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Abstract 

Many biotechnology applications use proteins immobilized on surface. For biosensor, the 

sensing layer is a key component interfacing the transducer and the sample. Strategies 

employed to activate the bidimensional surface act directly on the performance of the 

biosensor. In this paper we propose a novel strategy for engineered proteins self-assembly. 

Our original supramolecular structure allows a direct and fast covalent attachment of proteins 

onto bare gold substrate through a homobifunctional crosslinker, 1,4-Di-[2’-

pyridyldithio)propionamido]butane (DPDPB). In this work, engineered proteins and linker-

protein complexes were synthesized and characterized by gel electrophoresis, 

chromatography and spectroscopy experiments. Macromolecular construction “DPDPB-GST 

tag-GEC1 protein” was conceived in order to guarantee a 2D architecture enhancing the 

capabilities of the target (tubulin) to recognize its partner (GEC1). Surface plasmon resonance 

measurements clearly showed potential of this particular self-assembled protein layer 



compared to a commercial immunosensor interface. At the concentrations tested, the 

recognition process occurs between tubulin and the immobilized GEC1; moreover enhanced 

binding was obtained with the home-made 2D sensing layer more than with 3D 

carboxymethyl dextran matrix. 
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1) Introduction 

In the biosensor field, protein immobilization is a crucial point conditioning the 

properties of specificity, stability and usability. From the point of view of protein-protein 

interactions and kinetic measurements, immobilization induces heterogeneous binding 

characteristics compared to bio-recognitions in solution. Thus, strategies employed require 

high level of control of the macromolecular architecture in order to prevent steric hindrance 

and constraints of mass transfer. Most of strategies of functionalization deal with polymer 

deposition onto the biosensor surface as carboxymethyl dextran. Chemical modifications of 

this 3D matrix are well known and have been used in many cases in order to immobilize 

receptors, enzymes, and antibodies through their amino or sulfhydryl residues (Sonezaki et 

al., 2000). However, these techniques have some limitations in exposing ligands far from the 

surface, since they introduce diffusion restrictions inside the coating and deviations of the 

kinetic models (Sadana, 2001; Yarmush et al., 1996). At present, self assembled monolayers 

(SAMs) of macromolecular species on inorganic surfaces are used in extending domains 

especially in protein chips (Park et al., 2000). Bi-dimensional grafting is a promising way to 

get a specific and sensitive sensor at the condition that highly controls of supramolecular 

constructions are performed (Boireau et al., 2005a; Nieba et al., 1997; Shriver-Lake et al., 

1997);  SAM approach can bring enhanced performance in selectivity compared to 

commercial hydrogel biochip (Frederix et al., 2003). 

Many commercial bi-functional linkers are available and are normally used for linking 

two different macromolecules. For example, 1,4-Di-[2’-pyridyldithio)propionamido]butane 

(DPDPB) is a homo-bifunctional crosslinker that reacts specifically with sulfhydryl groups. It 

is commonly employed to produce protein-protein cross bridges or to confer disulfide links 

with modified nucleic acids (Boireau et al., 2005b). As previously demonstrated with other 

cross linkers, the intrinsic disulfide links allows chemisorption of the sulfhydryl terminus onto 



a metallic template leading to a highly controlled monolayer of macromolecular species (Park 

and Kim, 1998). In our laboratory, we have recently identified a novel gene called GEC1 

(Vernier-Magnin et al., 2001). GEC1 has been shown to associate with tubulin and 

microtubules and may be involved in GABAA receptor trafficking in synapses along the 

cytoskeleton (Mansuy et al., 2004; Wang and Olsen, 2000; Wang et al., 1999). The GABAA 

receptor is the main receptor in the central nervous system and is a target for drugs like 

Valium and Xanax, frequently used for anxiety, mood alteration, sleep, or epilepsy (Kennedy, 

2000). Thus, it is very important to establish whether this protein play a role in the transport 

processes. To demonstrate the interaction between GEC1 and tubulin, GST pull down and 

traditional BIAcore assays have been performed using recombinant purified GST-GEC1 and 

tubulin purified from microtubule-associated protein (Mansuy et al., 2004).  

In this study, we present a new method of protein immobilization leading to self-

assembled protein monolayer reconstitution onto a gold surface in order to characterize of 

GEC1-tubulin interactions by surface plasmon resonance.  

 

2) Material and methods 

2.1. Construction of the GST fusion expression vector: GST-GEC1 

 Plasmids encoding glutathione S-transferase (GST)-GEC1 was generated by PCR 

using the human full-length pGEMT-GEC1 as a template. Reactions were performed using 

Taq polymerase from Life Technologies Inc. (Cergy Pontoise, France) according to the 

manufacturer's recommendations. 

 The following PCR primers were used (f = forward primer, r = reverse primer):  

 GEC1 (1)f: 5'-CGGAATTCCGATGAAGTTCCAGTACAAGGAG-3'; 

GEC1(117)r: 5'-CCGCTCGAGCGGTCATTTCCCATAGACACTCTC-3'. 



PCR fragments were purified, digested with EcoRI and XhoI, and cloned into the EcoRI/XhoI 

sites of pGEX-4T-2 (Amersham Biosciences, Orsay, France) in order to generate the pGEX-

4T-2- GEC1 plasmid. The nucleotide sequence of this plasmid was confirmed by sequencing.  

 

2.2. Protein expression and purification 

The full-length gec1 was cloned in pGEX-4T-2 (Pharmacia) and expressed as a fusion 

protein with the glutathione S-transferase (GST) moiety on the N-terminus. Escherichia coli 

strain DH5α or BL21 containing the expression plasmid were grown to OD 600 nm of 0.8, 

induced by 0.8 mM isopropyl D-thiogalactopyranoside for 2h30’, homogenized in phosphate- 

buffered saline (137 mM NaCl, 2.7 mM KCl, 10 mM NaHPO4 and 1.7 mM KH2PO4, pH 7.4) 

with 1% Triton X-100 and protease inhibitors, and loaded onto glutathione sepharose 

(Amersham). The GST fusion proteins were eluted by 10 mM glutathione/ 50 mM Tris, pH 

8.0. Protein concentration was determined by the Lowry method (Lowry et al., 1951). The 

purified proteins were analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel 

electrophoresis (PAGE). 

 

2.3. GST fusion protein modification procedure 

The protein GST-GEC1 and GST in phosphate buffer saline were treated for 15 

minutes with dithiothreitol (DTT) 10-fold molar excess at 0.1 M to eliminate GST dimerized 

forms. DTT was separated using a gel filtration column filled with Sephadex G25 (Sigma 

Aldrich). Then, the fusion proteins were treated with a 100-fold molar excess of DPDPB (1,4-

Di-[2’-pyridyldithio]propionamido)butane which is used as a homobifunctional reagent for 3 

hours at 25°C. Unreacted DPDPB was separated using a gel filtration column filled with 

Sephadex G25. To confirm that unreacted DPDPB was well separated from the GST-fusion 

protein – DPDPB complex, excess of DTT (up to 20:1 mole) was incubated 5 minutes with 



the sample. DTT breaks the disulfide bond within the fusion protein-DPDPB complex and 

releases thiopyridine that is absorbed at 344 nm. Protein separation and percentage of 

modified proteins were monitored with a λ900 spectrophotometer (Perkin Elmer) by 

absorbance change at 344 nm. Indeed, bound DPDPB species were determined with the 

following formula:  

 
 

2.4. SPR experiments 

BIAcore experiments were performed with Biacore® 3000 apparatus. All of the 

experiments were carried out at 25°C in Hepes Buffer Saline or HBS (10 mM HEPES, 0,15M 

NaCl, 50µM EDTA, 0,005% P20, pH 7.4) with a flow rate between 5 and 30µl/min. All the 

samples were prepared and diluted with HBS buffer. Two different kits were used: CM5 

(carboxymethyl dextran matrix) and SIA-kit (bare gold substrates). The immobilization 

degree of proteins and the level of interactions in Biacore SPR technology are reported in a 

sensorgram (response unit (RU) versus time (in seconds)). 1000 RU correspond to a shift in 

resonance angle of 0.1 degree. Calibration of the apparatus gives a correlation between the 

shift in angle and the mass deposition on the surface of the biochip of 0.1° ~ 1 ng/mm2 

(Stenberg et al., 1991). 

 

2.5 Protein immobilization on carboxymethyl dextran surface 

The immunosensor on the CM5 sensor chip was prepared as previously described 

(Mansuy et al., 2004). Briefly, anti-GST antibody was immobilized using an amine coupling 

kit, as described by the manufacturer. The purified protein GST or GST-GEC1 at 1 µM was 

then immobilized using antibody-antigen interactions. Surfaces with approximately 2500 RU 

of immobilized proteins were used for the interaction analysis.  



 

2.6. Immobilization of fusion protein – DPDPB complex on bare gold surface 

The gold surface was cleaned with octyl glucopyranoside (OG), 20 mM at 20 µl/min 

for 1 minute. Fusion Protein–DPDPB complexes were injected and immobilized by DPDPB-

Au autoassembly. The injection was performed at 1 µM with a constant flow of buffer at 20 

µl/minute for 17 minutes. The immobilized complex was washed with OG for an additional 1 

minute.  

 

2.7. Interaction assays on the BIACORE and data analysis 

Each binding cycle was performed with a constant flow of buffer at 20 µl/min. 

Purified tubulin (Cytoskeleton®) was injected across the surface at 800 nM for 4 minutes. 

Once the injection plug had passed the surface, the formed complex DPDPB-fusion GST 

GEC1 – tubulin was washed with running buffer for an additional 1000 seconds. Data were 

collected and analyzed using the BIA-Evaluation program 3.0 (BIAcore®). 

 

3. Results and discussion  

3.1. Expression and purification of GEC1 

To perform BIAcore experiments, GST-GEC1 fusion protein and GST were expressed 

in E. coli and were purified by standard glutathion sepharose affinity chromatography. 

Coomassie blue staining of SDS-PAGE showed that the purified GST-GEC1 and GST 

proteins migrated as a single band at approximately 40 kDa and 28 kDa respectively with no 

detectable contaminating bands (Figure 1).  

 

3.2 Self-assembly of modified GEC1 onto gold sensor chip 

3.2.1 GST-DPDPB and GST-GEC1-DPDPB couplings 



We developed an original way of placing the protein assembly directly onto the gold 

layer of the sensor chip. This approach has been compared with a classical way of biosensor 

building based on antigen-antibody recognition. 

The GST portion of the fusion protein provides four cysteine residues not present in 

the primary sequence of GEC1 (Figure 2). Sulfhydryl compounds are used as anchor sites in 

various supramolecular assemblies whether directly through disulfide bridges or through 

different cross linkers. 1, 4-Di-[2’-pyridyldithio) propionamido] butane (DPDPB) is a 

homobifunctional crosslinker that reacts specifically with sulfhydryl groups.  

The coupling experiment is described below and illustrated in figure 3. In this 

experiment, 1.5 nmoles of GST fusion protein in phosphate buffer saline were treated for 15 

minutes with a 10-fold molar excess of dithiothreitol (DTT) at 0.1 M to eliminate dimerized 

form of GST. DTT was separated using a gel filtration column filled with Sephadex G25. 

Extemporary, the protein was treated with a 100-fold molar excess of DPDPB 3h at 25°C. 

Unreacted DPDPB was eliminated by gel filtration chromatography using a column filled 

with Sephadex G25. Absorbance data indicate that 1.2 nmoles of GST-DPDPB were obtained 

after the second gel filtration (data not shown). To determine the yield of GST– DPDPB 

coupling complex, an excess of DTT (20/1, 60/1, 80/1 by mole) was introduced sequentially 

to 550 µl of the 750 µl total sample. Protein separation and percentage of modified proteins 

were monitored by absorbance change at 344 nm. Values were obtained by subtracting 

spectrum curves with reference (without DTT) leading to a shift in the optical density at 

344nm (ΔOD344nm). After incubation 5 min with a 20-fold molar excess of DTT, a ΔOD344nm 

of 0.074 was obtained (data not shown). The ΔOD344nm reached 0.012 and stabilized after 

adding 60-fold or 80-fold molar excess of DTT (Figure 3). These data indicate that 1.1 nmol 

of the 1.2 nmol of GST was modified. Therefore, the increase of absorbance at 344 nm 

indicated that 92% of GST is coupled to DPDPB. In four experiments with GST or GST-



GEC1, the rate of coupling was more than 80 % and macroscopically closer to an 

equimolecular coupling.  

 

3.2.2 Supramolecular self-assemblies onto gold chip 

Most of the modified proteins presented a 2-pyridyl-disulfide group that could be used 

directly as chemical anchor onto the gold substrate. It has been previously demonstrated that it 

is not necessary to disrupt the disulfide bonds with a reducing agent to get self-assembly 

processes onto gold substrate (Lee et al., 2004). In a novel process, we proposed to use the 

strong reactivity of disulfide bonds, bearing the dithiopyridyl group, to form cross bridges 

between macromolecular complexes and the gold substrate of the sensor chip. Figure 4 shows 

the procedure performed in the Biacore apparatus to build the biosensor by way of the 

macromolecular complexes self-assembly. First, the surface was cleaned with a detergent 

(OG). This process was followed by an injection of DPDPB-GST-GEC1 complexes (step 2). 

Finally, macromolecular complexes that had not been covalently bound to the gold substrate 

were removed by OG (step 3). An ideal schematic description of GST-GEC1 immobilization 

by self-assembly of DPDPB linker onto gold substrate is presented below the sensorgram in 

figure 3 and transposes analogous to the DPDPB-GST immobilisation process. A strong self-

assembly was observed leading to a saturation of the chip bidimensional surface at a level of 

2850 RU. As in Stenberg’s calibration, the signal was converted to 2.85 ng per square mm 

(Stenberg et al., 1991). This value corresponded to a surface coverage of 7 picomoles of 

protein per square centimeter, i.e close to highly packed monolayer of proteins. We observed 

for each experiment that up to 80% of the signal was reached before 120 seconds after 

injection, indicating the efficiency of this strategy to build a protein monolayer. Moreover, the 

self-assembled macromolecular complexes tolerated smooth washing used to remove non-



specific interactions. In our study, we observed a negligible non-specific coupling (less than 

5% response units) easily removed by two pulses of OG. 

Homo or heterobifunctional linkers have been previously used to immobilize 

macromolecular species onto a metallic template. Usually, building of supramolecular layers 

are performed sequentially with a first step consisting of covering the surface with the linker 

and a second step consisting of in situ chemical reactivity with the protein or nucleic acid 

(Hedges et al., 2004; Lee et al., 2004). Few studies propose in vitro synthesis of complexes 

following by their direct self-assembly onto gold surfaces but, in these cases, the disulphide 

bridge is initially reduced in order to expose free sulfhydryl residues (Lee et al., 2003; Park 

and Kim, 1998). We demonstrated that our procedure freed from this additional step and the 

present study pointed out the simplest way to build bidimensional protein self-assembly onto 

bare gold substrate. 

The kinetics of the self-assembly was compared with a conventional and commercial 

process. Thus, we performed GST captures through a CM5 sensor chip preliminarily coupled 

with anti-GST antibodies using an amine coupling kit. In this way, a large excess of 

antibodies was covalently coupled with the carboxymethyl dextran matrix (data not shown) 

and monitored during the antibody/antigen recognition. Superimposition of the two 

association kinetics during the first 120 seconds after injection is represented in figure 5. 

Results indicate that self-assembly is at least equivalent to the immuno capture in terms of 

kinetics and level of association.  

 

3.3 Studies of GEC1-tubulin interactions  

In order to demonstrate the biorecognition capabilities of the self-assembled 

monolayer of GEC1, we proceeded to injection of tubulin (Figure 6). As expected, a strong 

interaction between these two proteins was observed (curve A), whereas the specificity of the 



sensor was magnified through the negligible level of tubulin interactions with a monolayer of 

GST (curve B). Thus, at submicromolar concentration of tubulin, we observed a significant 

and specific signal of interaction with less than 11% of non-specific coupling without any 

cleaning procedure. 

Control of the orientation of the macromolecular probes is essential to obtain a highly 

specific bidimensional response (Vijayendran and Leckband, 2001). Concerning the 

supramolecular complex presented herein, the lack of cystein in the primary sequence of 

GEC1 leads to a directed coupling between DPDPB and the GST tag. Thus, as represented in 

figure 3, GST tag acts as a macromolecular spacer keeping away GEC1 from the metallic 

surface. Recently, we have demonstrated the capability of tubulin to associate with GST-

GEC1 through a dextran matrix functionalized with anti-GST antibodies (Mansuy et al., 

2004). The biorecognition property of the highly ordered 2D protein layer was compared with 

this classical 3D carboxy methyl dextran matrix by SPR experiments (Figure 7). As 

illustrated, injections of tubulin at a concentration of 800 nM have been performed for these 

two biosensing layers covered with the same level of immobilized GST-GEC1 species (2600-

2800 RU). We observed a significant difference of interaction of these two biological 

partners. Thus, for the CM5 curve, the plateau was quickly obtained at a rate of coupling that 

did not exceed 3%, whereas in the case of the bidimensional architecture, signal of association 

reached a significant higher level corresponding to 12% of the saturation.  

This difference in performance is mainly due to the limitations of the dextran matrix to 

present the probe in a homogeneous conformation with its target. CM5 matrix has intrinsic 

limitations in (i) steric hindrance, (ii) heterogeneities in the density and conformation of 

probes inside the gel, and (iii) kinetic resistance due to improper molecular orientations and 

mass transfers causing an apparent decrease in the reaction-rate constant (Schuck, 1997; 

Yarmush et al., 1996;  Nygren et al., 1987). 



 

4. Conclusion 

Most of the macromolecular coupling strategies onto biosensor surface layers are 

based on the deposition, functionalization and activation of polymer cushions with an 

expected high density of probes. However, strategies of direct coupling onto the 

bidimensional surface of the sensor may be an interesting alternative if bio-functionalization 

processes are well controlled. 

In this study, we produce a fusion protein “GST tag-protein of interest” containing 

accessible cystein suitable for the efficient coupling with DPDPB linker. The procedure could 

be obviously used with proteins already possessing internal accessible cysteins. 

We demonstrated that efficient and specific self-assembly can be achieved directly 

onto bare gold substrate leading to a rapid and simple procedure of the “linker-GST tag-

protein of interest” monolayer reconstitution. Moreover, the protein layer formed yields 

higher coupling rates with biological partner than a classical immunosensor. This original 

procedure gives a new strategy of macromolecular assembly for numerous applications based 

on gold sensing layer.  
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Legends for figures:  

 

Figure 1: Expression and purification of recombinant proteins.  

Expression and purification of recombinant GST-GEC1 (A) and GST (B) proteins: Each 

protein was expressed in E. coli and purified by glutathione-sepharose affinity 

chromatography. Homogenate after induction (lane 1), column flow-through (lane 2) and 

eluate (lane 3) were analyzed by SDS–PAGE and stained with Coomassie blue.  

 

Figure 2: GEC1 and GST amino acid sequences. 

The sequences of GEC1 and GST correspond to GenBank accession number NP_113600 and 

U78872 respectively. Underlined cystein amino acids are only present in the primary 

sequence of GST. 

 

Figure 3: Spectrophotometer characterization of GST– DPDPB coupling. 

Spectrophotometer analysis of modified proteins was carried out by monitoring the 

absorbance at 344 nm. Results presented here correspond to the mathematical subtraction of 

spectrophotometer data: Spectrum curve (in presence of excess of DTT) minus Reference 



(without DTT) leading to a shift in optical density at 344nm (ΔOD344nm). The GST protein 

modified sample was incubated with an excess of DTT (1/60 or 1/80 by mole) giving a 

maximum shift in OD of 0.012 at 344 nm. 

 

Figure 4: Self-Assembly of “DPDPB-GST-GEC1” complexes onto gold sensor chip. 

Numbers indicate the steps in the self-assembly of DPDPB-GST-GEC1. 1. Washing of gold 

substrate by injection of octylglucoside (OG), 40mM in PBS during 60 sec, 2. Injection of 

DPDPB-GST-GEC1 complexes, 1µM in HBS during 1100 sec, 3. Removal of unbound 

complexes by injection of OG, 40mM in PBS during 60 sec. 

Schematic description of DPDPB-GST-GEC1 immobilization by self-assembly of DPDPB 

linker onto gold substrate is presented below the sensorgram. 

 

Figure 5: Superimposition of two GST-GEC1 immobilization strategies onto sensor 

chips. 

(A) Sensorgram of self-assembly of DPDPB-GST-GEC1 complexes (1µM in HBS) on gold 

substrate (SIA-Kit). 

(B) Sensorgram of immunocapture of GST-GEC1 (1µM in HBS) on carboxy methyl dextran 

substrate pre-coated with anti-GST antibodies (CM5 sensor chip). 

Experiments were performed during the first 120 sec after the injection for both substrates. 

 

Figure 6: Specific interactions between tubulin and self-assembled DPDPB-GST-GEC1 

complexes. 

(A) Association/dissociation curve of tubulin with the DPDPB-GST-GEC1 layer.  

(B)  Non-specific adsorption of tubulin with DPDPB-GST layer. 



Experiments were performed during the first 240 seconds following injection of tubulin (800 

nM in HBS) for both substrates. 

 

Figure 7: Comparisons of interaction levels of tubulin with two different GST-GEC1 

substrates. 

Results of specific GEC1-Tubulin interactions on CM5 immuno sensorchip (curve A) and 

SIA-gold sensorchip (curve B) were superimposed for the same level of GST-GEC1 

immobilization.  

Injections of tubulin (800 nM in HBS) were performed during the first 240 seconds after 

injection for both substrates. 
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Figure 3: Spectrophotometer characterization of GST-DPDPB coupling. 
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Figure 5: Superimposition of two GST-GEC1 immobilization strategies onto sensor chips.
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Figure 5: Superimposition of two GST-GEC1 immobilization strategies onto sensor chips.
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Figure 6: Specific interactions between tubulin and self-assembled 
DPDPB-GST-GEC1 complexes.
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Figure 6: Specific interactions between tubulin and self-assembled 
DPDPB-GST-GEC1 complexes.
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Figure 7: Comparisons of interaction levels of tubulin with two different GST-GEC1 
substrates.
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Figure 7: Comparisons of interaction levels of tubulin with two different GST-GEC1 
substrates.
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