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Abstract

A game theoretic approach is used to derive the optimal decentralized power allocation (PA) in fast fading

multiple access channels where the transmitters and receiver are equipped with multiple antennas. The players

(the mobile terminals) are free to choose their PA in order to maximize their individual transmission rates (in

particular they can ignore some specified centralized policies). A simple coordination mechanism between users

is introduced. The nature and influence of this mechanism is studied in detail. The coordination signal indicates

to the users the order in which the receiver applies successive interference cancellation and the frequency at

which this order is used. Two different games are investigated: the users can either adapt their temporal PA to

their decoding rank at the receiver or optimize their spatial PA between their transmit antennas. For both games

a thorough analysis of the existence, uniqueness and sum-rate efficiency of the network Nash equilibrium is

conducted. Analytical and simulation results are provided to assess the gap between the decentralized network

performance and its equivalent virtual multiple input multiple output system, which is shown to be zero in some

cases and relatively small in general.
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Game theory, large systems, MAC, MIMO, Nash equilibrium, power allocation games, random matrix

theory.
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I. INTRODUCTION

We consider a special case of decentralized or distributed wireless networks, the decentralized multiple access

channel (MAC). In this context, the MAC consists of a network of several mobile stations (MS) and one base

station (BS). In the present work, the network is said to be decentralized in the sense that each user can choose

freely his power allocation (PA) policy in order to selfishly maximize a certain individual performance criterion.

This means that, even if the the BS broadcasts some specified policies, every (possibly cognitive) user is free

to ignore the policy intended for him if the latter does not maximize his performance criterion.

The problem of decentralized PA in wireless networks is not new and has been properly formalized for the

first time in [2], [3]. Interestingly, this problem can be formulated quite naturally as a non-cooperative game

with different performance criteria (utilities) such as the carrier-to-interference ratio [4], aggregate throughput

[5] or energy efficiency [6], [7]. In this paper, we assume that the users want to maximize information-theoretic

utilities and more precisely their Shannon transmission rates. Many reasons why this kind of utilities is often

considered are provided in the literature related to the problem under investigation (some references are provided

further). Here we will just mention three of them. First, Shannon transmission rates allow one to characterize

the performance limits of a communication system and study the behavior of (selfish) users in a network where

good coding schemes are implemented. As there is a direct relationship between the achievable transmission

rate of a user and his signal-to-interference plus noise ratio (SINR), they also allow one to optimize performance

metrics like the SINR or related quantities of the same type (e.g., the carrier-to-interference ratio). From the

mathematical point of view, Shannon rates have many desirable properties (e.g., concavity properties), which

allows one to conduct deep performance analyses. Therefore they provide useful insights and concepts that are

exploitable for a practical design of decentralized networks. Indeed, the point of view adopted here is close to the

one proposed by the authors of [8] for DSL (digital subscriber lines) systems, which are modeled as a parallel

interference channel; [9] for the single input single output (SISO) and single input multiple output (SIMO)

fast fading MACs with global CSIR and global CSIT (Channel State Information at the Receiver/Transmitters);

[10] for MIMO (Multiple Input Multiple Output) MACs with global CSIR, channel distribution information at

the transmitters (global CDIT) and single-user decoding (SUD) at the receivers; [11], [12] for Gaussian MIMO

interference channels with global CSIR and local CSIT and, by definition of the conventional interference

channel [13], SUD at the receivers. Note that reference [14] where the authors considered Gaussian MIMO

MACs with neither CSIT nor CDIT differs from our approach and that of [8], [9], [10], [11], [12] because in

[14] the MIMO MAC is seen as a two-player zero-sum game where the first player is the group of transmitters
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and the second player is the set of MIMO sub-channels. In the list of the aforementioned references, [9] seems

to be the closest work to ours. However, our approach differs from [9] on several technical key points. First of

all, not only the BS but also the MSs can be equipped with multiple antennas. This is an important technical

difference since the power control problem of [9] becomes a PA problem for which the precoding matrix of each

user has to be determined. Also the issues regarding the existence and uniqueness of the network equilibrium

are more complicated to be dealt with, as it will be seen. Specifically, random matrix theory will be exploited to

determine the optimum eigenvalues of the precoding matrices. In [9], several assumptions made, especially the

one involving the knowledge of all the instantaneous channels at each MS can be argued in some contexts. One

of our objectives is to decrease the amount of signaling needed from the BS. This is why we assume that the

BS can only send to the users sufficient training signals for them to know the statistics of the different channels

and a simple and common coordination signal. The underlying coordination mechanism is simple because it

consists in periodically sending the realization of a K!-state random signal, where K is the number of active

users. As it will be seen in detail, such a mechanism is mandatory because, in contrast with [10], we assume

here successive interference cancellation (SIC) at the BS. Thus each user needs to know his decoding rank

in order to adapt his PA policy to maximize the transmission rate. The coordination signal precisely indicates

to all the users the decoding order employed by the receiver. Therefore the proposed formulation can be seen

from two different standpoints. If the distribution of the coordination signal is fixed, then the addressed problem

can be regarded as a non-cooperative game where the BS is imposed to follow the realizations of the random

coordination signal. In this case the respective signal can be generated by any device (and not necessarily by

the BS), in order to select the decoding order. On the other hand, if the distribution of the coordination signal

can be optimized, the problem can be addressed as a Stackelberg game. Here the BS is the game leader and

chooses his best mixed strategy (namely a distribution over the possible decoding orders) in order to maximize

a certain utility, which will be chosen to be the network uplink sum-rate.

In the described framework, one of our objectives is to know how well a non-cooperative but weakly

coordinated system performs in terms of overall sum-rate w.r.t. its centralized counterpart (by “centralized”

we mean that the users are imposed to follow the BS PA policies) when SIC is used at the BS. In this

setting, several interesting questions arise. When the users’ utility functions are chosen to be their individual

transmission rates, is there a Nash equilibrium (NE) in the corresponding game and is it unique? What is the

optimum way for a selfish user to allocate (spatially or temporally) his transmit power? How to choose the

coordination signal that maximizes the network sum-rate? What is the performance loss of the decentralized
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network w.r.t. the equivalent virtual MIMO network?

This paper is structured as follows. After presenting the system model (Sec. II), we study in detail two PA

games. In the first case (Sec. III), each MS is imposed to share his power uniformly between his transmit

antennas but can freely allocate his power over time. In the second case (Sec. IV), we assume that the temporal

PA is uniform and thus our objective is to derive the best spatial PA scheme. For each of these frameworks the

existence, uniqueness, determination and sum-rate efficiency of the NE is investigated. Numerical results are

provided in Sec. V to illustrate our theoretical analysis and in particular to better assess the sum-rate efficiency

of the different games considered. We conclude the paper by several remarks and possible extensions of our

work in Sec. VI.

II. SYSTEM MODEL

Throughout the paper v, M, (.)T and (.)H will stand for vector, matrix, transpose and transpose conjugate,

respectively. For simplicity and without loss of generality, we will assume a MAC with K = 2 users. Note that

the type of multiple access technique assumed corresponds to the one considered in the standard definition of

the Gaussian MAC by [15],[16]: all transmitters send at once and at different rates over the entire bandwidth.

In this (information theoretic) context, very long codewords can be used and the receiver is not limited in

terms of complexity. Thus the codewords of the different transmitters can be decoded jointly using a maximum

likelihood decoding procedure (see [16] for more details). Interestingly, the transmission rates of the capacity

region corresponding to the coding-decoding procedure just mentioned, can also be achieved, as discussed in

[16], by using perfect SIC at the receiver. In this paper we also adopt this decoding scheme, which means that

not only the different channel matrices are perfectly known to the receiver but also that the codewords of all

the users are decoded reliably. The case of imperfect CSIR and error propagation in the SIC procedure is thus

seen as a useful extension of this paper. Since we assume SIC at the BS and that the users want to maximize

their individual transmission rates, it is necessary for them to know the decoding order used by the BS. This

is why we assume the existence of a source broadcasting a discrete coordination signal to all the terminals

in presence. If this source is the BS itself, this induces a certain cost in terms of downlink signaling but the

distribution of the coordination signal can then be optimized. On the other hand, if the coordination signal

comes from an external source, e.g., an FM transmitter, the MSs can acquire their coordination signal for free

in terms of downlink signaling. However this generally involves a certain sub-optimality in terms of uplink

rate. Analyzing this kind of tradeoffs is precisely one of the goals of this paper. In both cases, the coordination

signal will be represented by a Bernouilli random variable denoted with S ∈ S . Since we study the 2−user
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MAC, S = {1, 2} is a binary alphabet and S is distributed as Pr[S = 1] = p, Pr[S = 2] = 1− p , p. Without

loss of generality we assume that when the realization of S is 1, user 1 is decoded in the second place and

therefore sees no multiple access interference; in a real wireless system the frequency at which the realizations

would be drawn is roughly proportional to the reciprocal of the channel coherence time (Tcoh). Note that the

proposed coordination mechanism is suboptimal in the sense that the coordination signal does not depend on

the realizations of the channel matrices. We will see that the corresponding performance loss is in fact very

small.

We will further consider that each MS is equipped with nt antennas whereas the BS has nr antennas. In

our analysis, the flat fading channel matrices of the different links vary from symbol vector to symbol vector.

We assume that the receiver knows all the channel matrices whereas the transmitters have only access to the

statistics of the different channels. At this point, the authors would like to re-emphasize their point of view:

• On the one hand, we think that in some contexts our approach can be interesting in terms of signaling

cost. We have seen that S lies in a K−element alphabet and the realizations are drawn approximatively

at 1
Tcoh

[Hz], therefore the coordination mechanism requires at most log2(K!)
Tcoh

bps from the BS and 0 bps if

it is built from an external source. Another source of signaling cost is the acquisition of the knowledge of

the statistics of the uplink channels at the MSs. For example, in the context of coherent communications

where the BS regularly sends some data to the MSs and channel reciprocity assumption is valid (e.g., in

time division duplex systems) the corresponding cost can be reasonable. In general, this cost will have to

be compared to the cost of the centralized system where the BS has to send accurate enough quantized

versions of the (possibly large) precoding matrices at a certain frequency.

• On the other hand, even if our approach is not interesting in terms of signaling, it can be very useful in

contexts where terminals are autonomous and may have some selfish reasons to deviate from the centralized

policies. In such scenarios, the concept of network equilibrium is of high importance.

The equivalent baseband signal received by the BS can be written as:

y(s)(τ) =
K∑

k=1

Hk(τ)x(s)
k (τ) + z(s)(τ), (1)

where x
(s)
k (τ) is the nt-dimensional column vector of symbols transmitted by user k at time τ for the realization

s ∈ S of the coordination signal, Hk(τ) ∈ Cnr×nt is the channel matrix (stationary and ergodic process) of user

k and z(s)(τ) is an nr-dimensional complex white Gaussian noise distributed as N (0, σ2Inr
); for sake of clarity

we will omit the time index τ from our notations. As [17] we assume that, for each s ∈ S, the data streams of
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user k are multiplexed in the eigen-directions of the matrix Q(s)
k = E

[
x

(s)
k x

(s),H
k

]
, V(s)

k P(s)
k V(s),H

k . Finding

the optimal eigen-values P(s)
k and coordinate systems V(s)

k that maximize the transmission rate of user k is one

of the main issues we will solve in the next two sections. In order to take into account the antenna correlation

effects at the transmitters and receiver, we assume the different channel matrices to be structured according to

the Kronecker propagation model [18] with common receive correlation [19]:

∀k ∈ {1, ...,K}, Hk = R
1
2 ΘkT

1
2
k (2)

where R is the receive antenna correlation matrix, Tk is the transmit antenna correlation matrix for user k

and Θk is an nr × nt matrix whose entries are zero-mean independent and identically distributed complex

Gaussian random variables with variance 1
nt

. The motivation for assuming a channel model with common

receive correlation is twofold. First, there exist some situations where this MIMO MAC model is realistic, the

most simple situation being the case of no receive correlation i.e., R = I (see e.g., [20]). Although it is not

explicitly stated in [19] the second feature of this model is that the overall channel matrix H = [H1...HK ] can

also be factorized as a Kronecker model, which will allow us to re-exploit existing results from the random

matrix theory literature. Therefore the case where the overall channel matrix is not separable can be seen as a

possible extension of this paper that can be dealt with by using the results in [21].

In this paper we study in detail two special but useful cases of decentralized PA problems. In the first case

(Game 1), we assume (for instance because of practical technical/complexity constraints) that each user is

imposed to share his power uniformly between his transmit antennas but can freely allocate his power over

time; this problem will be referred to as temporal PA game (Sec. III). In the second case (Game 2), for every

realization of the coordination signal, each user is assumed to transmit with the same total power (denoted by

Pk) but can freely share it between his antennas; this problem will be referred to as spatial PA game (Sec. IV).

For both games the strategy of user k ∈ {1, 2} consists in choosing the distribution of x
(s)
k , for each s ∈ S in

order to maximize his utility function which is given by:

uk(Q
(1)
1 ,Q(2)

1 ,Q(1)
2 ,Q(2)

2 ) =
2∑

s=1

Pr[S = s]R(s)
k (Q(s)

1 ,Q(s)
2 ) (3)

where

R
(s)
k (Q(s)

1 ,Q(s)
2 ) =

∣∣∣∣∣∣
E log |I + ηHkQ

(s)
k HH

k | if k = s

E log |I + η
∑2

k=1 HkQ
(s)
k HH

k | − E log |I + ηH−kQ
(s)
−kH

H
−k| if k 6= s

(4)

with η , 1
σ2 and the usual notation for −k, which stands for the other user than k. Note that we implicitly

assume Gaussian codebooks for the two users since this choice is optimum in terms of their individual Shannon
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transmission rates (see e.g., [22]). This is why the strategy of a user boils down to choosing the best pair of

covariance matrices (Q(1)
k ,Q(2)

k ). The corresponding maximization is performed under the following transmit

power constraint for each MS: Tr
(∑2

s=1 Pr[S = s]Q(s)
k

)
≤ ntPk. The main difference between Games 1

and 2 relies precisely on how this general power constraint is specialized. In Game 1, the precoding matrices

are imposed to have the following structure: ∀k ∈ {1, 2}, ∀s ∈ {1, 2},Q(s)
k = α

(s)
k PkInt

, which amounts to

rewriting the total power constraint as follows
2∑

s=1

Pr[S = s]α(s)
k ≤ 1. (5)

On the other hand, in Game 2, the power constraint expresses as

∀k ∈ {1, 2}, ∀s ∈ {1, 2}, Tr(Q(s)
k ) ≤ ntPk. (6)

In both game frameworks, an important issue for a wireless network designer/owner is to know whether by

leaving the users decide their PA by themselves, the network is going to operate at a given and predictable state.

This precisely corresponds to the notion of a network equilibrium, a state from which no user has interest to

deviate. The main issue is to know if there exists an equilibrium point, whether it is unique, how to determine

the corresponding strategies and characterize the efficiency of this equilibrium in terms of network sum-rate.

III. TEMPORAL POWER ALLOCATION GAME

As mentioned above, in the temporal power allocation (TPA) game, the strategy of user k ∈ {1, 2} merely

consists in choosing the best pair (α(1)
k , α

(2)
k ). Since each transmission rate is a concave and non-decreasing

function of the α
(s)
k ’s, each user will saturate the power constraint (5) i.e.,

∑2
s=1 Pr[S = s]α(s)

k = 1, which

leads to optimizing a single parameter α
(1)
k or α

(2)
k . From now on, for sake of clarity we will use the notations

α
(1)
1 = α1, α

(2)
2 = α2. Indeed, it is easy to verify that the power constraints are characterized completely, for

the first user by α
(2)
1 = 1−pα1

1−p with α1 ∈ ATPA
1 ,

[
0, 1

p

]
, and for the second user by α

(1)
2 = 1−(1−p)α2

p with

α2 ∈ ATPA
2 ,

[
0, 1

1−p

]
. Thus the strategy of user k ∈ {1, 2} consists in choosing the best fraction αk from

the action set ATPA
k . Our main goal is to investigate if there exists an NE and determine the corresponding

profile of strategies (αNE
1 , αNE

2 ). It turns out that the issues of the existence and uniqueness of an NE can be

properly dealt with by applying Theorems 1 and 2 of [23] in our context. For making this paper sufficiently

self-contained, we review here these two theorems (Theorem 2 is given for the 2−user case for simplicity and

because it is sufficient under our assumptions).

Theorem 1: [23] Let G = (K, {Ak}k∈K, {uk}k∈K) be a game where K = {1, ...,K} is the set of players,

A1, ...,AK the corresponding sets of strategies and u1, ..., uk the utilities of the different players. If the following
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three conditions are satisfied: (i) each uk is continuous in the vector of strategies (a1, ..., aK) ∈ ∏K
k=1Ak; (ii)

each uk is concave in ak ∈ Ak; (iii) A1, ...,AK are compact and convex sets; then G has at least one NE.

Theorem 2: [23] Consider the K-player concave game of Theorem 1 with K = 2. If the following (diagonally

strict concavity) condition is met: for all (a′1, a
′′
1) ∈ A2

1 and (a′2, a
′′
2) ∈ A2

2 such that (a′1, a
′
2) 6= (a′′1, a

′′
2), (a

′′
1 −

a′1)
[

∂u1
∂a1

(a′1, a
′
2)− ∂u1

∂a1
(a′′1, a

′′
2)

]
+ (a′′2 − a′2)

[
∂u2
∂a2

(a′1, a
′
2)− ∂u2

∂a2
(a′′1, a

′′
2)

]
> 0; then the uniqueness of the NE is

insured.

At this point we can state the first main result of this paper, which is provided in the following theorem. For

sake of clarity we will also use the notations: pk , p if k = 1 or pk , p if k = 2.

Theorem 3 (Existence and uniqueness of an NE in Game 1): the temporal PA game described by: the set

of players K = {1, 2}; the sets of actions ATPA
k =

[
0, 1

pk

]
and utilities uk(αk, α−k) = pR

(1)
k (αk, α−k) +

pR
(2)
k (αk, α−k), where the rates R

(s)
k follow from Eq. (4) has a unique NE.

Proof:

Existence of an NE. It is guaranteed by the geometrical and topological properties of the utility functions

and the strategy sets of the users (over which the maximization is performed). Indeed, we can apply [23]

in our matrix case. Without loss of generality, let us consider user 1. The utility of user 1 comprises two

terms corresponding to the two coordination signal realizations: u1(α1, α2) = pR
(1)
1 (·, ·) + pR

(2)
1 (·, ·). Using

the fact that d2

dt2 log |X + tYYH | = −Tr
[
YH(X + tYYH)−1YYH(X + tYYH)−1Y

]
it is easy to verify

that ∂2R
(1)
1

∂α2
1

(α1, α2) = −ETr[BBH ] < 0 and ∂2R
(2)
1

∂α2
1

(α1, α2) = −ETr[CCH ] < 0 where B = ρ1HH
1 (I +

ρ1α1H1HH
1 )−1H1, C = p

pρ1HH
1

(
I + ρ1

1−pα1

p H1HH
1 + ρ2α2H2HH

2

)−1
H1 and ρ1 = ηP1, ρ2 = ηP2 corre-

spond to the signal-to-noise ratios of the users. Thus for every user k, the utility uk is strictly concave w.r.t. to

αk. Also it is continuous in (α1, α2) over the convex and compact strategy sets ATPA
k . Therefore the existence

of at least one NE is guaranteed. Interestingly, we observe that for a fixed game rule, which is the value of

the parameter p, there will always be an equilibrium. The users adapt their strategies to the rule of the game

in order to optimize their individual transmission rates.

Uniqueness of the NE. We always apply [23] in our matrix case (see Appendix A) and prove that the

diagonally strict concavity condition is actually met. The key of the proof is the following Lemma which is

proven in Appendix B.

Lemma 1: Let A′, A′′, B′ and B′′ be Hermitian and non-negative matrices such that either A′ 6= A′′ or

B′ 6= B′′. Assume that the classical matrix order º is total for each of the pairs of matrices (A′,A′′) and

(B′,B′′) i.e., either A′ º A′′ (resp. B′ º B′′) or A′′ Â A′ (resp. B′′ Â B′). Then we have Tr(M + N) ≥ 0

with M = (A′′ −A′)
[
(I + A′)−1 − (I + A′′)−1

]
, N = (B′′ −B′)

[
(I + B′ + A′)−1 − (I + B′′ + A′′)−1

]
.
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It can be shown (see Appendix A for more details) that the diagonally strict concavity condition writes in our

setup as pT (1) + pT (2) > 0 where ∀s ∈ {1, 2}, T (s) is defined by T (s) = Tr(M(s) +N(s)) where the matrices

M(s), N(s) have exactly the same structure as M, N in the above Lemma. For example, if we consider two

pairs of parameters (α′1,α′′1) ∈
(ATPA

1

)2 and (α′2,α′′2) ∈
(ATPA

2

)2 such that either α′1 6= α′′1 or α′2 6= α′′2 as

in Theorem 2, T (1) can be obtained by using the following matrices A′ = ρ1α
′
1H1HH

1 , A′′ = ρ1α
′′
1H1HH

1 ,

B′ = ρ2
1−pα′2

p H2HH
2 , B′′ = ρ2

1−pα′′2
p H2HH

2 . The term T (2) has a similar form as T (1) thus, applying Lemma

1 twice and considering the special structure of the four matrices (A′, A′′, B′, B′′), one can prove that the

term pT (1) + pT (2) is strictly positive. Therefore the unconditional uniqueness of the NE is guaranteed.

Determination of the NE. In order to determine the selfish PA of the users at the NE, we now exploit the

large system approach derived in [24] for single-user fading MIMO channels. This will lead us to simple

approximations of the utility functions which are much easier to optimize. From now on, we assume the

asymptotic regime in terms of the number of antennas: nt −→ ∞, nr −→ ∞, and lim
nt→∞,nr→∞

nt

nr
= c < ∞.

In this asymptotic regime, references [24], [25], [26] provide an equivalent of the ergodic capacity of single-user

MIMO channels, which corresponds exactly to the situation seen by user 1 (resp. 2) when S = 1 (resp. S = 2);

this gives directly the approximation of the rates R
(1)
1 and R

(2)
2 ; see Eq. (4). From Eq. (4) we also see that

the rates R
(2)
1 and R

(1)
2 correspond to the difference between the sum-rate of the equivalent Knt × nr virtual

MIMO system and an nt × nr single-user MIMO system, therefore the results of [24], [25], [26] can also be

applied directly. The corresponding approximates can then be easily checked to be:

R̃
(1)
1 (α1, α2) =

nt∑

i=1

log2

[
1 + ηα1P1d

(T)
1 (i)γ1

]
+

nr∑

j=1

log2

[
1 + ηd(R)(j)δ1

]
− ntηγ1δ1 log2 e

R̃
(1)
2 (α1, α2) =

nt∑

i=1

log2

[
1 + 2ηα1P1d

(T)
2 (i)γ2

]
+

nt∑

i=1

log2

[
1 + 2η

1− pα2

p
P2d

(T)
2 (i)γ2

]

+
nr∑

j=1

log2

[
1 + 2ηd(R)(j)δ2

]
−4ntηγ2δ2 log2 e− R̃

(1)
1 (α1, α2).

(7)

where ∀k ∈ {1, 2}, d(T)
k (i), i ∈ {1, ..., nt} are the eigenvalues of the transmit correlation matrices Tk (see

Eq. (2)), d(R)(j), j ∈ {1, ..., nr} , are the eigenvalues of the receive correlation matrix R and the parameters

γi, δj are the unique solutions of the following systems of 2−degree equations:




γ1 =
1
nt

nr∑

j=1

d(R)(j)
1 + ηd(R)(j)δ1

δ1 =
1
nt

nt∑

i=1

α1P1d
(T)
1 (i)

1 + ηα1P1d
(T)
1 (i)γ1

(8)
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



γ2 =
1

2nt

nr∑

j=1

d(R)(j)
1 + 2ηd(R)(j)δ2

δ2 =
1

2nt




nt∑

i=1

α1P1d
(T)
1 (i)

1 + 2ηα1P1d
(T)
1 (i)γ2

+
nt∑

i=1

1−pα2

p P2d
(T)
2 (i)

1 + 2η 1−pα2

p P2d
(T)
2 (i)γ2


.

(9)

The approximate functions R̃
(2)
1 (·, ·) and R̃

(2)
2 (·) can be obtained in a similar way and the approximated

utility of user k ∈ {1, 2} follows: ũk(α1, α2) = pR̃
(1)
k (α1, α2) + pR̃

(2)
k (α1, α2) . Now, in order to solve the

constrained optimization problem, we introduce the Lagrange multipliers (λ11, λ12, λ21, λ22) ∈ [0, +∞)4 and

define for k ∈ {1, 2} the function Lk(α1, α2, λk1, λk2) = −ũk(α1, α2) + λk1

(
αk − 1

pk

)
− λk2αk. The Kuhn-

Tucker optimality conditions follow. Therefore, the optimum selfish PAs, (αNE
1 , αNE

2 ), can be obtained by using

a fixed-point method and an iterative algorithm, following the same idea as in [10] for non-coordinated MIMO

MACs with single-user decoding. At this point we have to make an important technical comment. Our proof

for the existence and uniqueness of the NE holds for the exact game. For the approximated game, we need

the approximated utilities to have the same properties as their exact counterparts. It turns out that the large

system approximation of the ergodic mutual information can be shown to have the desired properties [27]. In

particular, the results of [27] show that the approximated utilities are strictly concave and that if the iterative

PA algorithm converges, it converges towards the global maximum.

Sum-rate efficiency of the NE. Now, let us focus on the sum-rate of the decentralized network and compare it

with the optimal sum-rate of its centralized counterpart. The centralized network sum-rate, denoted by R
(C)
sum, is

by definition obtained by jointly maximizing the sum-rate over all the pairs of power fractions (α1, α2) ∈ [0, 1]2:

R(C)
sum , max

(α1,α2)
u1(α1, α2) + u2(α1, α2). Knowing that log | · | is a concave function, one can easily verify

that the maximum is obtained for (α∗1, α
∗
2) = (1, 1) and that R

(C)
sum = E log

∣∣I + ρ1H1HH
1 + ρ2H2HH

2

∣∣. As

the optimum precoding matrices are proportional to the identity matrix, it can be checked that the network

sum-rate at the NE (denoted by RNE
sum) is equal to the centralized network sum-rate for p = 0 and p = 1:

RNE
sum(0) = RNE

sum(1) = R
(C)
sum. Indeed, let us consider that p = 1. In this case, user 1 is always decoded in the

second place (Pr[S = 1] = 1). This means that there is no temporal power allocation game here and each user

always allocates all of his available power for the case where S = 1: (αNE
1 , αNE

2 ) = (1, 0). Replacing in Eq.

(4) the corresponding correlation matrices: Q(1)
1 = Int

, Q(1)
2 = Int

and Q(2)
1 = Ont

(the square zero matrix),

Q(2)
2 = Ont

we obtain that RNE
sum(1) = R

(C)
sum.

In the high SNR regime, where η →∞, we obtain from (8),(9) that ηδ1 → 1
γ1

, ηδ2 → 1
2γ2

and thus γ1 and

γ2 are the unique solutions of the following equations: 1
nt

∑nr

j=1
d(R)(j)

γ1+d(R)(j) = 1, 1
2nt

∑nr

j=1
d(R)(j)

γ2+d(R)(j) = 1. The
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approximated utilities become:

R̃
(1)
1 (α1, α2) =

nt∑

i=1

log2

[
1 + ηα1P1d

(T)
1 (i)γ1

]
+

nr∑

j=1

log2

[
1 +

d(R)(j)
γ1

]
− nt log2 e

R̃
(1)
2 (α1, α2) =

nt∑

i=1

log2

[
1 + 2ηα1P1d

(T)
1 (i)γ2

]
+

nt∑

i=1

log2

[
1 + 2η

1− pα2

p
P2d

(T)
2 (i)γ2

]
+

nr∑

j=1

log2

[
1 +

d(R)(j)
γ2

]

−2nt log2 e− R̃
(1)
1 (α1, α2).

(10)

By setting the derivatives of ũ1(·, ·) w.r.t. α1 and ũ2(·, ·) w.r.t. α2 to zero, we obtain that, for each user, the

PA at the NE is the uniform PA (αNE
1 , αNE

2 ) = (1, 1), regardless of the distribution of the coordination signal

p ∈ [0, 1]. Therefore, at the equilibrium, we have that

RNE
sum(p) = pR

(1)
1 (αNE

1 , αNE
2 ) + pR

(2)
1 (αNE

1 , αNE
2 ) + pR

(1)
2 (αNE

1 , αNE
2 ) + pR

(2)
2 (αNE

1 , αNE
2 )

= pE log |I + ρ1H1HH
1 |+ pE log |I + ρ1H1HH

1 + ρ2H2HH
2 | − pE log |I + ρ2H2HH

2 | (11)

+pE log |I + ρ1H1HH
1 + ρ2H2HH

2 | − pE log |I + ρ1H1HH
1 |+ pE log |I + ρ2H2HH

2 |

= R(C)
sum.

Knowing that the uniform spatial PA is optimal in the high SNR regime [17], [10], the centralized network

sum-rate coincides with the sum-capacity of the centralized MAC channel, R
(C)
sum = Csum.

In the low SNR regime, where η → 0, we obtain from (8), (9) that ηδ1 → 0, ηδ2 → 0 and thus γ1 =
1
nt

∑nr

j=1 d(R)(j), γ2 = 1
2nt

∑nr

j=1 d(R)(j) . Approximating ln(1 + x) ≈ x for x << 1, the achievable rates

become:

R̃
(1)
1 (α1) =

1
nt

ηP1α1

nr∑

j=1

d(R)(j)
nt∑

i=1

d
(T)
1 (i) log2 e

R̃
(1)
2 (α1, α2) =

1
nt

η
1− pα2

p
P2

nr∑

j=1

d(R)(j)
nt∑

i=1

d
(T)
1 (i) log2 e

. (12)

We see that the utilities ũk(α1, α2) = 1
nt

ηPk
∑nr

j=1 d(R)(j)
∑nt

i=1 d
(T)
k (i) log2 e converge and the network sum-

rate at the NE coincides here again with the centralized network sum-rate:

R
(C)
sum = 1

nt

∑nr

j=1 d(R)(j)
(
ηP1

∑nt

i=1 d
(T)
1 (i) + ηP2

∑nt

i=1 d
(T)
2 (i)

)
log2 e. In this case also, the price of anar-

chy [28] is minimal for any distribution of the coordination signal.

To sum up we have seen that there is no loss of optimality in terms of sum-rate by decentralizing the PA

procedure in at least four special cases: 1) p = 0; 2) p = 1; 3) when η →∞ for any p ∈ [0, 1]; 4) when η → 0

for any p ∈ [0, 1]. Additionally, in case 3), since there is no loss by imposing the spatially uniform PA [17],

[10], the centralized (and cooperative) MAC sum-capacity is achieved. If we further assume that there is no
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correlation among the transmit antennas, Tk = I, the uniform spatial PA is optimal [17] for any η. Thus, the

centralized sum-rate is always identical to the sum-capacity of the centralized MAC channel, R
(C)
sum = Csum.

This means that if the BS chooses to use a completely unfair SIC-based decoding scheme, the selfish behavior

of the users will always lead to achieving the centralized sum-capacity. This result is in agreement with [9],

where the authors have proposed a water-filling game for the fast fading SISO MAC (assuming perfect CSIT

and CSIR) and shown that the equilibrium sum-rate is equal to the maximum sum-rate point of the capacity

region. However, as opposed to the SISO MAC with the proposed coordination mechanism [1], the decentralized

MIMO MAC with coordination does not achieve the sum-rate of the equivalent virtual MIMO network for any

value of p and for an arbitrary noise level at the BS. In particular, the fair choice p = 1
2 is not optimal. We will

quantify the corresponding performance gap through simulation results. Furthermore, in the low and high SNR

regimes, the centralized sum-capacity is also achieved for any value of p. The consequence of these results is

that any binary coordination signal can be used without loss of global optimality.

IV. SPATIAL POWER ALLOCATION GAME

In this section, we assume that the users are free to share their transmit power between their antennas but

for each realization of the coordination signal the transmit power is constrained by Eq. (6). In other words we

assume that the users cannot distribute their power over time: they cannot decide the amount of power they

dedicate to a given realization of the coordination signal. As a consequence of this power constraint (Eq. (6)),

the two precoding matrices that each user needs to choose can be optimized independently and each of them

does not depend on p. Consider for example user 1. Its objective is to maximize its own payoff (Eq. (3)):

max
Q

(1)
1 ,Q

(2)
1

u1(Q
(s)
1 ,Q(s)

2 ) = max
Q

(1)
1 ,Q

(2)
1

{
pR

(1)
1 (Q(1)

1 ) + (1− p)R(2)
1 (Q(2)

1 ,Q(2)
2 )

}

= p max
Q

(1)
1

R
(1)
1 (Q(1)

1 ) + (1− p) max
Q

(2)
1

R
(2)
1 (Q(2)

1 ,Q(2)
2 ),

(13)

where the last inequality follows directly form the power constraint (Eq. (6)). The strategy set of user k in the

spatial PA (SPA) game is:

ASPA
k =

{
Qk = (Q(1)

k ,Q(2)
k ) | Q(1)

k º 0,Q(1)
k = Q(1)H

k ,Tr(Q(1)
k ) ≤ ntPk

Q(2)
k º 0,Q(2)

k = Q(2)H
k , Tr(Q(2)

k ) ≤ ntPk

}
.

(14)

Theorem 4 (Existence and uniqueness of an NE in Game 2): The SPA game defined by the set of players

K = {1, 2}, the strategy sets A(SPA)
k and utilities uk(αk, α−k) given by Eq. (3), has a unique NE.

Proof: The main feature of the game under the aforementioned power constraint is that there exists a unique

NE in each sub-game defined by the realization of the coordination signal. The proof is much simpler than
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that of the time PA problem since the use of Rosen’s Theorem [23] is not required. Without loss of generality

assume that S = 1. Whatever the strategy of user 2, user 1 sees no interference. Therefore he can choose

Q(1)
1 independently of user 2. Because R

(1)
1 (Q(1)

1 ,Q(1)
2 ) is a strictly concave function to be maximized over a

convex set, there is a unique optimum strategy for user 1. As we assume a game with complete information

and rational users, user 2 knows the utility of user 1 and thus the precoding matrix he will choose. The same

concavity argument can be used for R
(1)
2 (Q(1)

1 ,Q(1)
2 ) and therefore guarantees that user 2 employs a unique

precoding matrix.

Determination of the NE. In order to find the optimum covariance matrices, we proceed in the same way as

described in [10]. First we focus on the optimum eigenvectors and then we determine the optimum eigenvalues

by approximating the utility functions under the large system assumption. In order to determine the optimum

eigenvectors, the proof in [20] can be applied in our context to assert that there is no loss of optimality by

restricting the search for the optimum covariance matrix when imposing the structure Q(s)
k = UkP

(s)
k UH

k , where

Uk is a unitary matrix coming from the spectral decomposition of transmit correlation matrix Tk = UkDkUH
k

defined in Eq. (2) and the diagonal matrix P(s)
k = Diag(P (s)

k (1), ..., P (s)
k (nt)) represents the powers user k

allocates to the different eigenvectors. As a consequence, we can exploit once again the results of [24], [25],

[26] assuming the asymptotic regime in terms of the number of antennas. The new approximated rates are:

R̃
(1)
1 (P(1)

1 ) =
nt∑

i=1

log2

[
1 + ηP

(1)
1 (i)d(T)

1 (i)γ1

]
+

nr∑

j=1

log2

[
1 + ηd(R)(j)δ1

]
− ntηγ1δ1 log2 e

R̃
(1)
2 (P(1)

1 ,P(1)
2 ) =

2∑

`=1

nt∑

i=1

log2

[
1 + 2ηP

(1)
` (i)d(T)

` (i)γ2

]
+

nr∑

j=1

log2

[
1 + 2ηd(R)(j)δ2

]
− 4ntηγ2δ2 log2 e−

−R̃
(1)
1 (P(1)

1 )
(15)

where ∀k ∈ {1, 2}, d(T)
k (i), i ∈ {1, ..., nt} are always the eigenvalues of the transmit correlation matrices Tk,

d(R)(j), j ∈ {1, ..., nr} , are the eigenvalues of the receive correlation matrix R and the parameters γi, δj are

the unique solutions of the following systems of equations:




γ1 =
1
nt

nr∑

j=1

d(R)(j)
1 + ηd(R)(j)δ1

δ1 =
1
nt

nt∑

i=1

P
(1)
1 (i)d(T)

1 (i)

1 + ηP
(1)
1 (i)d(T)

1 (i)γ1

(16)
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



γ2 =
1

2nt

nr∑

j=1

d(R)(j)
1 + 2ηd(R)(j)δ2

δ2 =
1

2nt

2∑

l=1

nt∑

i=1

P
(1)
l (i)d(T)

l (i)

1 + 2ηP
(1)
l (i)d(T)

l (i)1γ2

.

(17)

Then, optimizing the approximated rates R̃
(1)
k (·) w.r.t. P

(1)
k (i) leads to the following water-filling equations:

∀k ∈ {1, 2}, P
(1),NE
k (i) =

[
1

ln 2λ
(1)
k

− 1

ηd
(T)
k (i)γk

]+

(18)

where λ
(1)
k ≥ 0, k ∈ {1, 2}, are the Lagrangian multipliers tuned in order to meet the power constraints given

in (6):
∑nt

i=1 P
(1),NE
k (i) = ntPk. We use the same iterative PA algorithm as the one described in [10]. Under

the large systems assumption, in this game also, the approximated utilities have the same properties as the exact

utilities.

Sum-rate efficiency of the NE. Unlike the temporal PA game, we have not assumed a particular structure for

the precoding matrices and thus the centralized solution coincides with the sum-capacity of the virtual MIMO

network, R
(C)
sum = Csum. Another important point to notice here is that the equilibrium precoding matrices do

not depend on p. This considerably simplifies the BS’s choice for the sum-rate optimal value for p. Indeed, as

we have already mentioned, the precoding matrices do no depend on p and therefore the sum-rate Rsum(p) is

merely a linear function of p: RNE
sum(p) = ap + b where

a = E log |I + ηH1Q
(1),NE
1 HH

1 + ηH2Q
(1),NE
2 HH

2 | − E log |I + ηH1Q
(2),NE
1 HH

1 + ηH2Q
(2),NE
2 HH

2 |
b = E log |I + ηH1Q

(2),NE
1 HH

1 + ηH2Q
(2),NE
2 HH

2 |.
(19)

Depending on the sign of a, if the BS wants to maximize the sum-rate, it will choose either p = 0 or p = 1.

If it wants a fair game it will choose p = 1
2 and accept a certain loss of global optimality. Note that even

for p ∈ {0, 1} the sum-capacity is not reached in general: this is because the matrix Q(1),NE
1 (resp. Q(2),NE

2 )

does not coincide with the first (resp. second) component of the pair of precoding matrices that maximizes the

(strictly concave) network sum-rate. However, as we did for the temporal PA game, in the low and high SNR

regimes one can show that the decentralized MIMO MAC has the same performance (w.r.t. the sum-rate) as

its equivalent Knt × nr virtual MIMO network.

V. SIMULATION EXAMPLES

All the results will be provided by assuming the asymptotic regime in the numbers of antennas. We know,

from many contributions (see e.g., [10], [27], [29], [30]) that large-system approximates of ergodic rates are

accurate even for relatively small systems. We also assume that R = I.
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For the TPA problem, we look at the case where there is no transmit correlation, Tk = I. We have seen that

the performance of decentralized MAC depends on the rule of the game i.e., the value of p. This is exactly

what Fig. 1 depicts for the following scenario: P1 = 1, P2 = 10, η = 5 dB, nt = nr = 4. First, we see that

the MAC sum-rate is a convex function of p and the maximum of RNE
sum(p) is reached for p ∈ {0, 1}. In these

points, which correspond to the most unfair decoding schemes (either user 1 or 2 is always decoded first) the

centralized sum-capacity of the MAC is achieved. One important observation to be made is that the minimum

and maximum only differ by about 1%. Many other simulations have confirmed this observation. This shows

that whatever the value of p, the gap between the sum-rate of a decentralized MIMO MAC with selfish users

and the sum-capacity of the equivalent cooperative MAC (virtual MIMO network) is in fact very small. Now,

we want to evaluate the benefits brought by using a SIC instead of single-user decoding [10]. For the scenario

where P1 = P , P2 = 10P with P ∈ [0, 20], nr = nt = 4 and η = 5 dB, Fig. 2 shows the achievable network

sum-rate at the NE versus the available power at the first transmitter P . For the SUD scheme, the users are

decoded simultaneously at the receiver. In this case both users see all the interference coming from the others.

We see that the SIC scheme performs much better than the proposed SUD scheme, regardless of the distribution

of the coordination signal: this comparison makes sense especially for the point p = 1
2 since both decoding

schemes are fair.

From now on, we consider the SPA problem. In this case we assume an exponential correlation profile for

Tk such that Tk(i, j) = t
|i−j|
k (note that Tr(Tk) = nt), where 0 ≤ tk ≤ 1 is the corresponding correlation

coefficient [31], [32]. We already know that the sum-rate is a linear function of p and therefore is maximized

when either p = 0 or p = 1. It turns out that this slope has a small value. Furthermore, it has been observed

to be even 0 for a symmetric MAC, i.e., P1 = P2 and t1 = t2. These observations have been confirmed by

many simulations. In Fig. 3 we have plotted the sum-rate achieved by varying p for the scenario: P1 = 5,

P2 = 50, η = 3 dB, nt = nr = 4, t1 = 0.4, t2 = 0.3. Even in this scenario, which was thought to be a

bad case in terms of sub-optimality, the sum-rate is not far from the sum-capacity of the centralized MAC.

For the same scenario, we have plotted in Fig. 4 the achievable rate region and compared it to that obtained

with SUD. We observe that in large MIMO MAC channels, the capacity region comprises a full cooperation

segment (approximately) just like SISO MAC channels. The coordination signal allows one to move along an

almost straight line, corresponding to a relatively large range of rates.
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VI. CONCLUSION

We have provided complete proofs for the existence and uniqueness of an NE in fast fading MIMO MACs

with CSIR and CDIT where the transmission rate is chosen as user utility. By exploiting random matrix theory,

we have also provided the corresponding optimum selfish PA policies. We have seen that the BS can, through a

single parameter (i.e., p ∈ [0, 1], which represents the distribution of the coordination signal), force the system

to operate at many different points that correspond to a relatively large range of achievable transmission rate

pairs. We know, from [1], [9] that for Gaussian MACs with single antenna terminals, this set of rate pairs

corresponds to the full cooperation segment of the centralized MAC. Said otherwise a decentralized Gaussian

SISO MAC with coordination achieves the same rate pairs as a MAC with full cooperation or virtual MIMO

system. The goal here was to know to what extent this key result is valid for fading MAC with multi-antenna

terminals. It turns out this is almost true in the MIMO setting. In the cases of interest, where the power is

optimally allocated either over space or time, the performance gap is relatively small even though the proposed

coordination mechanism was a priori sub-optimal since it does take into account the channel realizations (known

to the receiver). Interestingly in large MIMO MACs, the capacity region comprises a full cooperation segment

just like SISO MACs. The coordination signal precisely allows one to move along the corresponding (almost)

straight line. This shows the relevance of large systems in decentralized networks since they allow to determine

the capacity region of certain systems whereas it is unknown in the finite setting. Furthermore, they induce an

averaging effect, which makes the users’ behavior predictable. Indeed, in large MIMO MACs the knowledge of

the CSIT does not improve the performance w.r.t. the case with CDIT. To conclude we review some extensions

of this work which we have suggested throughout it. It would be interesting to study the case of the decentralized

space-time PA, which, in particular, would require the generalization of Lemma 1 to arbitrary positive matrices

and exploitation of some results in [21]. A second useful extension would be to evaluate the impact of a non-

perfect SIC on the PA problem. At last, we will mention that it would be useful to evaluate analytically or

bounding the price of anarchy of the NE, which would require to find a bounding technique different from that

used for non-atomic games [34], [35], [36].

APPENDIX A

We want to prove that the diagonally strict concavity condition is met for the time PA problem i.e., for all

(α′1,α′′1) ∈
(ATPA

1

)2 and (α′2,α′′2) ∈
(ATPA

2

)2 such that either α′1 6= α′′1 or α′2 6= α′′2 we want to prove that:

C = (α′′1 − α′1)
[
∂R1

∂α1
(α′1, α

′
2)−

∂R1

∂α1
(α′′1, α

′′
2)

]
+ (α′′2 − α′2)

[
∂R2

∂α2
(α′1, α

′
2)−

∂R2

∂α2
(α′′1, α

′′
2)

]
> 0. (20)
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We can write C = pT (1) + pT (2) where for all s ∈ {1, 2}:

T (s) = (α′′1 − α′1)

[
∂R

(s)
1

∂α1
(α′1, α

′
2)−

∂R
(s)
1

∂α1
(α′′1, α

′′
2)

]
+ (α′′2 − α′2)

[
∂R

(s)
2

∂α2
(α′1, α

′
2)−

∂R
(s)
2

∂α2
(α′′1, α

′′
2)

]
(21)

By expanding T (1) we have

T (1) = (α′′1 − α′1)ETr
{
[(I + ρ1α

′
1H1HH

1 )−1 − (I + ρ1α
′
1H1HH

1 )−1]ρ1H1HH
1

}

+(α′′2 − α′2)ETr
{

(I + ρ1α
′
1H1HH

1 + 1−pα′2
p ρ2H2HH

2 )−1ρ2
−p
p H2HH

2

− (I + ρ1α
′′
1H1HH

1 + 1−pα′′2
p ρ2H2HH

2 )−1ρ2
−p
p H2HH

2

}

= ETr
{
(A′′ −A′)[(I + A′)−1 − (I + A′′)−1] + (B′′ −B′)[(I + B′ + A′)−1 − (I + B′′ + A′′)−1]

}
,

(22)

where A′ = ρ1α
′
1H1HH

1 , A′′ = ρ1α
′′
1H1HH

1 , B′ = ρ2
1−pα′2

p H2HH
2 , B′′ = ρ2

1−pα′′2
p H2HH

2 . We observe that

the matrices A′, A′′, B′ and B′′ verify the assumptions of Lemma 1. First, they are Hermitian and non-negative.

Second, as they write as A′ = a′H1HH
1 , A′′ = a′′H1HH

1 , B′ = b′H2HH
2 and B′′ = b′′H2HH

2 , we also see

that the matrix order º is total for each of the pairs of matrices (A′,A′′) and (B′,B′′). This directly follows

from the fact that the scalar order ≥ is total, which implies that either a′′ ≥ a′ or a′′ ≤ a′ and either b′′ ≥ b′ or

b′′ ≤ b′. By considering the particular structure of the four matrices and applying Lemma 1, it is straightforward

to see that the term T (1) is strictly positive, T (1) > 0. In a similar way we can prove that T (2) > 0 and thus

the diagonally strict concavity condition is met: C > 0.

APPENDIX B

Proving Lemma 1 amounts to showing that

T = Tr
{
(A−B)(B−1 −A−1) + (C−D)[(B + D)−1 − (A + C)−1]

}
> 0 (23)

where the matrices A = I + A′′, B = I + A′, C = B′′ and D = B′ have been introduced for more clarity.

Since the matrix order º is total for A and B, and C and D it suffices to prove that T > 0 for the four

following cases: (1) A º B and C º D; (2) A ¹ B and C ¹ D; (3) A º B and C ¹ D; (4) A ¹ B and

C º D.

Case (1): A º B and C º D. To prove the desired result in this case we use the following lemma.

Lemma 2: If M is a Hermitian and non-negative (M = MH º 0) and N is non-negative (N º 0) but not

necessarily Hermitian, then Tr(MN) ≥ 0.

Proof: We write Tr(MN) = Tr(M1/2NM1/2) ≥ 0. We have used the fact that M is a Hermitian non-

negative matrix to write M = M1/2M1/2. Knowing that N is a non-negative matrix one can easily check
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that M1/2NM1/2 is also a non-negative matrix and thus the trace (sum of the non-negative eigenvalues) is

non-negative.

The quantity T writes as T = Tr(M1N1)+Tr(M2N2) where M1 = A−B, N1 = B−1−A−1, M2 = C−D

and N2 = (B + D)−1 − (A + C)−1. Clearly these four matrices are Hermitian. Since by assumption M1 º 0

and M2 º 0 we only need to verify that N1 º 0 and N2 º 0 to be able to apply Lemma 2 to T . The matrix

N1 is non-negative because for any pair of invertible matrices (X,Y): X º Y ⇔ Y−1 º X−1 (see e.g., [33]).

The same result applies to N2 since by assumption A + C º B + D. Using lemma 2 concludes the proof.

Case (3): A º B and C ¹ D. To treat this case we first prove the following auxiliary Lemma.

Lemma 3: Let X and Y be two distinct, Hermitian and positive matrices of size n: X = XH Â 0, Y =

YH Â 0 and X 6= Y. Then Tr[(X−Y)(Y−1 −X−1)] ≥ 0.

Proof: It is easy to see that Tr[(X − Y)(Y−1 − X−1)] = Tr[Z + Z−1 − 2I], with the Hermitian and

positive matrix Z , X
1
2 Y−1X

1
2 and thus we further have Tr[(X−Y)(Y−1−X−1)] =

n∑

i=1

(λZ(i)− 1)2

λZ(i)
≥ 0

where the matrix ΛZ = Diag(λZ(1), ..., λZ(n)) corresponds to the spectral decomposition of .

By applying this lemma to T we have that:

T = Tr
{
(A−B)(B−1 −A−1) + [(C + A)− (B + D)][(B + D)−1 − (A + C)−1]

−(A−B)[(B + D)−1 − (A + C)−1]
}

≥ Tr
{
(A−B)(B−1 −A−1)− (A−B)[(B + D)−1 − (A + C)−1]

}
.

(24)

We know that C ¹ D then C + A ¹ D + A and also that (C + A)−1 º (D + A)−1. Using the fact that

A º B and also Lemma 2 we have that Tr[(A − B)(C + A)−1] ≥ Tr[(A − B)(D + A)−1] and the trace

becomes lower bounded as T ≥ Tr
{
(A−B)(B−1 −A−1)− (A−B)[(B + D)−1 − (A + D)−1]

}
. Now, we

are going to prove that this lower bound, say TLB , is positive:

TLB = Tr
{
(A−B)(B−1 −A−1)− [(A + D)− (B + D)]

[
(B + D)−1 − (A + D)−1

]}

= Tr
{

(Ã− B̃)(B̃−1 − Ã−1)−
[
(Ã + I)− (B̃ + I)

] [
(B̃ + I)−1 − (Ã + I)−1

]} (25)

where we have made the following change of variables: A = D1/2ÃD1/2, B = D1/2B̃D1/2 such that Ã =

D−1/2AD−1/2 = ÃH Â 0 and B̃ = D−1/2BD−1/2 = B̃H Â 0. By applying the Woodbury formula (Ã +

I)−1 = Ã−1 − Ã−1(Ã + I)−1 and (B̃ + I)−1 = B̃−1 − B̃−1(B̃ + I)−1, the lower bound T (1)
LB rewrites as:

TLB = Tr
{

(Ã− B̃)
[
B̃−1 − Ã−1 − B̃−1 + B̃−1(B̃ + I)−1 + Ã−1 − Ã−1(Ã + I)−1

]}

= Tr
{
ÃB̃−1(B̃ + I)−1 + B̃Ã−1(Ã + I)−1 − (Ã + I)−1 − (B̃ + I)−1

}
.

(26)

Let us denote the ordered eigenvalues of the two matrices Ã and B̃ as λÃ(1) ≤ λÃ(2) ≤ . . . ≤ λÃ(n) and

λB̃(1) ≤ λB̃(2) ≤ . . . ≤ λB̃(n). From [37] we know that for two matrices X and Y of size n, Tr(XY) ≥
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∑n
i=1 λX(i)λY (n− i + 1), which implies directly that Tr(XY−1) ≥ ∑n

i=1
λX(i)
λY (i) , where λX(i) and λY (i) are

the ordered eigenvalues (in the previously specified order) of the corresponding matrices. Applying this result

we find that

Tr
[
ÃB̃−1(I + B̃)−1

]
≥

n∑

i=1

λÃ(i)
λB̃(i)(1 + λB̃(i))

, Tr
[
B̃Ã−1(I + Ã)−1

]
≥

n∑

i=1

λB̃(i)
λÃ(i)(1 + λÃ(i))

,

(27)

and finally obtain that:

TLB ≥
n∑

i=1

[λÃ(i)− λB̃(i)]2[1 + λÃ(i) + λB̃(i)]
λÃ(i)λB̃(i)[1 + λÃ(i)][1 + λB̃(i)]

≥ 0. (28)

To conclude the global proof one can easily check that Case (2) (resp. Case (4)) can be readily proved from

the proof of Case (1) (resp. Case (3)) by interchanging the role of A and B and C and D.
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Fig. 1. Temporal PA game. Achievable network sum-rate versus p for P1 = 1, P2 = 10, nr = nt = 4, η = 5 dB. The sum-capacity

of fading MIMO MACs is reached for both unfair SIC decoding schemes (p∗1 = 0 and p∗2 = 1) and is very close to this upper bound

for any distribution of the coordination signal, ∀p ∈ (0, 1).
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network sum-rate of fading MIMO MACs is linear w.r.t. p ∈ [0, 1] and is very close to the centralized upper bound. The optimal

distribution obtained with the Stackelberg game is p∗ = 0.
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