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This paper focuses on the extension of the asymptotic covariance of the sample covariance (denoted Bartlett's formula) of linear processes to third-and fourth-order sample cumulant and to noisy linear processes. Closed-form expressions of the asymptotic covariance and cross-covariance of the sample second-, third-and fourth-order cumulants are derived in a relatively straightforward manner thanks to a matrix polyspectral representation and a symbolic calculus akin to a high level language. As an application of these extended formulae, we underscore the sensitivity of the asymptotic performance of estimated ARMA parameters by an arbitrary third-or fourth order-based algorithm with respect to the signal to noise ratio, the spectra of the linear process, and the colored additive noise.

Introduction

The problem of estimating the parameters of linear time-invariant nonminimum phase systems when only output data are available from higher-order statistics has been intensively studied. The use of the cumulants in time series analysis has a long-back history, starting with the classical paper of Brillinger and Rosenblatt [START_REF] Brillinger | Asymptotic theory of k-order spectra[END_REF] (see also the Brillinger's book [START_REF] Brillinger | Times series; data analysis and theory[END_REF]). Giannakis [START_REF] Giannakis | Cumulants: A powerful tool in signal processing[END_REF] was the first to show that the parameters of a qth-order MA system can be calculated from only the system's output cumulant with his third-and fourth-order formulae. From this pioneering work, many contributions have dealt with higher-order statistics based algorithms to estimate the MA, AR, ARMA parameters of linear systems driven by an independent and identically distributed non-Gaussian sequence corrupted (or not) by additive Gaussian noise that may be colored (see e.g., [START_REF] Mendel | Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications[END_REF]- [START_REF] Zhang | FIR system identification using higher order statistics alone[END_REF] and the reference therein).

The statistical performance of the proposed algorithms has been analyzed only by Monte-Carlo simulations except to our knowledge in the work by Porat and Friedlander [START_REF] Porat | Performance analysis of parameter estimation algorithms based on high-order moments[END_REF] and by Dandawaté and Giannakis [START_REF] Dandawaté | Asymptotic properties and covariance expressions of k-th-order sample moments and cumulants[END_REF] [START_REF] Dandawaté | Asymptotic theory of mixed time averages and k-th-order cyclicmoment and cumulant statistics[END_REF]. This former work gives closed-form expressions for the asymptotic variances and covariances of the sample third-order moments of ARMA processes, thanks to a state-space representation focused on the noise-free case only. The latter work is dedicated to estimates of the asymptotic variances and covariances of sample kth-order cumulants of arbitrary mixtures of deterministic, stationary and non-stationary processes satisfying a mixing condition, based on smoothed cross periodograms.

The purpose of this paper is to give closed-form expressions of the asymptotic variances and covariances of the sample third-and fourth-order cumulants of linear processes corrupted by an additive white or colored Gaussian or non-Gaussian noise. In addition, naturally, this work provides tools for performance evaluation and comparison of identification algorithms based on sample third-or fourth-order cumulants in these conditions. The computation of each asymptotic variance/covariance in the noisy case turns to be a very tedious task. For example, for zeromean real-valued processes, the number of terms is 222 [resp. 6022] to express variance/covariance of the sample third-order [resp. fourth-order] moments in the noisy case to 41 [resp. 715] terms in the noise-free case. To overcome this computational difficulty, we propose in this paper to start from another point of view, and to derive these variance/covariance via a matrix polyspectral approach. As a result, the complexity of the derivation of these different terms will not increase from the noise-free to the noisy case. Furthermore, to avoid overly laborious calculations, we use a symbolic calculus akin to a high level language.

This paper is organized as follows. After the data model and some notations are given in Section 2, the second-order Bartlett's formula is recalled in Section 3 and expressed in a matrix polyspectral closed-form in the noisy case for real-valued processes. This approach is extended in Section 4 and 5 to the third-and fourth-order respectively. Because the derivation developped for the second-order would be very tedious, a symbolic algorithm based on a few well defined rules is used. Matrix closed-form expressions of the asymptotic covariance of the thirdorder sample moment and the asymptotic cross-covariance between the second and third-order sample moments are given in the noisy case for zero-mean real-valued processes in Section 4. For the fourth-order, we focus on zero-mean complex processes circular up to the fourth-order as examples in Section 5, where we get closed-form expressions of the asymptotic covariance of the second and fourth-order sample cumulants and the asymptotic cross-covariances between the second and fourth-order sample cumulants in the noisy case. Finally, the sensitivity of the asymptotic performance of the estimated ARMA parameters by an arbitrary third or fourth order-based algorithm to the signal to noise ratio (SNR), the spectra of the linear process, and the colored additive noise is addressed in Section 6. As an example, the asymptotic lower bound for the variances of third-or fourth-order algorithms are compared to the asymptotic variances given by the so-called C(k, q) algorithms for non-Gaussian first or second-order moving average processes [abbreviated as MA [START_REF] Brillinger | Asymptotic theory of k-order spectra[END_REF] and MA [START_REF] Brillinger | Times series; data analysis and theory[END_REF] in the sequel] corrupted by a Gaussian first-order autoregressive process (abbreviated as AR(1) in the sequel).

The following notations are used throughout the paper. The range of all summations is understood to be from -∞ to ∞ except the specified summations and the range of all integrations is △ = [-1/2, 1/2]. Cov(x, y) is used for real and complex-valued random vectors and means E(xy T ) -E(x)E(y T ).

Data model

Consider the following linear process:

x t = ∑ n h n u t-n
where h n is real-valued in Sections 3 and 4 [resp. complex-valued in Section 5] with ∑ n |h n | < ∞ and the observation of x t is noisy:

y t = x t + ϵ t .
The input sequence u t is zero-mean, independent and identically distributed, and non-Gaussian, real-valued with κ 3u def = E(u 3 t ) ̸ = 0 and E(u 6 t ) < ∞ in Sections 3 and 4 [resp. complex-valued, circular up to the fourth-order with Section 5]. The measurement noise sequence ϵ t is assumed to be zero-mean, colored stationary with unknown power spectrum and is independent of u t . In Sections 3 and 4, ϵ t is real-valued Gaussian or non-Gaussian, with E(ϵ 

κ 4u def = E|u 4 t | -2(E|u 2 t |) 2 ̸ = 0 and E|u t | 8 < ∞ in
S ϵ (f 1 , f 2 , . . . , f 2p-1 ) def = ∑ t1 . . . ∑ t2p-1 c ϵ t1,...,t2p-1 e -i2π(t1f1+...+t2p-1f2p-1) .
In Sections 3 and 4, the second-order moment

c x k def = E(x t x t+k ) and third-order moment c x k,l def = E(x t x t+k x t+l )
are estimated from T consecutive mesurements by the associated sample moments:

c x k (T ) def = 1 T ∑ T t=1 x t x t+k and c x k,l (T ) def = 1 T ∑ T t=1 x t x t+k x t+l 1 . These moments are stacked in the vectors c x 2 def = (c x 0 , . . . , c x L2-1 ) T , c x 3 def = (c x 0,0 , c x 0,1 , . . . , c x 0,L3-1 , c x 1,0 , . . . , c x L3-1,L3-1 ) T , c x 2 ( 
T ) and c x 3 (T ) are defined in the same way. In Section 5, the second-order moment c

x k def = E(x t x * t+k ) and fourth-order cumulant c x k,l,m def = E(x t x * t+k x t+l x * t+m ) - E(x t x * t+k )E(x t+l x * t+m ) -E(x t x * t+m )E(x t+l x * t+k )
are estimated from T consecutive mesurements by the associated sample cumulants: c x k (T ) and c x k,l,m (T ). These cumulants are stacked in increasing order in the vectors

c x 4 def = (c x 0,0,0 , c x 0,0,1 , . . . , c x L4-1,L4-1,L4-1 )
T and c x 4 (T ) is defined in the same way.

3 Second-order Bartlett's formula

Noise-free case

Under the above assumptions, c x 2 (T ) is asymptotically Gaussian (see e.g., [START_REF] Rosenblatt | Stationary sequences and random fields[END_REF]Th. 3.3 ]):

√ T (c x 2 (T ) -c x 2 ) L → N (0; C x 2,2 )
where

L → stands for convergence in distribution and C x 2,2 = lim T →∞ T Cov (c x 2 (T ), c x 2 (T )
) is given by Bartlett's formula (see e.g. [12, rel. 6, p. 255]): lim

T →∞ T Cov (c x k (T ), c x l (T )) = ∑ t ( c x t c x t+k-l + c x t+k c x t-l + c x t+k,t,l
) .

Using Parseval's theorem and the Fourier relationship between the covariance and the spectral density S x (f ) of x t and between the fourth-order cumulant and the trispectrum S x (f 1 , f 2 , f 3 ) of x t , we get the following alternative matrix polyspectral Bartlett's formula:

C x 2,2 = ∫ △ S 2 x (f )[e(f )e H (f ) + e(f )e T (f )]df + ∫ △ 2 S x (f 1 , -f 1 , f 2 )e(f 1 )e T (f 2 )df 1 df 2 (3.1)
with e(f ) def = (1, e i2πf , . . . , e i2π(L2-1)f ) T where T and H stand for transpose and conjugate transpose respectively. We note that an elementwise counterpart of this relation was derived in [2, rel. 5.10.15] by another approach.

Noisy case

Under the assumptions of Section 2, the asymptotic normality and (3.1) apply in the noisy case, by replacing x t by y t = x t + ϵ t . Furthermore, from the independence assumption, S y (f ) = S x (f ) + S ϵ (f ) and S y (f 1 , f 2 , f 3 ) = 1 We note that both c x k (T ) and c x k,l (T ) can be defined in several other ways, differing in the manner in which the end data are treated. But all these definitions are asymptotically equivalent. S x (f 1 , f 2 , f 3 ) + S ϵ (f 1 , f 2 , f 3 ), and thus there holds:

C y 2,2 = C x 2,2 + 2 ∫ △ S ϵ (f )S x (f )[e(f )e H (f ) + e(f )e T (f )]df + ∫ △ S 2 ϵ (f )[e(f )e H (f ) + e(f )e T (f )]df + ∫ △ 2 S ϵ (f 1 , -f 1 , f 2 )e(f 1 )e T (f 2 )df 1 df 2 . (3.2)
We note that the last term of (3.2) vanishes if the additive noise is Gaussian.

4 Third-order Bartlett's formula

Noise-free case

Under the assumptions of Section 2, [c x 2 (T ), c x 3 (T )] is asymptotically Gaussian (see e.g., [START_REF] Brillinger | Asymptotic theory of k-order spectra[END_REF]):

√ T ( c x 2 (T ) -c x 2 c x 3 (T ) -c x 3 ) L → N (( 0 0 
) ;

( C x 2,2 C x 2,3 C x 2,3 T C x 3, 3 
))

where

C x 2,3 = lim T →∞ T Cov (c x 2 (T ), c x 3 (T )) and C x 3,3 = lim T →∞ T Cov (c x 3 (T ), c x 3 (T )
), and it is straightforward to get (see e.g., [13, rel.10.5.2]):

lim T →∞ T Cov ( c x k (T ), c x l,m (T ) ) = ∑ t [ E(x 0 x k x t x t+l x t+m ) -c x k c x l,m ] (4.1) lim T →∞ T Cov ( c x k,l (T ), c x m,n (T ) ) = ∑ t [ E(x 0 x k x l x t x t+m x t+n ) -c x k,l c x m,n ] . ( 4.2) 
To proceed, deducing relations similar to eq. (3.1) along the same lines is possible in principle but such a derivation would be extremely tedious. A much more interesting approach, which consists of devising a symbolic calculus akin to a high level language, is used. Based on a few well defined rules, this algorithm allows us to automatically perform the following steps:

• Generate all partitions given by the cumulants-to-moments formula (Leonov Shiryaev formula) [START_REF] Porat | Digital processing of random signals, Theory and Methods[END_REF]Th.10.1] expressing the fifth-(E(x 0 x k x t x t+l x t+m ) of (4.1)) and sixth-order moments (E(x 0 x k x l x t x t+m x t+n ) of (4.2)) as functions of sums of products of cumulants;

• Eliminate the zero terms using the zero-mean property;

• Construct sets of similar expressions w.r.t. the number of terms x t+a in each product of cumulants. For each such set of similar expressions (3 sets for E(x 0 x k x t x t+l x t+m ) and 6 sets for E(x 0 x k x l x t x t+m x t+n )), a representative term is chosen to be analytically expressed by a polyspectral formula, as proved in Appendix A.

Consequently, using the (.) notation introduced in [START_REF] Mccullagh | Tensor methods in statistics[END_REF] to avoid listing explicitly all the partitions, we obtain:

E(x 0 x k x t x t+l x t+m ) = Cum(x 0 , x k , x t , x t+l , x t+m ) + Cum(x 0 , x k , x t )Cum(x t+l , x t+m )(10) (4.3) E(x 0 x k x l x t x t+m x t+n ) = Cum(x 0 , x k , x l , x t , x t+m , x t+n ) + Cum(x 0 , x k , x l , x t )Cum(x t+m , x t+n ) (15) 
+ Cum(x 0 , x k , x l )Cum(x t , x t+m , x t+n )(10) + Cum(x 0 , x k )Cum(x l , x t )Cum(x t+m , x t+n ) [START_REF] Söderström | System identification[END_REF].

And an example, the expression Cum(x 0 , x k , x t )Cum(x t+l , x t+m )(10) can be broken down into three sets:

Cum(x 0 , x k , x t )Cum(x t+l , x t+m )(10) = c x t+m-k c x l,-t + c x t+l-k c x m,-t + c x t c x m-l,-t+k-l + c x t-k c x m-l,-t-l + c x t+l c x m,-t-k + c x t+m c x l,-t+k +c x m-l c x k,t + c x m c x k,t+l + c x l c x k,t+m (4.4) +c x k c x l,m
and the last term cancels with -c x k c x l,m in summation (4.1). So, this expression reduces to two sets of similar expressions. Using expressions (4.1), (4.3) and (4.4) the following matrix polyspectral extensions of Bartlett's formula is proved in Appendix A, where each polyspectral integral is associated with a set of the previous similar expressions:

lim T →∞ T Cov (c x 2 (T ), c x 3 (T )) = ∫ △ 3 S x (f 1 , -f 1 , f 2 , f 3 )E 1,2,3 df 1 df 2 df 3 + ∫ △ 2 S x (f 1 , f 2 )S x (f 1 )E (1) 1,2 df 1 df 2 + ∫ △ 2 S x (f 1 , 0)S x (f 2 )E (2) 1,2 df 1 df 2 , ( 4.5) 
where matrices E 1,2,3 , E

1,2 and E

(2)

1,2 are defined in Appendix B. With the same procedure, the following matrix polyspectral formula is derived from (4.2): lim

T →∞ T Cov (c x 3 (T ), c x 3 (T )) = ∫ △ 4 S x (f 1 , f 2 , f 3 , f 4 , -f 3 -f 4 )E 1,2,3,4 df 1 df 2 df 3 df 4 + ∫ △ 3 S x (f 1 , f 3 )S x (f 2 , f 3 )E (1) 1,2,3 df 1 df 2 df 3 + ∫ △ 3 S x (f 1 , f 2 , 0)S x (f 3 )E (2) 1,2,3 df 1 df 2 df 3 + ∫ △ 3 S x (f 1 , f 2 , f 3 )S x (f 2 + f 3 )E (3) 1,2,3 df 1 df 2 df 3 + ∫ △ 2 S x (0)S x (f 1 )S x (f 2 )E (3) 1,2 df 1 df 2 + ∫ △ 2 S x (f 1 )S x (f 2 )S x (f 1 + f 2 )E (4) 1,2 df 1 df 2 , ( 4.6) 
where the different matrices

E (i) j are defined in Appendix B.

Noisy case

In the noisy case, the third-order relations are derived in the same way as for the second-order, because the independence of x t and ϵ t ensures the additivity of their polyspectra. Therefore, for example, for additive Gaussian noise, we get from (4.5) and (4.6):

C y 2,3 = C x 2,3 + ∫ △ 2 S ϵ (f 2 )S x (f 1 , 0)E (1) 1,2 df 1 df 2 + ∫ △ 2 S ϵ (f 1 )S x (f 1 , f 2 )E (2) 1,2 df 1 df 2 (4.7) C y 3,3 = C x 3,3 + ∫ △ 3 S ϵ (f 2 + f 3 )S x (f 1 , f 2 , f 3 )E (3) 1,2,3 df 1 df 2 df 3 + ∫ △ 3 S ϵ (f 3 )S x (f 1 , f 2 , 0)E (3) 1,2,3 df 1 df 2 df 3 + ∫ △ 2 [S ϵ (f 2 )S x (0)S x (f 1 ) + S ϵ (f 1 )S x (0)S x (f 2 + S ϵ (0)S x (f 1 )S x (f 2 )]E (3) 1,2 df 1 df 2 + ∫ △ 2 [S ϵ (f 1 )S ϵ (f 2 )S x (0) + S ϵ (0)S ϵ (f 2 )S x (f 1 ) + S ϵ (0)S ϵ (f 1 )S x (f 2 )]E (3) 1,2 df 1 df 2 + ∫ △ 2 [S ϵ (f 1 + f 2 )S x (f 1 )S x (f 2 ) + S ϵ (f 1 )S x (f 2 )S x (f 1 + f 2 ) + S ϵ (f 2 )S x (f 1 )S x (f 1 + f 2 )]E (4) 1,2 df 1 df 2 + ∫ △ 2 [S ϵ (f 1 )S ϵ (f 1 + f 2 )S x (f 2 ) + S ϵ (f 2 )S ϵ (f 1 + f 2 )S x (f 1 ) + S ϵ (f 1 )S ϵ (f 2 )S x (f 1 + f 2 )]E (4) 1,2 df 1 df 2 + ∫ △ 2 S ϵ (0)S ϵ (f 1 )S ϵ (f 2 )E (3) 1,2 df 1 df 2 + ∫ △ 2 S ϵ (f 1 )S ϵ (f 2 )S ϵ (f 1 + f 2 )E (4) 1,2 df 1 df 2 . (4.8)
The influence of the additive colored noise on these asymptotic covariances is difficult to analyse from these expressions. However from the SNR point of view, we note that for a specific distribution of u t , C x 2,3 and C x 3,3 are proportional to σ 5 x and σ 6

x respectively, whereas the noise additive terms are proportional to σ 2 ϵ σ 3 x and

α 1 σ 6 ϵ + α 2 σ 4 ϵ σ 2 x + α 3 σ 2 ϵ σ 4
x respectively, where the terms (α i ) i=1,2,3 depend on the ARMA model and spectral shape of the additive noise. In the case where the noise spectrum has sharp resonances, the dominant term of the previous expression is given by the last term of (4.8). For example, for an AR(1) noise (ϵ t = e t + bϵ t-1 ), because it is proved in Appendix C that

∫ △ 2 S ϵ (f 1 )S ϵ (f 2 )S ϵ (f 1 + f 2 )df 1 df 2 = σ 6 ϵ ( 1 + b 3 1 -b 3 ) , ( 4.9) 
this dominant term grows unbounded as b approaches +1 and, therefore contributes to the degradation of the performance when the SNR is decreasing, as will be seen in Section 6.3.

Fourth-order Bartlett's formula

In this section, we focus on zero-mean complex processes circular up to the fourth-order 2 as example.

Noise-free case

Under the assumptions of Section 2, [c x 2 (T ), c x 4 (T )] is asymptotically Gaussian 3 (see e.g., [START_REF] Brillinger | Asymptotic theory of k-order spectra[END_REF]):

4 √ T ( c x 2 (T ) -c x 2 c x 4 (T ) -c x 4 ) L → N c (( 0 0 
) ;

( C x 2,2 C x 2,4 C x 2,4 H C x 4,4 ) , ( C ′ x 2,2 C ′ x 2,4 C ′ x 2,4 T C ′ x 4, 4 
))

where

C x 2,2 = lim T →∞ T Cov (c x 2 (T ), c * x 2 (T )), C ′ x 2,2 = lim T →∞ T Cov (c x 2 (T ), c x 2 (T )), C x 2,4 = lim T →∞ T Cov (c x 2 (T ), c * x 4 (T )), C ′ x 2,4 = lim T →∞ T Cov (c x 2 (T ), c x 4 (T )), C x 4,4 = lim T →∞ T Cov (c x 4 (T ), c * x 4 (T )) and C ′ x 4,4 = lim T →∞ T Cov (c x 4 (T ), c x 4 (T ))
. With the approach used to prove the real-valued Bartlett's formula in [13, sec. 4.1, 4.2], it is straightforward to get: lim

T →∞ T Cov (c x k (T ), c * x l (T )) = ∑ t ( c x t c x -t+k-l + c x k,t+l,t ) lim T →∞ T Cov (c x k (T ), c x l (T )) = ∑ t ( c x t c x -t+k+l + c x k,t,t+l
) .

Similarly to the real-valued Bartlett's formula (3.1), we get the following alternative matrix polyspectral Bartlett's formula:

C x 2,2 = ∫ △ S 2 x (f )e(f )e H (f )df + ∫ △ 2 S x (f 1 , f 2 , -f 2 )e(f 1 )e T (f 2 )df 1 df 2 (5.1) C ′ x 2,2 = ∫ △ S 2 x (f )e(f )e T (f )df + ∫ △ 2 S x (f 1 , -f 2 , f 2 )e(f 1 )e T (f 2 )df 1 df 2 . (5.2) Then to express C x 2,4 , C ′ x 2,4 , C x 4,4 , C ′ x 4,4
in function of the polyspectra of x t , we first note that because

c x l,m,n (T ) def = 1 T T ∑ t=1 x t x * t+l x t+m x * t+n - ( 1 T T ∑ t=1 x t x * t+l ) ( 1 T T ∑ t=1 x t+m x * t+n ) - ( 1 
T T ∑ t=1 x t x * t+n ) ( 1 T T ∑ t=1 x t+m x * t+l ) ,
we get the following first order expansion:

c x l,m,n (T ) -c x l,m,n = ( 1 -c x n-m -c x l -c x l-m -c x n )       1 T ∑ t x t x * t+l x t+m x * t+n -µ x l,m,n 1 T ∑ t x t x * t+l -c x l 1 T ∑ t x t+m x * t+n -c x n-m 1 T ∑ t x t x * t+n -c x n 1 T ∑ t x t+m x * t+l -c x l-m       αT +o(α T ), 2 A zero-mean complex processes xt is circular up to the r-order iff E( ∏ ∑ a k =p x a k t k ∏ ∑ b l =q x b l t l *
) = 0 for all positive integers a k , b l , p, q such that p + q ≤ r and p ̸ = q. 3 The distribution of a zero-mean Gaussian complex multivariate random variable x is characterized by the two covariance matrices

Σ1 def = E(xx H ) and Σ2 def = E(xx T
). This distribution is denoted N (0; Σ1, Σ2). 4 We note that despite the cumulants are rich of symmetries, the non-circular complex Gaussian asymptotic distribution of

c x 2 (T ) [resp. c x 4 (T )] is not characterized by C x 2,2 [resp. C x 4,4 ] only.
where c x k and the previous expansion, we get thanks to the asymptotic covariances of the sample moments derived from [13, rel.10.5.2] extended to the complex case, the asymptotic cross-covariance of the second-and fourth-order sample cumulants. lim

µ x l,m,n def = E(x t x * t+l x t+m x * t+n ). Using c x k (T ) -c x k = 1 T ∑ t x t x * t+k -
T →∞ T Cov ( c x k (T ), c x l,m,n (T ) ) = ( 1 -c x n-m -c x l -c x l-m -c x n )        ∑ t [ E(x 0 x * k x t x * t+l x t+m x * t+n ) -c x k µ x l,m,n ] ∑ t [ E(x 0 x * k x t x * t+l ) -c x k c x l ] ∑ t [ E(x 0 x * k x t+m x * t+n ) -c x k c x n-m ] ∑ t [ E(x 0 x * k x t x * t+n ) -c x k c x n ] ∑ t [ E(x 0 x * k x t+m x * t+l ) -c x k c x l-m ]        . (5.3) To get lim T →∞ T Cov ( c x k,l,m (T ), c x n,p,q (T )
)

, we use the same approach for which we have: lim

T →∞ T Cov ( c x k,l,m (T ), c x n,p,q (T ) ) = ( 1, -c x m-l , -c x k , -c x k-l , -c x m ) ( c 1 c T 3 c 2 C ) ( 1, -c x q-p , -c x n , -c x n-p , -c x q ) T with c 1 = ∑ t [ E(x 0 x * k x l x * m x t x * t+n x t+p x * t+q ) -µ x k,l,m µ x n,p,q ] , c 2 =          ∑ t [ E(x 0 x * k x t x * t+n x t+p x * t+q ) -c x k µ x n,p,q ] ∑ t [ E(x l x * m x t x * t+n x t+p x * t+q ) -c x m-l µ x n,p,q ] ∑ t [ E(x 0 x * m x t x * t+n x t+p x * t+q ) -c x m µ x n,p,q ] ∑ t [ E(x l x * k x t x * t+n x t+p x * t+q ) -c x k-l µ x n,p,q ]          , c 3 =         ∑ t [ E(x 0 x * n x t x * t+k x t+l x * t+m ) -c x n µ x k,l,m ] ∑ t [ E(x p x * q x t x * t+k x t+l x * t+m ) -c x q-p µ x k,l,m ] ∑ t [ E(x 0 x * q x t x * t+k x t+l x * t+m ) -c x q µ x k,l,m ] ∑ t [ E(x p x * n x t x * t+k x t+l x * t+m ) -c x n-p µ x k,l,m ]         (C) 1,1 = [ ∑ t [ E(x 0 x * k x t x * t+n ) -c x k c x n ] ∑ t [ E(x 0 x * k x t+p x * t+q ) -c x k c x q-p ] ∑ t [ E(x l x * m x t x * t+n ) -c x m-l c x n ] ∑ t [ E(x l x * m x t+p x * t+q ) -c x m-l c x q-p ] ] (C) 2,1 = [ ∑ t [ E(x 0 x * m x t x * t+n ) -c x m c x n ] ∑ t [ E(x 0 x * m x t+p x * t+q ) -c x m c x q-p ] ∑ t [ E(x l x * k x t x * t+n ) -c x k-l c x n ] ∑ t [ E(x l x * k x t+p x * t+q ) -c x k-l c x q-p ] ] (C) 1,2 = [ ∑ t [ E(x 0 x * k x t x * t+q ) -c x k c x q ] ∑ t [ E(x 0 x * k x t+p x * t+n ) -c x k c x n-p ] ∑ t [ E(x l x * m x t x * t+q ) -c x m-l c x q ] ∑ t [ E(x l x * m x t+p x * t+n ) -c x m-l c x n-p ] ] (C) 2,2 = [ ∑ t [ E(x 0 x * m x t x * t+q ) -c x m c x q ] ∑ t [ E(x 0 x * m x t+p x * t+n ) -c x m c x n-p ] ∑ t [ E(x l x * k x t x * t+q ) -c x k-l c x q ] ∑ t [ E(x l x * k x t+p x * t+n ) -c x k-l c x n-p ] ] .
To proceed, the moments in the four last summations of (5.3) and in C are expressed by cumulants. For example:

∑ t [ E(x 0 x * k x t x * t+l ) -c x k c x l ] = ∑ t ( c x t c x -t+k+l + c x k,t,t+l ) ∑ t [ E(x 0 x * k x t+m x * t+n ) -c x k c x n-m ] = ∑ t ( c x t+n c x -t+k-m + c x k,t+m,t+n ) ∑ t [ E(x 0 x * k x t x * t+n ) -c x k c x n ] = ∑ t ( c x t c x -t+k+n + c x k,t,t+n ) ∑ t [ E(x 0 x * k x t+m x * t+l ) -c x k c x l-m ] = ∑ t ( c x t+l c x -t+k-m + c x k,t+m,t+l
) , then these sommations are evaluated similarly to the real-valued polyspectral Bartlett's formula (3.1). The summations of sixth-order moments in c 2 , c 3 and in the first term of (5.3), and summations of eighthorder moments in c 1 are expressed as functions of polyspectra of x t from our symbolic calculus akin to a high level language based on a few well defined rules used in Section 4. Here, the zero terms are eliminated according to the circularity property up to the fourth-order, and the sets of similar expressions are constructed w.r.t. the number of terms x t+a and x * t+b in each product of cumulants. For each such set of similar expressions (6 sets for E(x 0 x * k x t x * t+l x t+m x * t+n ) and 21 sets for E(x 0 x * k x l x * m x t x * t+n x t+p x * t+q )), a representative term is chosen to be analytically expressed by a polyspectral formula derived in the same way as for the third-order case proved in Appendix A. We get:

E(x 0 x * k x t x * t+l x t+m x * t+n ) = Cum(x 0 , x * k , x t , x * t+l , x t+m , x * t+n ) + Cum(x 0 , x * k , x t , x * t+l )Cum(x t+m , x * t+n )(9) + Cum(x 0 , x * k )Cum(x t , x * t+l )Cum(x t+m , x * t+n )(6). (5.4) and E(x 0 x * k x l x * m x t x * t+n x t+p x * t+q ) = Cum(x 0 , x * k , x l , x * m , x t , x * t+n , x t+p , x * t+q ) + Cum(x 0 , x * k , x l , x * m , x t , x * t+n )Cum(x t+p , x * t+q )(16) + Cum(x 0 , x * k , x l , x * m )Cum(x t , x * t+n , x t+p , x * t+q )(18) + Cum(x 0 , x * k , x l , x * m )Cum(x t , x * t+n )Cum(x t+p , x * t+q )(72) + Cum(x 0 , x * k )Cum(x l , x * m )Cum(x t , x * t+n )Cum(x t+p , x * t+q )(24), (5.5) 
where for example, the second line of (5.4) gives:

Cum(x 0 , x * k , x t , x * t+l )Cum(x t+m , x * t+n )(9) = c x k,t,t+l c x n-m + c x k,t,t+n c x l-m + c x k,t+m,t+l c x n + c x k,t+m,t+n c x l + c x l,-t,n c x t+m-k + c x l-m,-t-m,n-m c x t-k + c x n,m,-t+k c x t+l + c x l,m,-t+k c x t+n + c x k c x l,m,n ,
and because the last term cancels with -c x k µ x l,m,n in the summation

∑ t [ E(x 0 x * k x t x * t+l x t+m x * t+n ) -c x k µ x l,m,n ]
, this line gives three sets of similar expressions.

The limits lim

T →∞ T Cov ( c x k (T ), c * x l,m,n (T )
) and lim

T →∞ T Cov ( c x k,l,m (T ), c * x n,p,q (T )
) are evaluated similarly. Finally, our symbolic calculus delivers:

• L A T E X polyspectral expressions of C x 2,4 , C ′ x 2,4 , C x 4,4
and C ′ x 4,4 similar to (4.5)(4.6), but not reproduced here due to lack of space. They are available from the authors upon request.

• Matlab function files allowing one to compute the numerical values of these expressions (see subsection 6.2).

We have chosen to consider zero-mean processes which are complex circular up to the fourth-order. Naturally our methodology can be applied to the cases of zero-mean real-valued processes or zero-mean complex processes circular up to the second-order. The only difference is due to distinct rules of elimination of the zero terms.

Noisy case

In the noisy case, the fourth-order relations are derived in the same way as for the second and third-order, thanks to the additivity of the polyspectra of x t and ϵ t .

Application to estimation of ARMA parameters

It is beyond the scope of this paper to analyze the statistical performance of the identification algorithms based on sample third-or fourth-order cumulants proposed in the literature. Instead, we unveil the influence of colored additive noise on the potential asymptotic performance of such an arbitrary algorithm. In that purpose, asymptotic lower bound for the covariance of third-or fourth-order estimators and asymptotic covariance of an arbitrary thirdor fourth order-based algorithm are considered where a special attention is given on the statistics involved.

Asymptotic lower bound on the covariance

To apply the notion of asymptotic minimum variance (AMV) estimators [START_REF] Porat | Performance analysis of parameter estimation algorithms based on high-order moments[END_REF] (also called asymptotically best consistent estimators in [START_REF] Söderström | System identification[END_REF]), the involved sample cumulants c y (T ) must satisfy three conditions:

• If Θ denotes the real-valued parameters (real and imaginary parts in the case of complex processes) of noisy ARMA model, Θ must be identifiable from c y (Θ) in the following sense:

c y (Θ) = c y (Θ ′ ) ⇒ Θ = Θ ′ 5 .
• The involved third-or fourth-order algorithms considered as mappings which associate to c y (T ), the estimate Θ(T ): c y (T ) -→ Θ(T ) = alg(c y (T )) must be real [resp. complex] differentiable w.r.t. c y (T ) at the point c y (Θ) for real-[resp. complex] valued processes.

• The covariance Σ of the asymptotic distribution of the sample cumulants c y (T ) must be nonsingular.

These two latter conditions do not raise any problem for real-valued processes. However, for complex-valued processes, c y (T ) must collect real-valued cumulants (e.g., c y 0 (T ) and c y 0,0,0 (T )) and complex valued cumulants and their conjugate (e.g., c y k (T ) and c y k * (T ) for k ̸ = 0) to satisfy the second condition (see [START_REF] Delmas | Asymptotically minimum variance second-order estimation for non-circular signal with application to DOA estimation[END_REF]). In addition, to satisfy the third condition, redundant cumulant samples must be withdrawn. In these conditions, the asymptotic covariance C Θ of an estimator of Θ given by an arbitrary third-or fourth-order algorithm is bounded below by the real symmetric positive definite matrix [F H (Θ)Σ -1 (Θ)F(Θ)] -1 :

C Θ ≥ [F H (Θ)Σ -1 (Θ)F(Θ)] -1 (6.1)
where F(Θ) def = dc y (Θ) dΘ . Furthermore, there exists a nonlinear least square algorithm (dubbed the AMV algorithm [START_REF] Porat | Performance analysis of parameter estimation algorithms based on high-order moments[END_REF]) whose covariance of the asymptotic distribution of the estimate of Θ satisfies (6.1) with equality. In practice, ϵ t is Gaussian distributed and if third-or fourth-order cumulants are considered, the parametrization Θ can be partitioned as Θ = [Θ T 1 , Θ T 2 ] T where Θ 1 collects the parameters of the ARMA filter of interest and where Θ 2 collects the parameters σ 2 u , κ 3u ,. . . ,σ 2 e of the sequences u t and e t . Consequently, the covariance of the asymptotic distribution of the minimum variance third-or fourth-order ARMA estimator is given by the top left "ARMA corner" of [F H (Θ)Σ -1 (Θ)F(Θ)] -1 . Then, because c y (Θ) is linear with respect to Θ 2 , i.e., c

y (Θ) = Ψ(Θ 1 )Θ 2 implies F = [F 1 , Ψ] with F 1 def = ∂c y (Θ)
∂Θ1 , the matrix inversion lemma gives

C Θ1 = ( F H 1 Σ -1 F 1 -F H 1 Σ -1 Ψ [ Ψ H Σ -1 Ψ ] -1 Ψ H Σ -1 F 1 ) -1 = ( F T 1 Σ -1/2 P ⊥ Σ -1/2 Ψ Σ -1/2 F 1 ) -1 , ( 6.2) 
where P ⊥ Σ -1/2 Ψ denotes the projector onto the orthogonal complement of the columns of Σ -1/2 Ψ.

Asymptotic covariance of an arbitrary third-or fourth-order estimator

The asymptotic performance of an arbitrary third or fourth order-based algorithm that estimates the ARMA parameters Θ 1 of a noisy ARMA model can be derived (see e.g., [START_REF] Porat | Digital processing of random signals, Theory and Methods[END_REF]Th.3.16]) from the asymptotic normality of [c y 2 (T ), c y 3 (T )] or [c y 2 (T ), c y 4 (T )]:

√ T (Θ 1 (T ) -Θ 1 ) L → N (0; G(Θ)Σ(Θ)G H (Θ))
where G(Θ) is the differential of the algorithm considered as a mapping, evaluated at point Θ, and Σ(Θ) is the asymptotic covariance matrix of the sample cumulants involved in the algorithm deduced from C y 2,2 , C y 2,3 , C y 3,3 for the third-order real case or C y 2,2 , C ′ y 2,2 , C y 2,4 , C ′ y 2,4 , C y 4,4 , C ′ y 4,4 for the fourth-order complex case. Our symbolic calculus translates the polyspectral expressions of these different asymptotic covariance matrices into rational fraction expressions w.r.t. the ARMA process x t and AR(1) process ϵ t coefficients, under the form of matlab function files. These files allow one to compute the numerical values of these matrices for particular values of the parameters and are available from the authors upon request. They allow the interested practitioner to evaluate the performance of third-or fourth-order algorithms by simple computation of the differential G(Θ) of the algorithm and selection of the Σ(Θ) involved. The programs giving the numerical values of (C y i,j ) i,j=2,3 and (C y i,j , C ′ y i,j ) i,j=2,4 are built along the following steps. First, each polyspectral integral expression obtained in Section 4 and 5 is symbolically expressed as functions of H(f

) def = ∑ n h n e -i2πnf
and of the transfer function G(f ) of the measurement noise generator driven by the independent Gaussian sequence e t of power σ 2 e , thanks to the relations (see e.g., [4, rel. (C-24)]) extended to the complex case:

S y (f ) = σ 2 u H * (-f )H(-f ) + σ 2 e G * (-f )G(-f ), S y (f 1 , . . . , f p ) = κ p+1u H(f 1 )H(f 2 ) . . . H(f p )H(-f 1 -f 2 . . . -f p-1 ), p > 1 (real case) S y (f 1 , . . . , f 2p-1 ) = κ 2pu H * (-f 1 )H(f 2 ) . . . H * (-f 2p-1 )H(-f 1 -f 2 . . . -f 2p-1 ), p > 1 (complex case).
Second, the transfer functions H(f ) and G(f ) are expressed in terms of the parameters of the MA process x t and AR process ϵ t (e.g., a and b in Section 6.3) and, finally, the polyspectral integrals are symbolically computed as functions of the MA and AR parameters for (L i ) i=1,...,4 fixed, thanks to the relation

∫ △ k ∑ α1 . . . ∑ α k c α1...α k e -i2π(α1f1+...+α k f k ) df 1 df 2 . . . df k = c 0...0 , where ∑ α1 . . . ∑ α k c α1...α k e -i2π(α1f1+...+α k f k )
are deduced from the polyspectral expressions evaluated as functions of H(f ) and G(f ).

Illustrative numerical examples

As examples, three experiments are proposed for which noisy MA [START_REF] Brillinger | Asymptotic theory of k-order spectra[END_REF] or MA(2) process are considered. The SNR is defined as SN R(dB) = 10log 10 (E(x 2 t )/E(ϵ 2 t )). In the two first experiments, the processes are real-valued, the input u t is exponentially distributed with mean adjusted to zero, power σ 2 u and κ ku = (k -1)!σ k u and the measurement noise ϵ t is either Gaussian i.i.d. or Gaussian AR(1), (ϵ t = e t + bϵ t-1 where e t is Gaussian i.i.d.).

In the first experiment an MA( 1) is considered where Θ 1 = a and Θ 2 = κ 3u . Fig. 1 shows the normalized asymptotic lower bound 6 for the asymptotic variance of estimates of a based on the thirdorder diagonal 7 cumulants {c y k,k (T ); k = 0, . . . , L -1} and {c y 0,k (T ); k = 1, . . . , L -1} 8 as a function of the SNR for different values of L for white noise. For k ≥ 2, the sample cumulants c y k,k (T ) and c y 0,k (T ) are consistent estimates of zero. But nevertheless, Fig. 1 shows that they contribute to improve the performance. This extends to noisy processes an observation shown in the noise-free case in [START_REF] Porat | Performance analysis of parameter estimation algorithms based on high-order moments[END_REF]. Figs. 2 and3 show the lower bound for the asymptotic variance of estimates of a (a = 0.5) based on the sample third-order cumulants (c y 0,0 (T ), c y 0,1 (T ), c y 1,1 (T )) and the asymptotic theoretical and empirical variance given by the so-called C(k, q) formula of Giannakis [START_REF] Giannakis | Cumulants: A powerful tool in signal processing[END_REF] (a(T ) = c y 1,1 (T )/c y 0,1 (T )) respectively for white and AR(1) noise (b = 0.99) as a function of the SNR. Because

G(Θ) = [ -1 κ3 u , 1 aκ3 u ] = (1+a 2 ) 3/2 2σ 3 x [ -1, 1 a ]
, we note that from the 6 The normalized asymptotic lower bounds and asymptotic theoretical variances are computed for T = 1. That means that the actual asymptotic lower bounds and asymptotic theoretical variances are obtained from the results given here by dividing by T . 7 We restrict this example to diagonal cumulants because the off-diagonal third-order cumulants carry almost no additional information beyond the information in the diagonal ones in the MA(1) process case, as it was shown in the noise-free case in [START_REF] Porat | Performance analysis of parameter estimation algorithms based on high-order moments[END_REF]. 8 The cumulants in the second set are called diagonal because of the relationship c y 0,k = c y -k,-k .

expression of C y 3,3 given in Section 4.2, we get for the C(k, q) estimator: lim

T →∞ T Var(a(T )) = v 0 + [ β 1 ( σ 2 ϵ σ 2 x ) + β 2 ( σ 4 ϵ σ 4 x ) + β 3 ( σ 6 ϵ σ 6 x ) ] (6.3)
where v 0 does not depend on the powers of x t and ϵ t . We see from these two figures that below a certain threshold (which is typically related to the noise spectrum), the asymptotic variance of the estimate of a grows rapidly with the noise level. Beyond this threshold (for SNR> 10dB [resp. SNR> 20dB] for white noise [resp. AR(1) noise]), the asymptotic variance is approximately constant. This proves that the AMV3 and the C(k, q) algorithms are insensitive to noise in a large domain. Furthermore, we note that contrary to the asymptotic lower bound, the asymptotic variance given by the C(k, q) algorithm strongly degrades for sharp resonant AR(1) noise compared to white noise of the same power. (2) Fig. 2 Third-order asymptotic lower bound (1) and asymptotic theoretical and empirical (averaged on 100 independent Monte Carlo runs) variance given by the C(k, q) formula (2) as a function of the SNR for T = 10 5 . (2) Fig. 3 Third-order asymptotic lower bound (1) and asymptotic theoretical and empirical (averaged on 100 independent Monte Carlo runs) variance given by the C(k, q) formula (2) as a function of the SNR for T = 10 5 .

Figs. 4 and5 show the asymptotic lower bound and the asymptotic theoretical and empirical variance given by the C(k, q) algorithm as a function of the parameter b of the AR(1) noise ϵ t and of the parameter a of the MA(1) process x t , respectively.

We see that the performance is very sensitive to the spectrum of the MA(1) process x t , but relatively insensitive to the spectrum of the additive noise ϵ t except when b approaches 1 [see (4.9)] where the performance of any third order-based gorithm dramatically degrades. We note that the asymptotic variance given by the C(k, q) algorithm attains the asymptotic lower bound for a = 1 9 and is inadequate to estimate a parameter a close to zero. (2) Fig. 5 Third-order asymptotic lower bound (1) and asymptotic theoretical and empirical (averaged on 1000 independent Monte Carlo runs) variance given by the C(k, q) formula (2) as a function of the MA parameter a for b = 0.5, SN R = 10dB and T = 10 4 .

Figs. 6a and6.b show the theoretical asymptotic lower bound and the empirical asymptotic variance given by the AMV3 and the C(k, q) algorithms as a function of the number T of samples for two values of SNR. We see that the domain of validity of our asymptotic analysis roughly do not depend on the algorithm, but is sensitive to the SNR. Naturally this domain of validity increases with increasing SNR (T > 4000 for SN R = 0dB and T > 1000 for SN R = 20dB). Fig. 6a Third-order theoretical asymptotic lower bound and empirical (averaged on 1000 independent Monte Carlo runs) asymptotic variance given by the AMV3 (1) and C(k, q) (2) algorithms as a function of T , for a = 0.5, b = 0.5 and SNR=0dB. Fig. 6b Third-order theoretical asymptotic lower bound and empirical (averaged on 1000 independent Monte Carlo runs) asymptotic variance given by the AMV3 (1) and C(k, q) (2) algorithms as a function of T , for a = 0.5,b = 0.5 and SNR=20dB.

In the second experiment an MA(2) process is considered where Θ 1 = (a 1 , a 2 ) T and Θ 2 = κ 3u . Fig. 7a [resp. 7b] shows the normalized asymptotic lower bound and theoretical variance given by the C(k, q) algorithm for the estimated parameters a 1 [resp. a 2 ] as a function of the parameters a 2 [resp. a 1 ] of the MA(2) process x t . As for the MA(1) case, we see that the performance is very sensitive to the value of the MA parameters. As for MA(1), we see that the performance is very sensitive to the spectrum of x t . We note that contrary to the MA(1) case, no algorithm is adequate to estimate a parameter a 2 close to zero. Furthermore, the performance of the C(k, q) algorithm is practically uniformly optimal among the class of third order-based algorithms. Fig. 7a Third-order theoretical asymptotic lower bound and empirical (averaged on 1000 independent Monte Carlo runs) asymptotic variance given by the AMV3 and C(k, q) algorithms for the estimated parameter a1 as a function of a2 for a1 = 0.8, b = 0.5, SN R = 10dB and T = 10 5 .

- In the third experiment, the processes are complex-valued, the input u t is a 8PSK modulation with power σ 2 u and κ 4u = -σ 4 u , κ 6u = 4σ 6 u , κ 8u = -33σ 8 u 10 and ϵ t is either complex circular Gaussian i.i.d. or AR(1) (ϵ t = ϵ t-1 + be t where e t complex circular Gaussian i.i.d.).

Figs. 8 and9 show the normalized lower bound for the asymptotic variance (Tr(C Θ1 ))

of estimates of a (a = 0.5e i π 4 ) based on the sample fourth-order cumulants c y (T ) def = {c y 0,0,0 (T ), c y 0,0,1 (T ), c y 0,1,0 (T ), c y 0,1,1 (T ), c y 1,0,1 (T ), c y 1,1,1 (T )} 11 and the normalized asymptotic variances given by the so-called C(k, q) formula (1) extended to the complex case and by the following modified C(k, q) formulae (2)(3):

• a(T ) = c y 0,1,1 (T )/c y 0,0,1 (T )) (1),

• a(T ) = c y 1,0,1 (T ) * /c y 0,0,1 (T ) * because c 1,0,1 = κ 4u a * 2 and c 0,0,1 = κ 4u a * (2),

• a(T ) = c y 1,1,1 (T )/c y 1,0,1 (T ) because c 1,1,1 = κ 4u a * |a| 2 and c 1,0,1 = κ 4u a * 2 (3),
for white and AR(1) noise (b = 0.999) as a function of the SNR. We note that here Θ 1 = (ℜ(a), ℑ(a)) T and Θ 2 = κ 4u . Similarly to the third-order case, we see from these two figures that beyond a certain threshold, the asymptotic lower bound and the asymptotic variance of the estimate of a grows rapidly with the noise level. Beyond this threshold (for about SNR> 15dB), the asymptotic variance is approximately constant. Furthermore, we see 10 Because for up to fourth-order circular processes κ6 u = E|u ), we note that, c y 0,0,0 (T ), c y 0,1,1 (T ) = c y 1,1,0 (T ) are real valued, c y 0,0,1 (T ) = c y 1,0,0 (T ) = c y 0,1,0 * (T ) are complex valued. Consequently the statistic c y (T ) used for the AMV4 estimator is composed of {c y 0,0,0 (T ), c y 0,1,1 (T ), c y 0,0,1 (T ), c y 1,0,1 (T ), c y 1,1,1 (T ), c y 0,0,1 * (T ), c y 1,0,1 * (T ), c y 1,1,1 * (T )}.

that below this threshold, the asymptotic variances given by all the C(k, q) algorithms grow more rapidly than in the third-order with the noise level as anticipated from the relation (6.3) extented to the fourth-order case lim

T →∞ T Var(a(T )) = v 0 + [ β 1 ( σ 2 ϵ σ 2 x ) + β 2 ( σ 4 ϵ σ 4 x ) + β 3 ( σ 6 ϵ σ 6 x ) + β 4 ( σ 8 ϵ σ 8 x )
] .

We see that the C(k, q) formula outperforms the modified C(k, q) formulae except for small SNR where their performance is similar. Furthermore, we note that contrary to all the C(k, q) formulae whose performance degrades for AR(1) noise compared to white noise of the same power, the AMV estimate improves for small SNR. Consequently, there must be fourth-order algorithms much more efficient than the C(k, q) formulae for small SNR. 

(3) white noise Fig. 8 Fourth-order normalized asymptotic lower bound (AMV4) and variances given by the C(k, q) formulae (1)(2)(3) as a function of the SNR. Fig. 10 shows the normalized asymptotic lower bound based on c y (T ) (AMV4), the normalized asymp-totic lower bound based on the statistics used in the C(k, q) formula (1) and the modified C(k, q) formula (2), i.e., based on c y ′ (T ) def = {c y 0,1,1 (T ), c y 0,0,1 (T ), c y 1,0,1 (T ), c y 0,0,1 * (T ), c y 1,0,1 * (T )} (AMV4') and the normalized asymptotic variance given by the C(k, q) formula (1) and by the modified C(k, q) formulae ( 2) and (3) as a function of the parameter b of the AR(1) noise ϵ t . Because these variances are relatively constant and symmetric w.r.t. zero, we focus on the [0.999 1] domain of b where only the performance of the C(k, q) formulae degrades when b approaches ±1. The AMV4 and the AMV4' are relatively insensitive to the spectrum of the additive noise ϵ t including in the immediate vicinity of ±1. Fig. 11 shows the asymptotic lower bound based on c y (T ) (AMV4) and the asymptotic theoretical and empirical variance given by the C(k, q) formula (1), by the modified C(k, q) formulae ( 2) and (3) as a function of the parameter a ′ (a = a ′ e i π 4 with a ′ ∈ (-2, +2)) of the MA(1) process x t . We see that the performance is very sensitive to the spectrum of the MA(1) process x t . Furthermore, we note that there is no uniformly minimum variance estimator among the three C(k, q) formulae which are inadequate to estimate a parameter a close to zero. 

(3) AMV4 Fig. 11 Fourth-order asymptotic lower bound (AMV4) and asymptotic theoretical and empirical (averaged on 100 independent Monte Carlo runs) variance given by the C(k, q) formulae ( 1),( 2) and (3) as a function of the MA parameter a ′ for b = 0.999, SN R = 10dB and T = 10 5 .

Finally, Fig. 12 shows the normalized asymptotic lower bound for the asymptotic variance of estimates of a computed for three different cases: when the statistic c y (T ) consists of the sample covariances only12 {c y 0 (T ), c y 1 (T ), c y 1 (T ) * } (AMV2), when the statistic c y (T ) consists of the sample fourthorder cumulants only {c y 0,0,0 (T ), c y 0,1,1 (T ), c y 0,0,1 (T ), c y 1,0,1 (T ), c y 1,1,1 (T ), c y 0,0,1 * (T ), c y 1,0,1 * (T ), c y 1,1,1 * (T )} (AMV4) and when the statistic c y (T ) consists of the preceding sample covariances and sample fourth-order cumulants (AMV24). This figure also exhibits the normalized asymptotic variance given by the C(k, q) formulae (1)(2)(3). In order for the parameter a to be identifiable from the sample covariance only, this figure is drawn in the noise free case. As we see from this figure, there is a considerable amount of information in the fourth-order sample cumulants compared to the information in the sample covariances. Furthermore, we note that contrary to the noisy case, the AMV vanishes for a parameter a close to zero. 

(3) Fig. 12 Fourth-order normalized asymptotic lower bound based on sample covariances only (AMV2), on sample fourthorder cumulants only (AMV4) and on sample covariances and fourth-order cumulants (AMV24) and normalized asymptotic variance given by the C(k, q) formulae (1)(2)(3) as a function of the MA parameter a ′ .

Naturally, these examples are totally inadequate for predicting the asymptotic performance of a specific third-or fourth-order algorithm in the presence of additive colored noise. They simply show the potentially large sensitivity of the asymptotic performance of an arbitrary algorithm to the spectra of the linear process and of the colored noise.

Conclusion

This paper has extended Bartlett's formula to the third-and fourth-order and to noisy linear processes thanks to a polyspectral approach and a symbolic calculus akin a high level language. As an application of these closed-form expressions, the sensitivity of the asymptotic performance of the estimated ARMA parameters by an arbitrary third or fourth order-based algorithm to the SNR, the spectra of the linear process, and the colored additive noise is addressed. Such sensitivity analysis has been possible thanks to the numerical expressions derived from our theoretical expressions, whereas Monte-Carlo simulations have accommodated only particular scenarios until now. As an example, the asymptotic lower bound for the variances of third-or fourth-order algorithms are compared to the asymptotic variances given by the so-called C(k, q) algorithms for non-Gaussian first or secondorder MA processes corrupted by a Gaussian first-order AR process with respect to the SNR and to the MA and AR parameters. In particular we have shown that the performance presents a threshold effect with respect to the SNR and are very sensitive to the spectrum of the MA process, but relatively insensitive to the AR spectrum except for sharp resonances.

A Appendix: Proof of eq. (4.5)

Because

∫ △ e i2πf τ df = 1 if τ = 0 and

∫ △ e i2πf τ df = 0 if τ ̸ = 0, ∑ t Cum(x 0 , x k , x t , x t+l , x t+m ) = ∫ △ 3 ∑ t1 ∑ t ∑ t2 ∑ t3 c x
t1,t,t2,t3 e -i2π[f1(t1-k)+f2(t2-t-l)+f3(t3-t-m)] df 1 df 2 df 3

= ∫ △ 3 S x (f 1 , -f 2 -f 3 , f 2 , f 3 )e i2π[f1k+f2l+f3m] df 1 df 2 df 3
and S x (f 1 , -f 2 -f 3 , f 2 , f 3 ) = S x (f 1 , -f 1 , f 2 , f 3 ) from [START_REF] Mendel | Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications[END_REF]. Then looking at each term of ∑ t Cum(x 0 , x k , x t )Cum(x t+l , x t+m ) [START_REF] Dandawaté | Asymptotic theory of mixed time averages and k-th-order cyclicmoment and cumulant statistics[END_REF], there appears a term c x k c x l,m which vanishes in (4.1), three terms of the form ∑ t c x α c x β,t+γ and six terms of the form ., e i2π(L-1)f k ) T and e k,l def = (1, e i2π(f k +f l ) , .., e i2π(L-1)(f k +f l ) ) T , e k,l,m def = (1, e i2π(f k +f l +fm) , .., e i2π(L-1)(f k +f l +fm) ) T , k, l, m = 1, 2, 3, (L = L 2 in the first three eqs. and L = L 3 elsewhere).

C Appendix: Proof of eq. (4.9) ) .

Because S ϵ (f 1 ) = ∑ k σ 2 ϵ b |k| e -i2πkf1 , ∫ △ 2 S ϵ (f 1 )S ϵ (f 2 )S ϵ (f 1 + f 2 )df 1 df 2 = ∫ △ 2

Fig. 1

 1 Fig.1 Third-order normalized lower bound for the asymptotic variance of estimates of a as a function of the SNR for different values of L.

Fig. 4

 4 Fig.4Third-order asymptotic lower bound (1) and asymptotic theoretical and empirical (averaged on 1000 independent Monte Carlo runs) variance given by the C(k, q) formula (2) as a function of the noise parameter b for a = 0.5, SN R = 10dB and T = 10 4 .
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  Fig.7bThird-order theoretical asymptotic lower bound and empirical (averaged on 1000 independent Monte Carlo runs) asymptotic variance given by the AMV3 and C(k, q) algorithms for the estimated parameter a2 as a function of a1 for a2 = 0.5, b = 0.5, SN R = 10dB and T = 10 5 .

Fig. 9

 9 Fig.9Fourth-order normalized asymptotic lower bound (AMV4) and variances given by the C(k, q) formulae (1)(2)(3) as a function of the SNR.

Fig. 10

 10 Fig.10Fourth-order normalized asymptotic lower bounds (AMV4) (AMV4') and normalized asymptotic variance given by the C(k, q) formulae (1)(2)(3) as a function of the noise parameter b for a = 0.5e i π 4 and SN R = 10dB.

2 SS 2 S

 22 e -i2π[f1(t1-β)+0t] df 1 = c x α ∫ △ S x (f 1 , 0)e i2πf1β df 1 = ∫ △ x (f 1 , 0)S x (f 2 )e i2π[f1β+f2α] df 1 df 2 , x (f, f 1 )e i2π[f β+f1γ] df 1 ]e i2πf α df = ∫ △ x (f 1 )S x (f 1 , f 2 )e i2π[f1(α+β)+f2γ] df 1 df 2because the second term is a convolution product of c x τ and c x τ +β,γ at the point τ = α, since ∫ △ S x (f, f 1 )e i2π[f β+f1γ] df 1 is the Fourier transform of the sequence (c x τ +β,γ ) τ ∈Z . Combining these groups of terms, the matrix expression (4.5) is obtained.B Appendix: Expressions of the different matrices E (i) j of Section 4Our symbolic algorithm gives rels. (4.5) and(4.6) where matrices E (i) j are composed of finite sums of e i2π(f1a1+f2a2+f3a3) defined by the following:

6 ϵ

 6 b |l| b |k| b |m| e -i2π[(k+m)f1+(l+m)f2] df 1 df 2

  So, the polyspectra of y t , x t and ϵ t are defined up to the fifth-order S ϵ (f 1 , f 2 , . . . , f p ) So, the polyspectra of y t , x t and ϵ t are defined up to the seventh-order

	Cum(ϵ t1 , . . . , ϵ t6 ) satisfying	∑ t1 . . .	2 t ) t1,t2,...,t5 | < ∞. def t5 |c ϵ ∑ = ∑ . . . ∑ def = σ 2 ϵ and with sixth-order cumulants c ϵ t2-t1,...,t6-t1 c ϵ t1,...,tp e -i2π(t1f1+...+tpfp) .	def =
			t1	tp
	And in Sections 5, ϵ t is circular complex-valued with E|ϵ 2 t | Cum(ϵ t1 , ϵ * t2 , . . . , ϵ t 2k-1 , ϵ * t 2k . . . , ϵ * t8 ) satisfying ∑ t1 . . . ∑ t7 |c ϵ def = σ 2 ϵ and with eighth-order cumulants c ϵ t2-t1,...,t8-t1 t1,t2,...,t7 | < ∞.	def =

  + e 1 e T 3 ⊗ e 3 e T 2 + e 1 e T 2 ⊗ e 3 e T 3 + e 3 e T 3 ⊗ e 1 e T 2 + e 3 e T 2 ⊗ e 1 e T 3 + e * 2,3 e H 1,3 ⊗ e 2 e T + e 0 e T 1 ⊗ e 3 e T 2 + e 3 e T 1 ⊗ e 0 e T 2 + e 1 e T 3 ⊗ e 2 e H 3 + e 1 e T 3 ⊗ e 2 e T 0 + e 1 e T 0 ⊗ e 2 e T ⊗ e 2,3 e T 3 + e 1 e T 3 ⊗ e 2,3 e H 2,3 + e 1 e T 2 ⊗ e 2,3 e T 3 + e 2,3 e H 2,3 ⊗ e 1 e T

		T 2 ⊗ e T 1 + e T 1 ⊗ e T 2 + e H 1,2 ⊗ e T 2 ) + e 1 (e T 2 ⊗ e T 1 + e T 1 ⊗ e T 2 + e H 1,2 ⊗ e T 2 )
	E (2) 1,2	def = e 1 (e T 2 ⊗ e H 2 + e T 0 ⊗ e T 2 + e T 2 ⊗ e T 0 )
	E 1,2,3,4	def = e 1 e T 3 ⊗ e 2 e T 4
	E (1) 1,2,3	def = e 2 e T 1 ⊗ e * 2,3 e T 3 + e 2 e T 3 ⊗ e * 2,3 e T 1 + e 1 e T 2 ⊗ e 3 e H 2,3 + e 3 e T 2 ⊗ e 1 e H 2,3
		1
	E (2) 1,2,3	def = e 3 e T 1 ⊗ e * 3 e T 2 3
	E (3) 1,2,3	def = e 1 e H 2,3 3
		+ e 2,3 e T 3 ⊗ e 1 e H 2,3 + e 2,3 e T 2 ⊗ e 1 e T 3 + e 1 e T 2 ⊗ e * 1,2,3 e T 3 + e 1 e H 2,3 ⊗ e * 1,2,3 e T 3
		+ e 1 e T 3 ⊗ e * 1,2,3 e H 2,3
	E (3) 1,2	def = e 1 e T 2 ⊗ e 0 e H 2 + e 1 e T 0 ⊗ e 0 e T 2 + e 1 e T 2 ⊗ e 0 e T 0 + e 0 e T 2 ⊗ e 1 e H 2 + e 0 e T 0 ⊗ e 1 e T 2 + e 0 e T 2 ⊗ e 1 e T 0
		+ e 1 e T 2 ⊗ e * 1 e H 2 + e 1 e T 0 ⊗ e * 1 e T 2 + e 1 e T 2 ⊗ e * 1 e T 0
	E (4) 1,2	def = e * 2 e T 2 ⊗ e 1,2 e H 1,2 + e * 2 e H 1,2 ⊗ e 1,2 e T

2 + e * 2 e T 1 ⊗ e 1,2 e H 1,2 + e 1,2 e T 1 ⊗ e * 2 e H 1,2 + e * 2 e H 1,2 ⊗ e 1,2 e T 1 + e 1,2 e H 1,2 ⊗ e * 2 e T 1 where e 0 def = (1, . . . , 1) T , e k def = (1, e i2πf k , .

We note that the definition of Θ depends on the choice of the cumulants c y and the a priori knowledge on the distribution of the measurement noise ϵt.

This property has been confirmed for all values of b and SNR, but we have not succeded in proving it analytically.

As estimation methods based on the sample covariances only cannot distinguish between non-minimum phase and minimum phase processes having the same spectrum, the bound for this case applies only to estimators that are based on prior knowledge of the zero locations within a sufficiently small error.