Moreover, this exact computation is catiiple with existing ways of
adding redundancy, and a combination of both strategiesdwvesault in further improvements,
but are not considered in this paper. Decoding is achievedyusequential decoders [20],
where the improvement in terms of error resilience usuadgsgwith an increase in decoding
complexity. This problem is addressed here by the use ofctigetests based on the
MAP metric evaluation which allow an explicit adjustmenttbé tradeoff between decoding
complexity and error correction efficiency.

Section Il introduces the context of the work and recallsrttaen features of the CABAC
implementation. Then, the way the exact MAP estimator is/ddris explained in Section Ill.
The decoding process is put at work by means of sequentiaddeg algorithms introduced
in Section IV, where improvements provided to conventioseguential decoding schemes
by allowing to adjust the complexity-efficiency tradeoffeapresented. Finally, simulation

results are shown in Section V.

[I. CONTEXT OF THE WORK

This section first describes the considered transmissioense and related notations. Then,
the principles of arithmetic coding, derived from Elias @ugare recalled in Section II-B.

The practical implementation of this basic version of AC xplained in Section II-C.

A. Transmission scheme

Data are assumed to be processed by a CABAC encoder, theetigadkand transmitted
over a radio mobile channel. Packets undergo some alterdtidng the transmission. This
paper is concerned with the means of detecting and corgettansmission errors at the

source bitstream level.
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Since CABAC handles only binary data, a binarization stepsigting in converting non-
binary information into binary source symbols accordingatbinarization schem¢l7] is
needed. The encoder is then run, and sends packets of théngesitstream in the channel.
Soft estimates are obtained from the output of the channelfesh to the CABAC decoder.

The input of the CABAC encoder is a sequenceiobins denoted bys® = {5, ..., Sk }.

It consists of a succession of binarized source symbolsngeig to a set of binary words
denoted byC. Bins stand for bits obtained by the binarization process. The basarized
source symbol of %, denoted by EOS (End Of Sequence), indicates the end of tlagibéd
stream. LetX¥ = { X, ..., Xy} be the succession of CABAC output bits. They are mapped
using BPSK signaling intoRY = {R,,..., Ry}, with R, = +/F,, i = 1...N, and
transmitted within a single packet over a noisy memorylésmoel. LetY,Y = {V}, ..., Y}

be the corresponding channel output.

Only N is assumed to be known at the decoder side. Capital letefsiarandom variables,
and small letters for their values. Integersand & denote respectively the current length of
the received code stream (decoder input), and the currenbeuof decoded bins (decoder

output).

B. Basic principles of binary arithmetic coding (BAC)

Basic principles of BAC are recalled here, for more detaés,e.g.,[21].

At each iteration of the encoding process, a subinterv@) df) is recursively constructed.
The current intervallow, high) is divided into two subintervals of lengths, and L,
respectively proportional to the probabilitigs and P, of the source bing) and 1. One
of these two subintervals is selected, depending on theewaiitthe current bin. Once the
last bin of EOS is encoded, the algorithm computes the relalevie, belonging to the
obtained interval, which can be represented by the minimumber of bits. The binary
representation of” forms the code string. Based dn, the decoder is able to reconstruct
intermediate intervals and to recover the source bin stream

For sources with very dissymetric bin probabilities, andlmg source sequenceb, or
L, may get too small to be accurately handled by a finite-pregiprocessor. This problem

is solved with finite precision implementations of BAC.
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C. Practical implementations of BAC

To overcome the precision problem, most AC encoders areemghted using integers
[22]. Since this process is of interest in the derivationted MAP decoder, see Section llI,
the corresponding algorithm is recalled below.

The initial interval[0, 1) of reals is replaced by the intervial 27) of integers, where > 2
is the chosen finite precisiomng., p bits are used to represefitw and high. Partition and
selection are carried out every time a source symbol is esttd®@enormalization by doubling
the size of the source interval is performed as long as onbeofdllowing conditions holds

1) If high < 2P~L, low and high are doubled.

2) If 27—t

3) If 272

< high, low and high are doubled after subtractiry—!.
< low and high < 3 x 2P=2, low and high are doubled after subtractirtj—2.

If the current interval (before renormalization) overlaps midpoint of[0,2?), no bit is
output. The number of consecutive times this occurs is dtorea variable calledollow. If
the current interval (before renormalization) lies ergitie the upper or lower half of0, 27),
the encoder emits the leading bit &fw (0 or 1) and follow opposite bits { or 0). This is
called thefollow-on procedure [22].

At decoder side, g-bit buffer value, formed by thep first received bits, is used to
determine the divisions and selections|@f2”) which have been performed at encoder side.
Decoding starts after an initialization step, consistingaadingp bits into value without
outputting any estimate of the source bins. The partitioth sglection operations performed
at encoder side are determined usingue, which helps thus estimating the source bins.
Every renormalization results in multiplying &% the integer associated tailue, maybe
after subtracting?~! or 2°=2, and thus shifting the buffevalue to the left. Therefore, the
next bit in the code stream is loaded to occupy the vacantipnsin the right of the buffer.
This is repeated until all the code stream has passed intbuiffier.

In the context-based BAC, interval divisions are performaedording to bins probabilities
deduced frontontexts Context modeling consists in assigning probability disttion models
to the binary source symbols according to statistical dépeaies between them. Each context
is characterized by iténdex state and the value of the most probable bin (MPS: Most
Probable Symbol) [17]. The index may be specified by the atifoen position in the binary
source symbol and by the type of tegntax elemento be encoded. The state indicates the

probability estimate of the least probable bin (LPS: LeasbBble Symbol), and is updated
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iteratively. Selection depends on whether the current bithé MPS or the LPS.

. MAP ESTIMATION OF CABAC ENCODED DATA

In [13], a MAP estimator is proposed to evaluate the lengtand content of the CABAC

encoder input bin sequensé¢ usingy!. This estimator may be expressed as

<I?,§{?> = argrilaxP(Sk—sl|YN y)

(Sk_sl)P(YN_% |Sk_51)
= argmax
Bt POYN =)

The main difficulty in using1) lies in the evaluation of> (Y;" = y{'|S} = s¥). The problem

(1)

is circumvented in [13] by using a modified version of the jpvag estimator

k N
SR SN P (St =st) P (V" = ' | X = 27)
(K 51,7 ) = arg kr?lajiN PN =) , (2)

k N
8(81) $1

wheree (s’f) represents the output of the CABAC encoder fed with the biueaces®. The

maximisation is thus performed among all sequences whielvaid outputs of the CABAC
encoder. Nevertheless, the set on which the maximisatigreirmed is quite complex,
and may be described by a trellis of reasonable size onlyefduged-complexity AC, such
as those presented in [12]. For realistic implementatisaguential decoders (see [20] and
Section IV) have to be put at work. These decoders perfornteaative decoding using only
a part of the observations. For example, in [13], at stepf the decoding process$?) is

replaced by

P (st —aten) vy = ypixe =)
T = arg max POT = 1) ’ )
whered (z7) represent the output (formed By(z7) bins) of the CABAC decoder fed with
xy at its input. In(3), B, is the set containing the bits long prefixes of all sequences that
could be generated by the CABAC encoder described in SettGn
As will become clear at the end of Section IlI-B, the estinatavided by(3) is suboptimal
when compared to tha posterioriestimate ofz? which could be obtained using' and the
fact thatz} is the output of a CABAC encoder.
In [9], Sayir proposes a MAP estimation of noisy arithmeticeded data, which has
inspired that work, though the decoding delay occurrinhat€ABAC decoder is not taken

into account in [9]. In our work, a different definition of tddAP estimate is adopted. As
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will be shown, this requires the estimation of some featofehe encoder statgd/low and

probability estimates) at decoder side.

A. Definition and assumptions

The aim of this work is to determine at amy< N, the sequenceé’ maximizing thea

posteriori probability (APP) given by

T} = arg max P(X{' = 27[Y)" = y7), (4)

z}€By
As in (3), the evaluation of4) takes into account the fact that is the output of a CABAC
encoder fed with binarized source symbols. Or¢eis reached,z), maximizing (4) for
n = N, may be decoded a?{( satisfying all constraints imposed by the binarization. As
there is a one-to-one mapping betwegh andfs\{?, §{A< also maximizeg1).

Consider the decoder input sequengeand the sequence of bilé(x?) = d («7) obtained
at the output of a CABAC decoder fed witlf (to make notations shortet,(x7) will be

denoted byk). The decoder input sequencé may then be decomposed into three parts:

1) x’f,(slf) = e (s}) is the code string that would be emitted by an encoder fed with

sk =d (a7), n'(s¥) being its length,

n' (s})+F(s})
2 a

during the next follow-on procedure by an encoder fed withThe numberF'(s¥) of

are thepostponed bit$9], i.e., the F'(s) first bits that would be emitted

postponed bits is equal tgollow + 1, keeping in mind thatfollow depends ors}.
Postponed bits may only take the valugso,...,0} and{0,1,...,1}, depending on
the coder internal statéofw, range, follow, contexts) after being fed witk¥,

3) xZ'(s’f)JrF(s’f)H'

are bits assumed independents®f

As n/(sY), F(s¥), and the current probability estimates are not directlyilaike at the
decoder (due to delays introduced by the encoding and degduliffers), a possible way
to estimate them is teeencodes®. The additional encoder used for that purpose is called
observerto avoid confusion with the encoder at emitter side, seergiguMoreover, asy¥

is the output of an arithmetic encoder, thg, i = 1... N, are assumed equally likely,
1
P(Xl-zl):P(Xizo):§,Vie{1...N}. (5)

In the remainder of the paper, the notatiofisk, and I’ are adopted for'(s%), k (z7),
and F'(s}) when there is no risk of confusion. Moreover, the randomaldeis X, Y, and S

are omitted in the expressions of the probabilities, pregithat there is no ambiguity.
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B. APP metric derivation

The APP in(4) may be written as

P(yila)
P(yt)

To evaluate(6), one has to express thgepriori probability P () in terms ofa priori

P(XT = 2y[Y)" = y1) = P(ay) (6)

probabilities of the source bins.

For sk = d (z7), one has
P (S{‘C =d(z}) | X} =2}) = 1. (7)
As
P(St=di)lat) = P(St=d(i)lat’ )

P (Sf=d(a})|ap) P () [ah, SF = d (27))
P (2|,

using (7), one gets
P (o'l ) = P (SF = d(a}) agy) P (o 2y, SF = d (a7)).
Sincee (d (7)) yields 27" (see Section IlI-A),P (27|27, S¥ = d (2})) = 1 and one gets
P (atlal) = P (SF=d(a})|3) ®)
Therefore, using the fact thdt(z7) = P(27, 27, ,), (8) leads to
P(a}) = P(Sy=d(a})lay) P (241)
P

k
(SF=d(a7), X} = aly) . ©)

nl

Using (9), (6) may be rewritten as

Pll) = P(St=d(al) X =) Do)
1
P(yt|z}
— P (SE = d () P (a5 = d () Dilen) (10)

P(yp)
Now, the decomposition of:?’ into three parts may be further exploited to obtain a

computable APP. The second term of the right part16f) may be written as
P("EZ'+1|S{C :d(x?)) = P(%Ziif7xZI+F+1IS{“ :d(ff))

= P (S = d @) P (e 1o, SE = d @)D
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As 27, .., does not depend osf = d (z7) (see Section IlI-A),

P (xZ’+F+1‘S{C = d@?)) =P (xZ’+F+1) . (12)

Moreover, assuming that, ..., does not provide more information abolf), |, +F than ¥

does, one gets
P (a3 s SE = d (a1)) = P (a0 018F = d a1)) (13)

Finally, combining(10), (11), (12), and(13), the APP(6) may be expressed as

P(atlaf) = P (85 = ) P (alra) P (17188 = da) ) aa)

1
When compared to the metric adopted in [13], two additiorais are involved ir{14),

namelyP (z7,, ».,) and P (mZiiﬂSf =d (:c?)). The evaluation of the probabilities making

up (14) is described in Section III-C .

C. Practical implementation of the MAP estimator

In this section, we show the way the MAP estiméte is computed and updated using
(14) for a CABAC decoder.

1) Evaluation of the bin stream probabilits (S{‘C = d(x’f)): Here, a priori probabilities
of the form P(S¥ = s¥) have to be evaluated. The source bin stream is a sequendstitans
of a succession of binarized symbols belonging tdhe probability of each source symbols
may be estimated by algorithms such as the one describe@jnd2assumed to be known
and deduced from the encoding tree as in [24], [25].

As this paper deals with an adaptive context based AC, oneregnon the adaptive
probabilities of the MPS and the LPS deduced from the costaixthe decoder side. Indeed,

(Sk_Sl) 51—81 HP _Sz SZ — i_l),

where P (S; = s;|S{7" = si7") is estimated byPips if s; = LPS andl — Pps if s; = MPS.
When incomplete binarization schemes are considdred When the Kraft inequality is

strict), for somes¥, one may get
P(S) = s St1 = 581 =0, (15)

which corresponds to values ef not consistent with the binarization tree.
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10

2) Evaluating probabilities related to the transmissioranhel: The likelihood P(y7|xT)
and the channel output probabilif§(y}) are deduced from the channel model. In Section V,
the AWGN channel model and an UMTS-OFDM channel model areidened. Both chan-

nels being assumed memoryless, one may write
P(yil2t) = [ ] Plydas). (16)
=1

For an AWGN channelP(y}") can be approximated ", as in [13], and the last term

of (14) becomes

P(yplzy) 2" - —(ri — yi)?
Plym)  (2ro?)l geXp 202 )’

wherer; = ++1/E},, depending ofr;. When for each bit at channel output a Log Likelihood

Ratio (LLR) is available, for thé-th received bit one has

P(X; = 1y)
LLR; =log —/————.
& P(X; = 0ly;)
Using (5), one gets
1
1
P(X; = Oly) = (18)

exp(LLR;) + 1

Consequently, for such channels, one obtains

Plyil=t) v 2

P(y?) i=1 €XpP <—\/Té—bLLRZ) + 1

3) Evaluating P (z7, ».,): All sequencest”,, .., are assumed to have equalpriori
probability, i.e., P(z7, p.,) = 27"+ *+F+D |f more information is available (provided in
the context of iterative decoding, for example), it may aosdly be used.

4) Evaluating the postponed bits probabilify (xgiiﬂsf = d(x’f)): In this case, the
k (x%) first encoder input bins are assumed to be equal te d (z7). Under that hypothesis,
the aim is to determine the probability thé&[n"jff = xzijf. F represents the number
of bits to be output as soon as a follow-on procedure is peor More binSS’,j:rl are
necessary to perfectly determlnﬁ, 1, at the observer output. A possible way to estimate

P ( m S = 1) =P < Ziﬂsl) is to write this probability as

n+F n'+F| k' k
P< n+1 ) § :P<Sk+1‘5> P(x Ly Sk+1751>7

Sk+1
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11

which requires to feed the observer with all possibje, until a follow-on procedure is
performed.

This procedure has a combinatorial complexity. Here, tliegaure for a single additional
bin s is described, its generalization to more bins is straigttéod.

For a given value oft (27), the tail of s corresponds to the beginning of a binarized
source symbol. According to the binarization scheme, theviing bin may take two values
(MPS or LPS). If incomplete binarization schemes are ined)\only one value of;,; may
be possible. Considering both cass; = MPS andS;,,; = LPS, P (xzﬁj:ﬂs’f) becomes,

P (xZIﬂS’f) = PwpsP <$Z:If|5k+1 = MPS s’f)
+ ResP (4171511 = LPS sf)

where Pyps = P(Sy11 = MPSsY) and Pps = P(Sy;1 = LPSs}) are deduced from the
contexts estimated at the observer. If postponed bits areeintheir values may be either

{0,1,...,1} or {1,0,...,0}. If xﬁﬁif is not equal to one of these two sequences, one has
P(x 17 ]s7) = 0. (19)
Now, if 211" is equal to{0,1,...,1} or {1,0,...,0}, and
. only a MPS produces”, ™! then P(27 1 |s¥) = Pups,
. only a LPS produces”, ¥ then P(27, 1 |sk) = Pips,
« both MPS and LPS produce’, ¥ then P(«",1|sk) = 1.

In all other cases, it is assumed thg:”, |sh) = 1.

Practical implementations could fed the observer with ntbe: a single bit to improve

n'+F

the evaluation ofP(z7, =} |s}). In practical situations, satisfactory results are olsdimwith

less than3 additional bits. The additional complexity remains thumited.

V. SEQUENTIAL DECODING

In order to compute the MAP estimat(r4), the APP has to be evaluated for all paths of
the decoding tree. To an observatipfi, one may assign up " paths representing possible
estimates of the code string;'. For relatively largen, examining the whole decoding tree
is infeasible. The purpose of sequential decoders is to fiedbest path, according to a
chosen metric, without examining too many branches. The pmsular sequential decoding
algorithms are the stack algorithm (SA) [26], [27], the Myalithm (MA) [20] and their

variants, such as thgeneralized stack algorithij28].
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A. Stack Algorithm

The stack algorithm (SA) [26], [27] is metric firstsearch performed iteratively: an ordered
stack containing previously examined paths (of differengths) is maintained. The best path
(located in the top of the stack) is expanded by the explamatf the two branches following
the current node. The top path is then removed and the two @ias @re merged in the

stack.

Algorithm 1: Basic Stack Algorithm

Step 1. Initialize the stack with a single line containing the rodttbe
decoding tree.

Step 2. Extend the top path by creating two new paths, one for each
possible value of the following emitted bit.

Step 3.  Store the two created paths in the stack with their corredipgn
metric. Sort the stack according to the metric. Drop patisgly
beyond the stack size limit.

Step 4. If the top path reaches the maximum depth on the decoding|tree

stop. Otherwise, go to 2.

Many variations of this basic version have been proposedénliterature, such as the
generalized stack algorithri28], which extends the first > 2 paths in the stack instead
of only the first one. This allows packet loss reduction egdgcwhen the beginning of
the received sequence is strongly disturbed. Whetiple stack algorithn{29] is another

approach claiming theoretically packet loss free decading

B. M-Algorithm
The M-algorithm (MA) is abreadth firstsearch, the breadth being. The decoding tree

exploration is performed by iteratively incrementing theppth of the paths, keeping only the

bestM paths according to the metric.
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Algorithm 2: Basic M-Algorithm

Step 1. Initialize the list with a single line containing the root tfe
decoding tree to which a null metric is assigned.

Step 2. Extend all paths to the following branches, creating 2 neth$

D

from each stored path.
Step 3.  Keep only theM best paths in terms of metric.

Step 4.  Stop if one of theM maintained paths reaches the maximum

depth. Otherwise, go to 2.

C. Adapting sequential decoding to CABAC

In this section, the proposed sequential decoder is ddtdtiest, a metric based on tlze
posteriori probability derived in Section IlI-B is adopted. Then, dropnditions are put at
work in order to lighten the decoding tree and avoid falseksa These conditions can be
considered as tools to detect errors in some transmittastrdaims, without any additional
redundancy. Finally, the way the decoding process stopspkaiaed.

1) Decoding metric:Let I(it) be the set of paths maintained at thteth iteration of a
sequential decoding algorithm. For a breadth-first seaalttstored paths in/(it) have the
same lengtm = it. For a metric first search, paths with unequal lengths mayobsidered.
Thus, both lengt and values of bits composing' vary from one path belonging tf(it)
to an other. The metric assigned to every paths derived from(14) and given by

Muap(z}) = log P(z7|y7). (20)

The best estimator of the beginning &f' at theit-th iteration is the patii? maximizing

the APP among all paths belonging £¢it), and given by

M., =a ax M((z").
(77 )zt rg x{}él(};) (=)

2) Drop conditions: Drop conditions allow the decoder to identify some paths chet
serving to be stored. Such paths are removed from the degddin. The most used drop
conditions are those related to the complexity restricaera maximum number of simulta-
neously stored paths is fixed. When this number is reachgdpath having a metric smaller
than the metric of the last path is dropped. If the correch patdropped in this way, the
decoding fails and decoder may not output any solution. €aent is callecerasure Note,

however, that this is a somewhat different definition coredao the classical one.
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A constraint ons results from the assumption that the length of the codegs{ti bits)
is known and that the last binarized symbol is the EOS symlduk constraint leads to two
dropping situations. First, if a pathY of N bits is examined over the decoding tree, and if
the associated? is not ended by EOS, the sequendeis then deemed erroneous anfi
is dropped. Second, i contains EOS while less thaN bits have been decoded, an error
is detected and the path is dropped. In these cases, pathisogmged without any risk of
packet loss as the decoded stream cannot correspo?fa. to

Other drop conditions are directly deduced from the metvedwation. Indeed, when the
APP probability of a given path is equal to zero, it is verelikto be automatically discarded
when explored paths are sorted and that the constraint om#éxémum number of stored
paths is applied. The APP can be equal to zero in the followimges: First, as CABAC
mostly relies on incomplete binarization schemes (singlmite extended binarized symbol
set consisting of zero order Exp-Golomb codes [17]), theasibn described if15) is likely
to occur leading to a null APP. Second, when the case deschpé19) occurs, a null APP
is assigned to the corresponding path on the decoding tregce\that this drop condition
exploits the little amount of redundancy left by the CABACceder in the semantic of the
code string.

3) Stop conditionsThe decoding tree exploration stops when a pgthof N bits yields
a sequence of binarized symbal% ending with EOS. Theng! is the path maximizing
Map(2)) among all the stored paths at the current iteration. The esegus? is the
solution output by the decoder. In some cases, decoding sthiegn all paths have been
dropped, or when the maximum allowed computational eff@a$ been reached. Both of
these situations may lead to the occurrence of an erasueeloShpacket may be re-emitted
if ARQ is allowed.

D. Objective adjustment of the efficiency-complexity todide

The decoding performance in terms of error resilience efficy is improved when more
paths are explored in the decoding tree. This is especially when the beginning of the
code string is strongly corrupted. Nevertheless, this awement usually goes with increasing
decoding complexity. Therefore, in order to judicioushyjust a tradeoff between decoding
complexity and efficiency, an objective test providing a rénep condition is proposed.

Assume that the path to be extendedrfs'. Two extensions can be considereg,= 1

andz, = 0. The hard decoder discards systematically one extensidnhars, explores only
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one path on the decoding tree. The idea is to derive a testiatioto decide if both of the
two choices deserve being considered or if a hard decisiah@wiurrent bit is sufficient. In
[11], a 2A width null zoneis used to determine whether a hard decisionygns reliable,
error detection is then performed by means of a FS. Here, wsider that if a path has a
relatively low metric, it is very likely to be dropped in theext iterations. Thus, omitting
exploring and storing such paths saves computationalteffbe idea is to derive an objective
criterion in order to characterizelaw metric for a controlled amount of decision errors.

At the node corresponding tg'~' on the decoding tree, three actions may be taken:

« Aj : only the branch corresponding 19, = 0 is explored.

« A7 :only the branch corresponding 19, = 1 is explored.

o Aj, : both extensions are explored.

Let

Ay = Muap(2771, 1) — Myap(2771,0)

be the logarithm of the posterioriprobability ratio. The purpose is to derive a threshdld

such that
Abp
A, ST (21)
AT
Ag
—AN, s T (22)

n
Aou

According to(20), and using the assumption that the channel is memorylessmary write
An = log P(zi7', X, = 1|y}') —log P(z}7, X,, = Olyy)
= lOgP<yn|Xn = 1) - 10gP<yn‘Xn = 0) (23)

The probability of errorP., corresponding to the probability of loosing the correcthpa
may be evaluated as

P. = P(A?, X, =1)+ P(A?, X,, = 0)
= P(A,<-T,X,=1)+P(A, >T, X, =0)
= P(X,=1)PA,<-T|X,=1)+P(X,=0)P(A, >T|X, =0)
= %P(An <-T|X,=1)+ %P(An > T|X, = 0).
Similarly, the probabilityP; of useless extension of a the path with two branches is
Py = P(Ao, X, = 1)+ P(Aop, X, = 0)

1 1
= 5P(—T <A, <T|X,=1)+ §P(—T <A, <T|X,=0).
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To getT’, one minimizesP; for a given tolerated value aoF..

Let us derive the threshold@ assuming that the channel is AWGN, of variance For
other kinds of symmetric channels, such as the UMTS chaanetguivalent AWGN channel
may be estimated. Code bits are assumed to be mapped into lka 8f38netric signaling
such thatr, = ++/F;. For such channel, when, is considered at the decoder output and

Y, IS received,(23) gets

2V Ey
An:—zyn-
g
Thus, (21) and (22) become
Ao Ag )
< 7 _Tandy, < - -2_T
= U S TR
A7 Abp

Then P, and P; are expressed as
1 Eb —TO'2
P, = —|1—erf — 1 .
(e (VR GE )
P, = erf By, (To” +1) | +erf by (To” 1
I 202 \ 2E, V 252 \ 2E, ‘
where erfz) = % 7 e*dt. One can finally express the threshdldas

T(s,P,) = 2\/% <<\/§erf‘1 (1-P)) - %) .

Several choices may be considered for We constrain the probability of making a wrong

decision to be a fraction of the probabilit#q(c) that the hard decoder locally fails,

expressed in the AWGN case by

“+00 0
Prardlo) — / P(y| X, = 0)dy + / P(y] X, = 1)dy.
0

Ey,
= 1—erf — . 24
er < 202) (24)
Then, P, can be expressed as
P.(o0,n) = o+ Pyara(o,n), with o < 1. (25)

The parameten: allows one to adjust the decoding complexity-efficiencyléaif, as shown

in Section V.
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V. SIMULATIONS

Simulation are performed using the CABAC defined in the H/28€ standard. Binarized
source symbols belong to the figsbinary codewords of the zero-order Exp-Golomb scheme
(EGO) [17]. A simplified context modeling with three contex$ considered.

Simulations using an AWGN channel and Pedestrian-B UMT$ sobr patterns, see,
e.g, [30] are considered. For the AWGN channel, no channel gpdnused and error
correction relies only on the redundancy due to the EGO lzaton scheme (see Figure 1).
For the Pedestrian-B channel, the CABAC is followed by a rgt2 convolutionnal code
with constraint lengtty and generator§561, 753),. A standard UMTS interleaver of length
640 is also considered. At the channel output, a SOVA decodem@emented, providing
log-likelihood ratios (LR,).

The Symbol Error Sate (SER) is evaluated for different valoiethe SNR. Hard decoding
provides the bit value:,, using the sign of the channel outpyt in the AWGN case, and
of the LLR,, in the UMTS case. Hard decoding fails if debinarizationdair if the EOS
is not decoded from this bitstream (erasure). When an exastours, the decoder does not
output any solution and all symbols emitted by the sourcecaresidered as erroneous, and

are included in the SER evaluation.

A. Performances of the MAP estimator

Figure 2 compares the results obtained using the proposed B¥AP decoder and the one
based on the metric proposed by [13] on specific source segsemhese source sequences
contain 100 binarized source symbols and every sequence is transmiftach packets of
640 bits. They were chosen in such a way that the numbéoltafw-on procedures performed
during encoding and the mean value faflow is much higher than for totally random
sequences. An M-algorithm with/ = 10 is used for decoding. For a SER ®6~3, an
improvement of0.6 dB is achieved. The purpose, here is to show that the propliged
estimator derivation is, indeed more efficient than the ioresly proposed ones.

It is clearly seen on Figure 2 that the exact computation neag o improved decoding
in some situations. Note that the approximation used in tle®ipus works is often quite
accurate, and that, on many sequences, both computationsiga almost the same perfor-
mance. However, as illustrated, on some sequences thepkeeoa shown on Figure 2 was
observed. This clearly illustrates the usefulness of uaimgxact computation rather than an

approximate one.
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Figure 3 illustrates the results obtained using source esezpgs 0f100 binarized source
symbols and the M-algorithm witld/ = 20. The performance of a MAP decoder using
(4) is compared to that obtained using a Maximum-Likelihood jMiecoder. For a SER
of 1073, the improvement (in dB) obtained when usifiy, compared to the ML metric is
about0.7 dB for both channels. The gain achieved by the soft decodingmwcompared to
the hard one is up ta dB for the AWGN channel and dB for the UMTS channel.

B. Adjustment of the complexity-efficiency tradeoff

MAP decoders based on both SA and MA are considered, and tbw/ifog abbreviations
are adopted. BSA and BMA() stand for the basic SA and MA/ being the number of paths
kept at each MA iteration. GSA) is the generalized SA, extendirigpaths at each iteration.
Finally FGSA{, «) and FMA(M, «) denote the Fast SA and the Fast MA embedding the
test presented in Section IV-D.

Figure 5 illustrates the error resilience, in terms of SER] aomplexity performance, in
terms of average number of visited branches during erdseeedecoding, of four versions
of the decoder using the SA. Figure 6 presents the same penfme for four versions of
the decoder using the MA.

When compared to a standard decoder carrying out hard desigin noisy bits, the
sequential decoders present an important gain (Bd® for the SA based decoders ahdB
for the MA) in error correction. The performance is improwsthe number of simultaneously
explored paths/(and M) increases, and as decreases.

On the other hand, one may notice that the more efficient iddw®ding in recovering
errors, the higher is the complexity. Compared to the BSA&, BGSAQ, 10-%) reaches a
gain of 1.8 dB, at SER= 10~2 for a doubled complexity at2 dB. For the same SNR,
FMA(20,10~%) presents &0 times lower complexity when compared to M, with a
gain of 2.5 dB at SER= 10-3. This shows that the effects of and/ or M on the tradeoff
between the complexity and the robustness may be combiregdén to design JSCD schemes
according to application needs.

Figure 4 depicts the packet erasure rate related to dectallages for the same versions of
the sequential algorithms. For the FGSA and FMA decoderskgidosses are mainly caused
by the dropping strategy introduced in Section IV-D. Indefed low values of the SNR, the
number of stored paths often reaches zero before any soligi@btained. Nevertheless,

one can note, for example, that for a SNR106fdB, FGSAB, 10~*) presents a packet loss
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rate 200 times lower than the BSA. This avoids too frequent use of ARQx. instance,
supposing that the channel rate is equab4dkb/s, the effective rate available to the source,
at SNR= 9 dB and taking the ARQ into account, i§.6 kb/s using a BSA(3.7 kb/s using

a FGSAQ,107%), 62.08 kb/s using a MA(0), and63.93 kb/s using a FMAZ0, 10~4).

VI. CONCLUSIONS

The main drawback of the high compression rate CABAC is iteenability to transmission
errors. In this paper, we have presented a soft decodingitpel based on a MAP estimator,
exploiting binarization scheme, information given by @tmodeling, and the semantic of
the code string. This estimator is associated to sequatg@iding algorithms to carry out a
reliable soft CABAC decoder. An objective test allowing wjwest the decoding complexity
according to the desired performances is elaborated, awisto provide better performance
in terms of symbol error rates for a given complexity.

In all variants of the decoder, the small redundancy prea#tat the binarization step is
exploited and no extra redundancy is added. The proposadsegl decoders can handle
adaptive probabilities and context modeling, and can bectly embedded into a standard
implementation of CABAC without impairing its compressiefficiency. Current work is
dedicated to embedding the soft MAP decoder and the obgettst within the full H.264

decoder.
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