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Introduction

Machine learning classically deals with two different problems: supervised learning (classification) and unsupervised learning (clustering). However, other paradigms exist such as semi-supervised learning [START_REF] Hosmer | A comparison of iterative maximum likelihood estimates of the parameters of a mixture of two normal distributions under three different types of sample[END_REF], and partially-supervised learning [START_REF] Denoeux | A k-nearest neighbor classification rule based on Dempster-Shafer theory[END_REF][START_REF] Ambroise | EM algorithm for partially known labels[END_REF][START_REF] Grandvallet | Logistic regression for partial labels[END_REF][START_REF] Hüllermeier | Learning from ambiguously labeled examples[END_REF]. In the former approach, one use a mix of unlabelled and labelled examples, whereas in the latter, one can define constraints on the possible classes of the examples. The importance for such problems comes from the fact that labelled data are often difficult to obtain, while unlabelled or partially labelled data are easily available.

The investigations reported in this paper follow this path, in the context of belief functions. In this way, both the uncertainty and the imprecision of class labels may be handled. The considered training sets are of the form X iu = {(x 1 , m 1 ), . . . , (x N , m N )}, where m i is a basic belief assignment, or Dempster-Shafer mass function [START_REF] Shafer | A mathematical theory of evidence[END_REF] encoding our knowledge about the class of example i. The m i s (hereafter referred to as "soft labels") may represent different kinds of knowledge, from precise to imprecise and from certain to uncertain. Thus, previous problems are special cases of this general formulation. Other studies have already proposed solutions in which class labels are expressed by possibility distributions or belief functions [START_REF] Denoeux | Handling possibilistic labels in pattern classification using evidential reasoning[END_REF][START_REF] Elouedi | Belief decision trees: Theoretical foundations[END_REF]. In this article, we present a new approach to solve learning problems of this type, which completes a preliminary study by Vannoorenberghe and Smets [START_REF] Vannoorenberghe | Partially supervised learning by a credal EM approach[END_REF]. This solution is based on mixture models, and therefore assumes a generative model for the data.

This article is organized as follows. Background material on belief functions and estimation of parameters in mixture models using the EM algorithm will first be recalled in Sections 1.2 and 1.3, respectively. The problem of learning from data with soft labels will then be addressed in Section 1.4, through the definition of a learning criterion, and of an EM type algorithm dedicated to its optimization. Finally we will presented some simulations results in Section 1.5.

Background on Belief Functions

Belief Functions on a Finite Frame

The theory of belief functions was introduced by Dempster [START_REF] Dempster | Upper and lower probabilities induced by a multivalued mapping[END_REF] and Shafer [START_REF] Shafer | A mathematical theory of evidence[END_REF]. The interpretation adopted throughout this paper will be that of the Transferable Belief Model (TBM) introduced by Smets [START_REF] Ph | The Transferable Belief Model[END_REF]. The first building block of belief function theory is the basic belief assignment (bba), which models the beliefs held by an agent regarding the actual value of a given variable taking values in a finite domain (or frame of discernment) Ω, based on some body of evidence. A bba m Ω is a mapping from 2 Ω to [0, 1] verifying ω⊆Ω m Ω (ω) = 1. The subsets ω for which m Ω (ω) > 0 are called the focal sets. Several kind of belief functions are defined according to the structure of focal sets. In particular, a bba is Bayesian if its focal sets are singletons, it is consonant if its focal sets are nested and a it is categorical if it has only one focal set. Bbas are in one to one correspondence with other representations of the agent's belief, including the plausibility function defined as:

pl Ω (ω) = α∩ω =∅
m Ω (α), ∀ω ⊆ Ω.

(1.1)

The quantity pl Ω (ω) is thus equal to the sum of the basic belief masses assigned to propositions that are not in contradiction with ω. The plausibility function associated to a Bayesian bba is a probability measure. If m Ω is consonant, then pl Ω is a possibility measure: it verifies pl Ω (α ∪ β) = max(pl Ω (α), pl Ω (β)), for all α, β ⊆ Ω.

Conditioning and Combination

Given two bbas m Ω 1 and m Ω 2 supported by two distinct bodies of evidence, we may build a new bba

m Ω 1 ∩ 2 = m Ω 1 ∩ m Ω
2 that corresponds to the conjunction of these two bodies of evidence:

m Ω 1 ∩ 2 (ω) = α1∩α2=ω m Ω 1 (α 1 )m Ω 2 (α 2 ), ∀ω ⊆ Ω. (1.2)
This operation is usually referred to as the unnormalized Dempster's rule or the TBM conjunctive rule. If the frame of discernment is supposed to be exhaustive, the mass of the empty set is usually reallocated to other subsets, leading to the definition of the normalized Demspter's rule ⊕ defined as:

m Ω 1⊕2 (ω) =    0 if ω = ∅ m Ω 1 ∩ 2 (ω) 1-m Ω 1 ∩ 2 (∅) if ω ⊆ Ω, ω = ∅, (1.3) which is well defined provided m Ω 1 ∩ 2 (∅) = 1. Note that, if m Ω 1 (or m Ω 2 ) is Bayesian, then m Ω
1⊕2 (ω) is also Bayesian. The combination of a bba m Ω with a categorical bba focused on α ⊆ Ω using the TBM conjunctive rule is called (unnormalized) conditioning. The resulting bba is denoted m Ω (ω|α). Probabilistic conditioning is recovered when m Ω is Bayesian, and normalization is performed. Using this definition, we may rewrite the conjunctive combination rule:

m Ω 1 ∩ 2 (ω) = α⊆Ω m Ω 1 (α)m Ω 2 (ω|α), ∀ω ⊆ Ω,
which is a counterpart of the total probability theorem in probability theory [START_REF] Dubois | On the unicity of Dempster's rule of combination[END_REF][START_REF] Ph | Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem[END_REF]. This expression provides a shortcut to perform marginal calculations on a product space when conditional bbas are available [START_REF] Ph | Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem[END_REF]. Consider two frames Ω and Θ, and a set of conditional belief functions m Θ|Ω (•|ω) for all ω ⊆ Ω. Each conditional bba m Θ|Ω (•|ω) represents the agent's belief on Θ in a context where ω holds. The combination of these conditional bbas with a bba m Ω on Ω yields the following plausibility on Θ:

pl Θ (θ) = ω⊆Ω m Ω (ω)pl Θ|Ω (θ|ω), ∀θ ⊆ Θ. (1.4)
This property bears some resemblance with the total probability theorem, except that the sum is taken over the power set of Ω and not over Ω. We will name it the total plausibility theorem.

Independence, Continuous Belief functions and Bayes Theorem

The usual independence concept of probability theory does not easily find a counterpart in belief function theory, where different notions must be used instead. The simplest form of independence defined in the context of belief functions is cognitive independence [14, p. 149]. Frames Ω and Θ are said to be cognitively independent with respect to pl Ω×Θ iff we have pl

Ω×Θ (ω × θ) = pl Ω (ω) pl Θ (θ), ∀ω ⊆ Ω, ∀θ ⊆ Θ.
Cognitive independence boils down to probabilistic independence when pl Ω×Θ is a probability measure.

The TBM can be extended to continuous belief functions on the real line, assuming focal sets to be real intervals [START_REF] Ph | Belief functions on real numbers[END_REF]. In this context, the concept of bba is replaced by that of basic belief density (bbd), defined as a mapping m R from the set of closed real intervals to [0, +∞) such that

+∞ -∞ +∞ x m R ([x, y])dydx ≤ 1.
By convention, the one's complement of this integral is allocated to ∅. As in the discrete case, pl R ([a, b]) is defined as an integral over all intervals whose intersection with [a, b] is non-empty. Further extension of these definitions to R d , d > 1 is possible and it is also possible to define belief functions on mixed product spaces involving discrete and continuous frames.

The Bayes' theorem of probability theory is replaced in the framework of belief functions by the Generalized Bayesian Theorem (GBT), [START_REF] Ph | Quantifying beliefs by belief functions: An axiomatic justification[END_REF]. This theorem provides a way to reverse conditional belief functions without any prior knowledge. Let us suppose two spaces, X the observation space and Θ the parameter space. Assume that our knowledge is encoded by a set of conditional bbas m X |Θ (.|θ i ), θ i ∈ Θ, which express our belief in future observations conditionally on each θ i , and we observe a realization x ⊆ X . The question is: given this observation and the set of conditional bbas, what is our belief on the value of Θ? The answer is given by the GBT and states that the resulting plausibility function on Θ has the following form:

pl Θ|X (θ|x) = pl X |Θ (x|θ) = 1 - θi∈θ (1 -pl X |Θ (x|θ i )). (1.5)
When a prior bba m Θ 0 on Θ is available, it should be combined conjunctively with the bba defined by (1.5). The classical Bayes' theorem is recovered when the conditional bbas m X |Θ (.|θ i ) and the prior bba m Θ 0 are Bayesian.

Mixture Models and the EM Algorithm

After this review of some tools from belief functions theory, the next part is dedicated to the probabilistic formulation of the clustering problem in terms of mixture model. We will therefore present the data generation scheme underlying mixture models and the solution to parameter estimation in the unsupervised case.

Mixture Models

Mixture models suppose the following data generation scheme:

• The true class labels {y 1 , . . . , y N } of data points are realizations of independent and identically distributed (i. The parameters that need to be estimated are therefore the proportions π = (π 1 , . . . , π K ) and the parameters of the class conditional densities θ 1 , . . . , θ K . To simplify the notations, the vector of all model parameters is denoted Ψ = (π 1 , . . . , π K , θ 1 , . . . , θ K ). In unsupervised learning problems, the available data are only the i.i.d realizations of X, X u = {x 1 , . . . , x N }, provided by the generative model. To learn the parameters and the associated clustering, the log-likelihood must be computed according to the marginal density

K k=1 π k f (x i ; θ k ) of X i .
This leads to the unsupervised log-likelihood criterion :

L(Ψ ; X u ) = N i=1 ln K k=1 π k f (x i ; θ k ) .
(1.6)

EM Algorithm

The log-likelihood function defined by (1.6) is difficult to optimize and may lead to a set of different local maxima. The EM algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] is nowadays the classical solution to this problem. The missing data of the clustering problem are the true class labels y i of learning examples. The basis of the EM algorithm can be found in the decomposition of the likelihood function in two terms :

L(Ψ ; X u ) = N i=1 K k=1 t (q) ik ln (π k f (x i ; θ k )) Q(Ψ ,Ψ (q) ) - N i=1 K k=1 t (q) ik ln π k f (x i ; θ k ) K k =1 π k f (x i ; θ k ) H(Ψ ,Ψ (q) ) , (1.7) 
with:

t (q) ik = E Ψ (q) [z ik |x i ] = P(z ik = 1|Ψ (q) , x i ) = π (q) k f (x i ; θ (q) k ) K k =1 π (q) k f (x i ; θ (q) k ) . (1.8)
Such a decomposition is useful to define an iterative ascent strategy thanks to the form of H. As a consequence of Jensen's inequality we may write H(Ψ (q) , Ψ (q) )-H(Ψ , Ψ (q) ) ≥ 0, ∀Ψ . Consequently, the maximization of the auxiliary function

Ψ (q+1) = arg max Ψ Q(Ψ , Ψ (q)
) is sufficient to improve the likelihood. Furthermore, because the sum over the classes is outside the logarithm in the Q function, the optimization problems are decoupled and the maximization is simpler. The EM algorithm can be described as follows. It starts with initial estimates Ψ (0) and alternates two steps : the E step where the t ik are computed according to the current parameters estimates, defining a new Q function maximized during the M step. Thanks to (1.7), this defines a sequence of parameter estimates with increasing likelihood values. Finally, the mixture model setting and the EM algorithm can be adapted to handle specific learning problems such as the semi-supervised [START_REF] Hosmer | A comparison of iterative maximum likelihood estimates of the parameters of a mixture of two normal distributions under three different types of sample[END_REF] and the partially supervised cases [START_REF] Ambroise | EM algorithm for partially known labels[END_REF].

1.4 Extension to Imprecise and Uncertain Labels

Derivation of a Generalized Likelihood Criterion

Our method extends the approach described above to handle imprecise and uncertain class labels defined by belief functions. In this section, we shall assume the learning set to be of the form

X iu = {(x 1 , m Y 1 ), . . . , (x N , m Y N )},
where each m Y i is a bba on the set Y of classes, encoding all available information about the class of example i. As before, the x i will be assumed to have been generated according to the mixture model defined in Section 1.3.1. Our goal is to extend the previous method to estimate the model parameters from such dataset. For that purpose, an objective function generalizing the likelihood function needs to be defined.

The concept of likelihood function has strong relations with that of possibility and, more generally, plausibility, as already noted by several authors [START_REF] Ph | Possibilistic inference from statistical data[END_REF][START_REF] Shenoy | Decision making on the sole basis of statistical likelihood[END_REF][START_REF] Monney | A Mathematical Theory of Arguments for Statistical Evidence[END_REF]. Furthermore, selecting the simple hypothesis with highest plausibility given the observations X iu is a natural decision strategy in the belief function framework [START_REF] Cobb | On the plausibility transformation method for translating belief function models to probability models[END_REF]. We thus propose as an estimation principle to search for the value of parameter ψ with maximal conditional plausibility given the data: ψ = arg max ψ pl Ψ (ψ|X iu ). The correctness of the intuition leading to this choice of criterion as an estimation principle seems to be confirmed by the fact that the logarithm of pl Ψ (ψ|X iu ) is an immediate generalization of criterion (1.6), and the other likelihood criteria used for semi-supervised learning and partially supervised learning of mixture model, as shown by the following proposition. Proposition 1. If the samples {x 1 , . . . , x N } are drawn independently according to the generative mixture model setting and if the soft labels {m 1 , . . . , m N } are independent from the parameters values, then the logarithm of the conditional plausibility of Ψ given X iu is given by

ln pl Ψ (ψ|X iu ) = N i=1 ln K k=1 pl ik .π k f (x i ; θ k ) + ν, (1.9) 
where the pl ik are the plausibilities of each class k for each sample i according to soft labels m i and ν is a constant independent of ψ.

Proof. Using the GBT (1.5), the plausibility of parameters can be expressed from the plausibility of the observed values. By making the conditional independence assumption, this plausibility can be decomposed as a product over samples. Using the Total Plausibility Theorem (1.4), we may express the plausibility of an observed value as:

pl Xi (x i |ψ) = C⊆Y m Yi (C|ψ)pl Xi|Yi (x i |C, ψ), (1.10) 
where m Yi (.|ψ) is a bba representing our beliefs regarding the class of example i. This bba comes from the combination of two information sources: the "soft" label m Y i and the proportions π, which induce a Bayesian bba m Y (•|π). As these two sources are supposed to be distinct, they can be combined using the conjunctive rule (1.2). As m Y (•|π) is Bayesian, the same property holds for the result of the combination m Yi (.|ψ) and we have m Yi ({c k }|ψ) = pl ik π k . Therefore, in the right-hand side of (1.10), the only terms in the sum that need to be considered are those corresponding to the singletons. Consequently, we only need to express pl Xi|Yi (x i |c k , ψ) for all k. There is a difficulty at this stage, since pl Xi|Yi (•|c k , ψ) is the continuous probability measure with density function f (x; θ k ): consequently, the plausibility of any single value would be null if observations x i had an infinite precision. However, observations always have a finite precision, so that what we denote by pl Xi|Yi (x i |c k , ψ) is in fact the plausibility of a infinitesimal region around x i with volume dx i1 . . . dx ip (where p is the feature space dimen-sion). We thus have pl Xi|Yi (x i |c k , ψ) = f (x i ; θ k )dx i1 . . . dx ip . Using all this results we obtain

pl Ψ (ψ|X iu ) = N i=1 K k=1 pl ik π k f (x i ; θ k ) dx i1 . . . dx ip .
The terms dx ij can be considered as multiplicative constants that do not affect the optimization problem. By taking the logarithm we get (1.9), which completes the proof.

Remark 1. Our approach can be shown to extend unsupervised, partially supervised and semisupervised learning when the labels are, respectively, vacuous, categorical, and either vacuous or certain. This justifies denoting criterion, 1.9 as L(Ψ , X iu ), as it generalizes the classical loglikelihood function.

EM algorithm for Imprecise and Uncertain Labels

Once the criterion is defined, the remaining work concerns its optimization. This section presents a variant of the EM algorithm dedicated to this task. To build an EM able to optimize L(Ψ ; X iu ), we follow a path that parallels the one recalled in Section 1.3.2. At iteration q, our knowledge of the class of example i given the current parameter estimates comes from three sources: the class label m Y i of example i; the current estimates π (q) of the proportions; the vector x i and the current parameter estimate θ (q) , which, using the GBT (1.5), gives a plausibility over Y. By combining these three items of evidence using Dempster's rule (1.3), we get a Bayesian bba. Let us denote by t (q) ik the mass assigned to {c k } after combination. We have

t (q) ik = pl ik π (q) k f (x i ; θ (q) k ) K k =1 pl ik π (q) k f (x i ; θ (q) k ) , (1.11) 
Using this expression, we may decompose the log-likelihood in two parts, as in (1.7).

L(Ψ ; X iu ) = N i=1 K k=1 t (q) ik ln (π k pl ik f (x i ; θ k )) - N i=1 K k=1 t (q) ik ln π k pl ik f (x i ; θ k ) K k =1 π k pl ik f (x i ; θ k ) (1.12)
This decomposition can be established thanks to basic properties of logarithmic functions and the fact that

K i=1 t (q) 
ik = 1. Therefore, using the same argument as for the classical EM algorithm (Section 1.3.2), an algorithm which alternates between computing t ik using (1.11) and maximization of the first term in the right hand side of (1.12) will increase our criterion. This algorithm is therefore the classical EM algorithm, except for the E step, where the posterior distributions t ik are weighted by the plausibility of each class. During the M step the proportions are updated classically using π

(q+1) k = 1 N N i=1 t (q)
ik . If multivariate normal densities functions are considered, f (x; θ k ) = N (x; µ k , Σ k ), their parameters are updated using the following equations :

µ (q+1) k = 1 N i=1 t (q) ik N i=1 t (q) ik x i , Σ (q+1) k = 1 N i=1 t (q) ik N i=1 t (q) ik (x i -µ (q+1) k )(x i -µ (q+1) k 
) . (1.13)

Comparison with Previous Work

The idea of adapting the EM algorithm to handle soft labels can be traced back to the work of Vannoorenberghe and Smets [START_REF] Vannoorenberghe | Partially supervised learning by a credal EM approach[END_REF], which was recently extended to categorical data by Jraidi et al. [START_REF] Jraidi | Belief classification approach based on generalized credal EM[END_REF]. These authors proposed a variant of the EM algorithm called CrEM (Credal EM), based on a modification of the auxiliary function Q(Ψ , Ψ (q) ). However, our method differs from this previous approach in several respects. First, the CrEM algorithm was not derived as optimizing a generalized likelihood criterion such as (1.9); consequently, its interpretation was unclear, the relationship with related work (see Remark 1) could not be highlighted and, most importantly, the convergence of the algorithm was not proven. Furthermore, in our approach, the soft labels m Y i appear in the criterion and in the update formulas for posterior probabilities (1.11) only in the form of the plausibilities pl ik of the singletons. In constrast, the CrEM algorithm uses the 2 |Y| values in each bba m Y i . This fact has an important consequence, as the computations involved in the E step of the CrEM algorithm have a complexity in O(2 |Y| ) whereas our solution only involves calculations which scale with the cardinality of the set of classes.

Simulations

The experiment presented in this section aimed at using information on class labels simulating expert opinions. As a reasonable setting, we assumed that the expert supplies, for each sample i, his/her more likely label c k and a measure of doubt p i . This doubt is represented by a number in [0, 1], which can be seen as the probability that the expert knows nothing about the true label. To handle this additional information in the belief function framework, it is natural to discount the categorical bba associated to the guessed label with a discount rate p i [14, Page 251]. Thus, the imperfect labels built from expert opinions are simple bbas such that m Y i ({c k * }) = 1 -p i for some k * , and m Y i (Y) = p i . The corresponding plausibilities are pl ik * = 1 and pl ik = p i for all k = k * . Simulated data sets were build as follows. Two data sets of size N ∈ {2000, 4000} were generated in a ten-dimensional feature space from a two component normal mixture with common identity covariance matrix and balanced proportions. The distance between the two centers was kept fixed at δ = 2. For each training sample i, a number p i was drawn from a specific probability distribution to define the doubt expressed by a hypothetical expert on the class of that sample. With probability (1 -p i ), the true label of sample i was kept and with probability p i the expert's label was drawn uniformly in the set of all class. The probability distribution used to draw the p i specifies the expert's labelling error rate. For our experiments we used Beta distributions with expected value equal to {0.1, . . . , 0.8} and variance kept equal to 0.2.

The results of our approach were compared to supervised learning using the potentially wrong expert's labels; unsupervised learning, which does not use any information on class label coming from experts, and a strategy based on semi-supervised learning which takes into account the reliability of labels supplied by the p i . This strategy considers each sample as labelled if the expert's doubt is moderate (p i ≤ 0.5) and as unlabelled otherwise (p i > 0.5). performances of the different classifiers trained with one hundred independent training sets. As expected, when the expert's doubt increases, the error rate of supervised learning also increases. Our solution based on soft labels does not suffer as much as supervised learning and adaptive semisupervised learning from label noise. Whatever the dataset size, our solution takes advantage of additional information on the reliability of labels to keep good performances. Finally, our approach clearly outperforms unsupervised learning, when the number of samples is low (N = 2000).

E. Côme et al.

Conclusions

The approach presented in this paper, based on concepts coming from maximum likelihood estimation and belief function theory, offers an interesting way to deal with imperfect and imprecise labels. The proposed criterion has a natural expression that is closely related to previous solutions found in the context of probabilistic models, and has also a clear and justified origin in the context of belief functions. Moreover, the practical interest of imprecise and imperfect labels, as a solution to deal with label noise, has been highlighted by an experimental study using simulated data.

  i.d) random variables Y 1 , . . . , Y N ∼ Y taking their values in the set of all K classes Y = {c 1 , . . . , c K } and distributed according to a multinomial distribution M(1, π 1 , . . . , π K ). The π k are thus the class proportions and they verify K k=1 π k = 1. The information on the true class labels of samples coming from such variables can also be expressed by a binary variable z i ∈ {0, 1} K , such that z ik = 1 if y i = c k , and z ik = 0 otherwise. • The observed values {x 1 , . . . , x N } are drawn using the class conditional density in relation with the class label. More formally, X 1 , . . . , X N ∼ X are continuous random variables taking values in X , with conditional probability density functions f (x|Y = c k ) = f (x; θ k ), ∀k ∈ {1, . . . , K}.
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 11 Fig. 1.1 Empirical classification error (%, estimated on a test set of 5000 observations) averaged over one hundred independent training sets, as a function of expert's mean doubt and for different sample size. For all methods, the EM algorithm was initialized with the true parameter values.
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