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Extension of the matrix Bartlett’s formula

to the third and fourth-order and to noisy linear models

with application to parameter estimation

Jean-Pierre Delmas, Yann Meurisse

Abstract

This paper focuses on the extension of the asymptotic covariance of the sample covariance (denoted
Bartlett’s formula) of linear processes to third- and fourth-order sample cumulant and to noisy linear
processes. Closed-form expressions of the asymptotic covariance and cross-covariance of the sample
second-, third- and fourth-order cumulants are derived in a relatively straightforward manner thanks
to a matrix polyspectral representation and a symbolic calculus akin to a high level language. As an
application of these extended formulae, we underscore the sensitivity of the asymptotic performance
of estimated ARMA parameters by an arbitrary third- or fourth order-based algorithm with respect
to the signal to noise ratio, the spectra of the linear process, and the colored additive noise.
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1 Introduction

The problem of estimating the parameters of linear time-invariant nonminimum phase systems when only output
data are available from higher-order statistics has been intensively studied. The use of the cumulants in time series
analysis has a long-back history, starting with the classical paper of Brillinger and Rosenblatt [1] (see also the
Brillinger’s book [2]). Giannakis [3] was the first to show that the parameters of a qth-order MA system can be
calculated from only the system’s output cumulant with his third- and fourth-order formulae. From this pioneering
work, many contributions have dealt with higher-order statistics based algorithms to estimate the MA, AR, ARMA
parameters of linear systems driven by an independent and identically distributed non-Gaussian sequence corrupted
(or not) by additive Gaussian noise that may be colored (see e.g., [4]-[8] and the reference therein).

The statistical performance of the proposed algorithms has been analyzed only by Monte-Carlo simulations
except to our knowledge in the work by Porat and Friedlander [5] and by Dandawaté and Giannakis [9][10]. This
former work gives closed-form expressions for the asymptotic variances and covariances of the sample third-order
moments of ARMA processes, thanks to a state-space representation focused on the noise-free case only. The
latter work is dedicated to estimates of the asymptotic variances and covariances of sample kth-order cumulants of
arbitrary mixtures of deterministic, stationary and non-stationary processes satisfying a mixing condition, based
on smoothed cross periodograms.

The purpose of this paper is to give closed-form expressions of the asymptotic variances and covariances of the
sample third- and fourth-order cumulants of linear processes corrupted by an additive white or colored Gaussian or
non-Gaussian noise. In addition, naturally, this work provides tools for performance evaluation and comparison of
identification algorithms based on sample third- or fourth-order cumulants in these conditions. The computation
of each asymptotic variance/covariance in the noisy case turns to be a very tedious task. For example, for zero-
mean real-valued processes, the number of terms is 222 [resp. 6022] to express variance/covariance of the sample
third-order [resp. fourth-order] moments in the noisy case to 41 [resp. 715] terms in the noise-free case. To
overcome this computational difficulty, we propose in this paper to start from another point of view, and to derive
these variance/covariance via a matrix polyspectral approach. As a result, the complexity of the derivation of
these different terms will not increase from the noise-free to the noisy case. Furthermore, to avoid overly laborious
calculations, we use a symbolic calculus akin to a high level language.

This paper is organized as follows. After the data model and some notations are given in Section 2, the
second-order Bartlett’s formula is recalled in Section 3 and expressed in a matrix polyspectral closed-form in the
noisy case for real-valued processes. This approach is extended in Section 4 and 5 to the third- and fourth-order
respectively. Because the derivation developped for the second-order would be very tedious, a symbolic algorithm
based on a few well defined rules is used. Matrix closed-form expressions of the asymptotic covariance of the third-
order sample moment and the asymptotic cross-covariance between the second and third-order sample moments
are given in the noisy case for zero-mean real-valued processes in Section 4. For the fourth-order, we focus on
zero-mean complex processes circular up to the fourth-order as examples in Section 5, where we get closed-form
expressions of the asymptotic covariance of the second and fourth-order sample cumulants and the asymptotic
cross-covariances between the second and fourth-order sample cumulants in the noisy case. Finally, the sensitivity
of the asymptotic performance of the estimated ARMA parameters by an arbitrary third or fourth order-based
algorithm to the signal to noise ratio (SNR), the spectra of the linear process, and the colored additive noise is
addressed in Section 6. As an example, the asymptotic lower bound for the variances of third- or fourth-order
algorithms are compared to the asymptotic variances given by the so-called C(k, q) algorithms for non-Gaussian
first or second-order moving average processes [abbreviated as MA(1) and MA(2) in the sequel] corrupted by a
Gaussian first-order autoregressive process (abbreviated as AR(1) in the sequel).

The following notations are used throughout the paper. The range of all summations is understood to be from
−∞ to ∞ except the specified summations and the range of all integrations is △ = [−1/2, 1/2]. Cov(x,y) is used
for real and complex-valued random vectors and means E(xyT )− E(x)E(yT ).

2 Data model

Consider the following linear process:
xt =

∑
n

hnut−n

where hn is real-valued in Sections 3 and 4 [resp. complex-valued in Section 5] with
∑

n |hn| < ∞ and the
observation of xt is noisy:

yt = xt + ϵt.

The input sequence ut is zero-mean, independent and identically distributed, and non-Gaussian, real-valued with

κ3u
def
= E(u3

t ) ̸= 0 and E(u6
t ) < ∞ in Sections 3 and 4 [resp. complex-valued, circular up to the fourth-order with
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κ4u
def
= E|u4

t | − 2(E|u2
t |)2 ̸= 0 and E|ut|8 < ∞ in Section 5]. The measurement noise sequence ϵt is assumed to

be zero-mean, colored stationary with unknown power spectrum and is independent of ut. In Sections 3 and 4,

ϵt is real-valued Gaussian or non-Gaussian, with E(ϵ2t )
def
= σ2

ϵ and with sixth-order cumulants cϵt2−t1,...,t6−t1

def
=

Cum(ϵt1 , . . . , ϵt6) satisfying
∑

t1
. . .
∑

t5
|cϵt1,t2,...,t5 | < ∞. So, the polyspectra of yt, xt and ϵt are defined up to the

fifth-order
Sϵ(f1, f2, . . . , fp)

def
=
∑
t1

. . .
∑
tp

cϵt1,...,tpe
−i2π(t1f1+...+tpfp).

And in Sections 5, ϵt is circular complex-valued with E|ϵ2t |
def
= σ2

ϵ and with eighth-order cumulants cϵt2−t1,...,t8−t1

def
=

Cum(ϵt1 , ϵ
∗
t2 , . . . , ϵt2k−1

, ϵ∗t2k . . . , ϵ
∗
t8) satisfying

∑
t1
. . .
∑

t7
|cϵt1,t2,...,t7 | < ∞. So, the polyspectra of yt, xt and ϵt are

defined up to the seventh-order

Sϵ(f1, f2, . . . , f2p−1)
def
=
∑
t1

. . .
∑
t2p−1

cϵt1,...,t2p−1
e−i2π(t1f1+...+t2p−1f2p−1).

In Sections 3 and 4, the second-order moment cxk
def
= E(xtxt+k) and third-order moment cxk,l

def
= E(xtxt+kxt+l)

are estimated from T consecutive mesurements by the associated sample moments: cxk(T )
def
= 1

T

∑T
t=1 xtxt+k

and cxk,l(T )
def
= 1

T

∑T
t=1 xtxt+kxt+l

1. These moments are stacked in the vectors cx2
def
= (cx0 , . . . , c

x
L2−1)

T ,

cx3
def
= (cx0,0, c

x
0,1, . . . , c

x
0,L3−1, c

x
1,0, . . . , c

x
L3−1,L3−1)

T , cx2(T ) and cx3(T ) are defined in the same way. In Sec-

tion 5, the second-order moment cxk
def
= E(xtx

∗
t+k) and fourth-order cumulant cxk,l,m

def
= E(xtx

∗
t+kxt+lx

∗
t+m) −

E(xtx
∗
t+k)E(xt+lx

∗
t+m) − E(xtx

∗
t+m)E(xt+lx

∗
t+k) are estimated from T consecutive mesurements by the associ-

ated sample cumulants: cxk(T ) and cxk,l,m(T ). These cumulants are stacked in increasing order in the vectors

cx4
def
= (cx0,0,0, c

x
0,0,1, . . . , c

x
L4−1,L4−1,L4−1)

T and cx4(T ) is defined in the same way.

3 Second-order Bartlett’s formula

3.1 Noise-free case

Under the above assumptions, cx2(T ) is asymptotically Gaussian (see e.g., [11, Th. 3.3 ]):

√
T (cx2(T )− cx2)

L→ N (0;Cx
2,2)

where
L→ stands for convergence in distribution and Cx

2,2 = limT→∞ TCov (cx2(T ), c
x
2(T )) is given by Bartlett’s

formula (see e.g. [12, rel. 6, p. 255]):

lim
T→∞

TCov (cxk(T ), c
x
l (T )) =

∑
t

(
cxt c

x
t+k−l + cxt+kc

x
t−l + cxt+k,t,l

)
.

Using Parseval’s theorem and the Fourier relationship between the covariance and the spectral density Sx(f) of xt

and between the fourth-order cumulant and the trispectrum Sx(f1, f2, f3) of xt, we get the following alternative
matrix polyspectral Bartlett’s formula:

Cx
2,2 =

∫
△
S2
x(f)[e(f)e

H(f) + e(f)eT (f)]df +

∫
△2

Sx(f1,−f1, f2)e(f1)e
T (f2)df1df2 (3.1)

with e(f)
def
= (1, ei2πf , . . . , ei2π(L2−1)f )T where T and H stand for transpose and conjugate transpose respectively.

We note that an elementwise counterpart of this relation was derived in [2, rel. 5.10.15] by another approach.

3.2 Noisy case

Under the assumptions of Section 2, the asymptotic normality and (3.1) apply in the noisy case, by replacing xt

by yt = xt + ϵt. Furthermore, from the independence assumption, Sy(f) = Sx(f) + Sϵ(f) and Sy(f1, f2, f3) =

1We note that both cxk(T ) and cxk,l(T ) can be defined in several other ways, differing in the manner in which the end data
are treated. But all these definitions are asymptotically equivalent.
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Sx(f1, f2, f3) + Sϵ(f1, f2, f3), and thus there holds:

Cy
2,2 = Cx

2,2 + 2

∫
△
Sϵ(f)Sx(f)[e(f)e

H(f) + e(f)eT (f)]df +

∫
△
S2
ϵ (f)[e(f)e

H(f) + e(f)eT (f)]df

+

∫
△2

Sϵ(f1,−f1, f2)e(f1)e
T (f2)df1df2. (3.2)

We note that the last term of (3.2) vanishes if the additive noise is Gaussian.

4 Third-order Bartlett’s formula

4.1 Noise-free case

Under the assumptions of Section 2, [cx2(T ), c
x
3(T )] is asymptotically Gaussian (see e.g., [1]):

√
T

(
cx2(T )− cx2
cx3(T )− cx3

)
L→ N

((
0
0

)
;

(
Cx

2,2 Cx
2,3

Cx
2,3

T Cx
3,3

))
where Cx

2,3 = limT→∞ TCov (cx2(T ), c
x
3(T )) and Cx

3,3 = limT→∞ TCov (cx3(T ), c
x
3(T )), and it is straightforward to

get (see e.g., [13, rel.10.5.2]):

lim
T→∞

TCov
(
cxk(T ), c

x
l,m(T )

)
=

∑
t

[
E(x0xkxtxt+lxt+m)− cxkc

x
l,m

]
(4.1)

lim
T→∞

TCov
(
cxk,l(T ), c

x
m,n(T )

)
=

∑
t

[
E(x0xkxlxtxt+mxt+n)− cxk,lc

x
m,n

]
. (4.2)

To proceed, deducing relations similar to eq. (3.1) along the same lines is possible in principle but such a derivation
would be extremely tedious. A much more interesting approach, which consists of devising a symbolic calculus
akin to a high level language, is used. Based on a few well defined rules, this algorithm allows us to automatically
perform the following steps:

• Generate all partitions given by the cumulants-to-moments formula (Leonov Shiryaev formula) [13, Th.10.1]
expressing the fifth- (E(x0xkxtxt+lxt+m) of (4.1)) and sixth-order moments (E(x0xkxlxtxt+mxt+n) of (4.2))
as functions of sums of products of cumulants;

• Eliminate the zero terms using the zero-mean property;

• Construct sets of similar expressions w.r.t. the number of terms xt+a in each product of cumulants. For
each such set of similar expressions (3 sets for E(x0xkxtxt+lxt+m) and 6 sets for E(x0xkxlxtxt+mxt+n)), a
representative term is chosen to be analytically expressed by a polyspectral formula, as proved in Appendix
A.

Consequently, using the (.) notation introduced in [14] to avoid listing explicitly all the partitions, we obtain:

E(x0xkxtxt+lxt+m) = Cum(x0, xk, xt, xt+l, xt+m)

+ Cum(x0, xk, xt)Cum(xt+l, xt+m)(10) (4.3)

E(x0xkxlxtxt+mxt+n) = Cum(x0, xk, xl, xt, xt+m, xt+n)

+ Cum(x0, xk, xl, xt)Cum(xt+m, xt+n)(15)

+ Cum(x0, xk, xl)Cum(xt, xt+m, xt+n)(10)

+ Cum(x0, xk)Cum(xl, xt)Cum(xt+m, xt+n)(15).

And an example, the expression Cum(x0, xk, xt)Cum(xt+l, xt+m)(10) can be broken down into three sets:

Cum(x0, xk, xt)Cum(xt+l, xt+m)(10)

= cxt+m−kc
x
l,−t + cxt+l−kc

x
m,−t + cxt c

x
m−l,−t+k−l + cxt−kc

x
m−l,−t−l + cxt+lc

x
m,−t−k + cxt+mcxl,−t+k

+cxm−lc
x
k,t + cxmcxk,t+l + cxl c

x
k,t+m (4.4)

+cxkc
x
l,m
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and the last term cancels with −cxkc
x
l,m in summation (4.1). So, this expression reduces to two sets of similar

expressions. Using expressions (4.1), (4.3) and (4.4) the following matrix polyspectral extensions of Bartlett’s
formula is proved in Appendix A, where each polyspectral integral is associated with a set of the previous similar
expressions:

lim
T→∞

TCov (cx2(T ), c
x
3(T )) =

∫
△3

Sx(f1,−f1, f2, f3)E1,2,3df1df2df3

+

∫
△2

Sx(f1, f2)Sx(f1)E
(1)
1,2df1df2 +

∫
△2

Sx(f1, 0)Sx(f2)E
(2)
1,2df1df2, (4.5)

where matrices E1,2,3, E
(1)
1,2 and E

(2)
1,2 are defined in Appendix B.

With the same procedure, the following matrix polyspectral formula is derived from (4.2):

lim
T→∞

TCov (cx3(T ), c
x
3(T )) =

∫
△4

Sx(f1, f2, f3, f4,−f3 − f4)E1,2,3,4df1df2df3df4

+

∫
△3

Sx(f1, f3)Sx(f2, f3)E
(1)
1,2,3df1df2df3 +

∫
△3

Sx(f1, f2, 0)Sx(f3)E
(2)
1,2,3df1df2df3

+

∫
△3

Sx(f1, f2, f3)Sx(f2 + f3)E
(3)
1,2,3df1df2df3 +

∫
△2

Sx(0)Sx(f1)Sx(f2)E
(3)
1,2df1df2

+

∫
△2

Sx(f1)Sx(f2)Sx(f1 + f2)E
(4)
1,2df1df2, (4.6)

where the different matrices E
(i)
j are defined in Appendix B.

4.2 Noisy case

In the noisy case, the third-order relations are derived in the same way as for the second-order, because the
independence of xt and ϵt ensures the additivity of their polyspectra. Therefore, for example, for additive Gaussian
noise, we get from (4.5) and (4.6):

Cy
2,3 = Cx

2,3

+

∫
△2

Sϵ(f2)Sx(f1, 0)E
(1)
1,2df1df2 +

∫
△2

Sϵ(f1)Sx(f1, f2)E
(2)
1,2df1df2 (4.7)

Cy
3,3 = Cx

3,3

+

∫
△3

Sϵ(f2 + f3)Sx(f1, f2, f3)E
(3)
1,2,3df1df2df3 +

∫
△3

Sϵ(f3)Sx(f1, f2, 0)E
(3)
1,2,3df1df2df3

+

∫
△2

[Sϵ(f2)Sx(0)Sx(f1) + Sϵ(f1)Sx(0)Sx(f2 + Sϵ(0)Sx(f1)Sx(f2)]E
(3)
1,2df1df2

+

∫
△2

[Sϵ(f1)Sϵ(f2)Sx(0) + Sϵ(0)Sϵ(f2)Sx(f1) + Sϵ(0)Sϵ(f1)Sx(f2)]E
(3)
1,2df1df2

+

∫
△2

[Sϵ(f1 + f2)Sx(f1)Sx(f2) + Sϵ(f1)Sx(f2)Sx(f1 + f2) + Sϵ(f2)Sx(f1)Sx(f1 + f2)]E
(4)
1,2df1df2

+

∫
△2

[Sϵ(f1)Sϵ(f1 + f2)Sx(f2) + Sϵ(f2)Sϵ(f1 + f2)Sx(f1) + Sϵ(f1)Sϵ(f2)Sx(f1 + f2)]E
(4)
1,2df1df2

+

∫
△2

Sϵ(0)Sϵ(f1)Sϵ(f2)E
(3)
1,2df1df2 +

∫
△2

Sϵ(f1)Sϵ(f2)Sϵ(f1 + f2)E
(4)
1,2df1df2. (4.8)

The influence of the additive colored noise on these asymptotic covariances is difficult to analyse from these
expressions. However from the SNR point of view, we note that for a specific distribution of ut, C

x
2,3 and Cx

3,3

are proportional to σ5
x and σ6

x respectively, whereas the noise additive terms are proportional to σ2
ϵσ

3
x and α1σ

6
ϵ +

α2σ
4
ϵσ

2
x + α3σ

2
ϵσ

4
x respectively, where the terms (αi)i=1,2,3 depend on the ARMA model and spectral shape of the

additive noise. In the case where the noise spectrum has sharp resonances, the dominant term of the previous
expression is given by the last term of (4.8). For example, for an AR(1) noise (ϵt = et+ bϵt−1), because it is proved
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in Appendix C that ∫
△2

Sϵ(f1)Sϵ(f2)Sϵ(f1 + f2)df1df2 = σ6
ϵ

(
1 + b3

1− b3

)
, (4.9)

this dominant term grows unbounded as b approaches +1 and, therefore contributes to the degradation of the
performance when the SNR is decreasing, as will be seen in Section 6.3.

5 Fourth-order Bartlett’s formula

In this section, we focus on zero-mean complex processes circular up to the fourth-order 2 as example.

5.1 Noise-free case

Under the assumptions of Section 2, [cx2(T ), c
x
4(T )] is asymptotically Gaussian 3 (see e.g., [1]): 4

√
T

(
cx2(T )− cx2
cx4(T )− cx4

)
L→ Nc

((
0
0

)
;

(
Cx

2,2 Cx
2,4

Cx
2,4

H Cx
4,4

)
,

(
C′x

2,2 C′x
2,4

C′x
2,4

T
C′x

4,4

))
where Cx

2,2 = limT→∞ TCov (cx2(T ), c
∗x
2(T )), C′x

2,2 = limT→∞ TCov (cx2(T ), c
x
2(T )), Cx

2,4 =
limT→∞ TCov (cx2(T ), c

∗x
4(T )), C′x

2,4 = limT→∞ TCov (cx2(T ), c
x
4(T )), Cx

4,4 = limT→∞ TCov (cx4(T ), c
∗x
4(T ))

and C′x
4,4 = limT→∞ TCov (cx4(T ), c

x
4(T )). With the approach used to prove the real-valued Bartlett’s formula in

[13, sec. 4.1, 4.2], it is straightforward to get:

lim
T→∞

TCov (cxk(T ), c
∗x
l (T )) =

∑
t

(
cxt c

x
−t+k−l + cxk,t+l,t

)
lim

T→∞
TCov (cxk(T ), c

x
l (T )) =

∑
t

(
cxt c

x
−t+k+l + cxk,t,t+l

)
.

Similarly to the real-valued Bartlett’s formula (3.1), we get the following alternative matrix polyspectral Bartlett’s
formula:

Cx
2,2 =

∫
△
S2
x(f)e(f)e

H(f)df +

∫
△2

Sx(f1, f2,−f2)e(f1)e
T (f2)df1df2 (5.1)

C′x
2,2 =

∫
△
S2
x(f)e(f)e

T (f)df +

∫
△2

Sx(f1,−f2, f2)e(f1)e
T (f2)df1df2. (5.2)

Then to express Cx
2,4,C

′x
2,4,C

x
4,4,C

′x
4,4 in function of the polyspectra of xt, we first note that because

cxl,m,n(T )
def
=

1

T

T∑
t=1

xtx
∗
t+lxt+mx∗

t+n −

(
1

T

T∑
t=1

xtx
∗
t+l

)(
1

T

T∑
t=1

xt+mx∗
t+n

)
−

(
1

T

T∑
t=1

xtx
∗
t+n

)(
1

T

T∑
t=1

xt+mx∗
t+l

)
,

we get the following first order expansion:

cxl,m,n(T )− cxl,m,n =
(
1 −cxn−m −cxl −cxl−m −cxn

)


1
T

∑
t xtx

∗
t+lxt+mx∗

t+n − µx
l,m,n

1
T

∑
t xtx

∗
t+l − cxl

1
T

∑
t xt+mx∗

t+n − cxn−m
1
T

∑
t xtx

∗
t+n − cxn

1
T

∑
t xt+mx∗

t+l − cxl−m


︸ ︷︷ ︸

αT

+o(αT ),

2A zero-mean complex processes xt is circular up to the r-order iff E(
∏∑

ak=p x
ak
tk

∏∑
bl=q x

bl
tl

∗
) = 0 for all positive

integers ak, bl, p, q such that p+ q ≤ r and p ̸= q.
3The distribution of a zero-mean Gaussian complex multivariate random variable x is characterized by the two covariance

matrices Σ1
def
= E(xxH) and Σ2

def
= E(xxT ). This distribution is denoted N (0;Σ1,Σ2).

4We note that despite the cumulants are rich of symmetries, the non-circular complex Gaussian asymptotic distribution
of cx2(T ) [resp. c

x
4(T )] is not characterized by Cx

2,2 [resp. Cx
4,4] only.
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where µx
l,m,n

def
= E(xtx

∗
t+lxt+mx∗

t+n). Using cxk(T ) − cxk = 1
T

∑
t xtx

∗
t+k − cxk and the previous expansion, we get

thanks to the asymptotic covariances of the sample moments derived from [13, rel.10.5.2] extended to the complex
case, the asymptotic cross-covariance of the second- and fourth-order sample cumulants.

lim
T→∞

TCov
(
cxk(T ), c

x
l,m,n(T )

)
=
(
1 −cxn−m −cxl −cxl−m −cxn

)

∑

t

[
E(x0x

∗
kxtx

∗
t+lxt+mx∗

t+n)− cxkµ
x
l,m,n

]∑
t

[
E(x0x

∗
kxtx

∗
t+l)− cxkc

x
l

]∑
t

[
E(x0x

∗
kxt+mx∗

t+n)− cxkc
x
n−m

]∑
t

[
E(x0x

∗
kxtx

∗
t+n)− cxkc

x
n

]∑
t

[
E(x0x

∗
kxt+mx∗

t+l)− cxkc
x
l−m

]

 .

(5.3)

To get limT→∞ TCov
(
cxk,l,m(T ), cxn,p,q(T )

)
, we use the same approach for which we have:

lim
T→∞

TCov
(
cxk,l,m(T ), cxn,p,q(T )

)
=
(
1,−cxm−l,−cxk,−cxk−l,−cxm

)( c1 cT3
c2 C

)(
1,−cxq−p,−cxn,−cxn−p,−cxq

)T
with

c1 =
∑
t

[
E(x0x

∗
kxlx

∗
mxtx

∗
t+nxt+px

∗
t+q)− µx

k,l,mµx
n,p,q

]
,

c2 =



∑
t

[
E(x0x

∗
kxtx

∗
t+nxt+px

∗
t+q)− cxkµ

x
n,p,q

]
∑

t

[
E(xlx

∗
mxtx

∗
t+nxt+px

∗
t+q)− cxm−lµ

x
n,p,q

]
∑

t

[
E(x0x

∗
mxtx

∗
t+nxt+px

∗
t+q)− cxmµx

n,p,q

]
∑

t

[
E(xlx

∗
kxtx

∗
t+nxt+px

∗
t+q)− cxk−lµ

x
n,p,q

]


, c3 =



∑
t

[
E(x0x

∗
nxtx

∗
t+kxt+lx

∗
t+m)− cxnµ

x
k,l,m

]
∑

t

[
E(xpx

∗
qxtx

∗
t+kxt+lx

∗
t+m)− cxq−pµ

x
k,l,m

]
∑

t

[
E(x0x

∗
qxtx

∗
t+kxt+lx

∗
t+m)− cxqµ

x
k,l,m

]
∑

t

[
E(xpx

∗
nxtx

∗
t+kxt+lx

∗
t+m)− cxn−pµ

x
k,l,m

]



(C)1,1 =

[ ∑
t

[
E(x0x

∗
kxtx

∗
t+n)− cxkc

x
n

] ∑
t

[
E(x0x

∗
kxt+px

∗
t+q)− cxkc

x
q−p

]∑
t

[
E(xlx

∗
mxtx

∗
t+n)− cxm−lc

x
n

] ∑
t

[
E(xlx

∗
mxt+px

∗
t+q)− cxm−lc

x
q−p

] ]
(C)2,1 =

[ ∑
t

[
E(x0x

∗
mxtx

∗
t+n)− cxmcxn

] ∑
t

[
E(x0x

∗
mxt+px

∗
t+q)− cxmcxq−p

]∑
t

[
E(xlx

∗
kxtx

∗
t+n)− cxk−lc

x
n

] ∑
t

[
E(xlx

∗
kxt+px

∗
t+q)− cxk−lc

x
q−p

] ]
(C)1,2 =

[ ∑
t

[
E(x0x

∗
kxtx

∗
t+q)− cxkc

x
q

] ∑
t

[
E(x0x

∗
kxt+px

∗
t+n)− cxkc

x
n−p

]∑
t

[
E(xlx

∗
mxtx

∗
t+q)− cxm−lc

x
q

] ∑
t

[
E(xlx

∗
mxt+px

∗
t+n)− cxm−lc

x
n−p

] ]
(C)2,2 =

[ ∑
t

[
E(x0x

∗
mxtx

∗
t+q)− cxmcxq

] ∑
t

[
E(x0x

∗
mxt+px

∗
t+n)− cxmcxn−p

]∑
t

[
E(xlx

∗
kxtx

∗
t+q)− cxk−lc

x
q

] ∑
t

[
E(xlx

∗
kxt+px

∗
t+n)− cxk−lc

x
n−p

] ] .
To proceed, the moments in the four last summations of (5.3) and in C are expressed by cumulants. For example:∑

t

[
E(x0x

∗
kxtx

∗
t+l)− cxkc

x
l

]
=

∑
t

(
cxt c

x
−t+k+l + cxk,t,t+l

)
∑
t

[
E(x0x

∗
kxt+mx∗

t+n)− cxkc
x
n−m

]
=

∑
t

(
cxt+nc

x
−t+k−m + cxk,t+m,t+n

)
∑
t

[
E(x0x

∗
kxtx

∗
t+n)− cxkc

x
n

]
=

∑
t

(
cxt c

x
−t+k+n + cxk,t,t+n

)
∑
t

[
E(x0x

∗
kxt+mx∗

t+l)− cxkc
x
l−m

]
=

∑
t

(
cxt+lc

x
−t+k−m + cxk,t+m,t+l

)
,

then these sommations are evaluated similarly to the real-valued polyspectral Bartlett’s formula (3.1).
The summations of sixth-order moments in c2, c3 and in the first term of (5.3), and summations of eighth-

order moments in c1 are expressed as functions of polyspectra of xt from our symbolic calculus akin to a high
level language based on a few well defined rules used in Section 4. Here, the zero terms are eliminated according
to the circularity property up to the fourth-order, and the sets of similar expressions are constructed w.r.t. the
number of terms xt+a and x∗

t+b in each product of cumulants. For each such set of similar expressions (6 sets
for E(x0x

∗
kxtx

∗
t+lxt+mx∗

t+n) and 21 sets for E(x0x
∗
kxlx

∗
mxtx

∗
t+nxt+px

∗
t+q)), a representative term is chosen to be

7



analytically expressed by a polyspectral formula derived in the same way as for the third-order case proved in
Appendix A. We get:

E(x0x
∗
kxtx

∗
t+lxt+mx∗

t+n) = Cum(x0, x
∗
k, xt, x

∗
t+l, xt+m, x∗

t+n)

+ Cum(x0, x
∗
k, xt, x

∗
t+l)Cum(xt+m, x∗

t+n)(9)

+ Cum(x0, x
∗
k)Cum(xt, x

∗
t+l)Cum(xt+m, x∗

t+n)(6). (5.4)

and
E(x0x

∗
kxlx

∗
mxtx

∗
t+nxt+px

∗
t+q) = Cum(x0, x

∗
k, xl, x

∗
m, xt, x

∗
t+n, xt+p, x

∗
t+q)

+ Cum(x0, x
∗
k, xl, x

∗
m, xt, x

∗
t+n)Cum(xt+p, x

∗
t+q)(16)

+ Cum(x0, x
∗
k, xl, x

∗
m)Cum(xt, x

∗
t+n, xt+p, x

∗
t+q)(18)

+ Cum(x0, x
∗
k, xl, x

∗
m)Cum(xt, x

∗
t+n)Cum(xt+p, x

∗
t+q)(72)

+ Cum(x0, x
∗
k)Cum(xl, x

∗
m)Cum(xt, x

∗
t+n)Cum(xt+p, x

∗
t+q)(24), (5.5)

where for example, the second line of (5.4) gives:

Cum(x0, x
∗
k, xt, x

∗
t+l)Cum(xt+m, x∗

t+n)(9) = cxk,t,t+lc
x
n−m + cxk,t,t+nc

x
l−m + cxk,t+m,t+lc

x
n + cxk,t+m,t+nc

x
l

+ cxl,−t,nc
x
t+m−k + cxl−m,−t−m,n−mcxt−k

+ cxn,m,−t+kc
x
t+l + cxl,m,−t+kc

x
t+n

+ cxkc
x
l,m,n,

and because the last term cancels with −cxkµ
x
l,m,n in the summation

∑
t

[
E(x0x

∗
kxtx

∗
t+lxt+mx∗

t+n)− cxkµ
x
l,m,n

]
, this

line gives three sets of similar expressions.

The limits limT→∞ TCov
(
cxk(T ), c

∗x
l,m,n(T )

)
and limT→∞ TCov

(
cxk,l,m(T ), c∗xn,p,q(T )

)
are evaluated similarly.

Finally, our symbolic calculus delivers:

• LATEX polyspectral expressions of Cx
2,4, C

′x
2,4, C

x
4,4 and C′x

4,4 similar to (4.5)(4.6), but not reproduced here
due to lack of space. They are available from the authors upon request.

• Matlab function files allowing one to compute the numerical values of these expressions (see subsection 6.2).

We have chosen to consider zero-mean processes which are complex circular up to the fourth-order. Naturally
our methodology can be applied to the cases of zero-mean real-valued processes or zero-mean complex processes
circular up to the second-order. The only difference is due to distinct rules of elimination of the zero terms.

5.2 Noisy case

In the noisy case, the fourth-order relations are derived in the same way as for the second and third-order, thanks
to the additivity of the polyspectra of xt and ϵt.

6 Application to estimation of ARMA parameters

It is beyond the scope of this paper to analyze the statistical performance of the identification algorithms based
on sample third- or fourth-order cumulants proposed in the literature. Instead, we unveil the influence of colored
additive noise on the potential asymptotic performance of such an arbitrary algorithm. In that purpose, asymptotic
lower bound for the covariance of third- or fourth-order estimators and asymptotic covariance of an arbitrary third-
or fourth order-based algorithm are considered where a special attention is given on the statistics involved.

6.1 Asymptotic lower bound on the covariance

To apply the notion of asymptotic minimum variance (AMV) estimators [5] (also called asymptotically best con-
sistent estimators in [15]), the involved sample cumulants cy(T ) must satisfy three conditions:

• If Θ denotes the real-valued parameters (real and imaginary parts in the case of complex processes) of noisy
ARMA model, Θ must be identifiable from cy(Θ) in the following sense: cy(Θ) = cy(Θ′) ⇒ Θ = Θ′ 5.

5We note that the definition of Θ depends on the choice of the cumulants cy and the a priori knowledge on the distribution
of the measurement noise ϵt.
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• The involved third- or fourth-order algorithms considered as mappings which associate to cy(T ), the estimate
Θ(T ): cy(T ) 7−→ Θ(T ) = alg(cy(T )) must be real [resp. complex] differentiable w.r.t. cy(T ) at the point
cy(Θ) for real-[resp. complex] valued processes.

• The covariance Σ of the asymptotic distribution of the sample cumulants cy(T ) must be nonsingular.

These two latter conditions do not raise any problem for real-valued processes. However, for complex-valued
processes, cy(T ) must collect real-valued cumulants (e.g., cy0(T ) and cy0,0,0(T )) and complex valued cumulants and

their conjugate (e.g., cyk(T ) and cyk
∗
(T ) for k ̸= 0) to satisfy the second condition (see [16]). In addition, to

satisfy the third condition, redundant cumulant samples must be withdrawn. In these conditions, the asymptotic
covariance CΘ of an estimator of Θ given by an arbitrary third- or fourth-order algorithm is bounded below by the
real symmetric positive definite matrix [FH(Θ)Σ−1(Θ)F(Θ)]−1:

CΘ ≥ [FH(Θ)Σ−1(Θ)F(Θ)]−1 (6.1)

where F(Θ)
def
= dcy(Θ)

dΘ . Furthermore, there exists a nonlinear least square algorithm (dubbed the AMV algorithm
[5]) whose covariance of the asymptotic distribution of the estimate of Θ satisfies (6.1) with equality. In practice,
ϵt is Gaussian distributed and if third- or fourth-order cumulants are considered, the parametrization Θ can be
partitioned as Θ = [ΘT

1 ,Θ
T
2 ]

T where Θ1 collects the parameters of the ARMA filter of interest and where Θ2

collects the parameters σ2
u, κ3u ,. . . ,σ

2
e of the sequences ut and et. Consequently, the covariance of the asymptotic

distribution of the minimum variance third- or fourth-order ARMA estimator is given by the top left “ARMA
corner” of [FH(Θ)Σ−1(Θ)F(Θ)]−1. Then, because cy(Θ) is linear with respect to Θ2, i.e., c

y(Θ) = Ψ(Θ1)Θ2

implies F = [F1,Ψ] with F1
def
= ∂cy(Θ)

∂Θ1
, the matrix inversion lemma gives

CΘ1 =
(
FH

1 Σ−1F1 − FH
1 Σ−1Ψ

[
ΨHΣ−1Ψ

]−1
ΨHΣ−1F1

)−1

=
(
FT

1 Σ
−1/2P⊥

Σ−1/2ΨΣ−1/2F1

)−1

, (6.2)

where P⊥
Σ−1/2Ψ

denotes the projector onto the orthogonal complement of the columns of Σ−1/2Ψ.

6.2 Asymptotic covariance of an arbitrary third- or fourth-order estimator

The asymptotic performance of an arbitrary third or fourth order-based algorithm that estimates the ARMA
parameters Θ1 of a noisy ARMA model can be derived (see e.g., [13, Th.3.16]) from the asymptotic normality of
[cy2(T ), c

y
3(T )] or [c

y
2(T ), c

y
4(T )]:

√
T (Θ1(T )−Θ1)

L→ N (0;G(Θ)Σ(Θ)GH(Θ))

where G(Θ) is the differential of the algorithm considered as a mapping, evaluated at point Θ, and Σ(Θ) is the
asymptotic covariance matrix of the sample cumulants involved in the algorithm deduced from Cy

2,2, C
y
2,3, C

y
3,3 for

the third-order real case or Cy
2,2, C

′y
2,2, C

y
2,4, C

′y
2,4, C

y
4,4, C

′y
4,4 for the fourth-order complex case.

Our symbolic calculus translates the polyspectral expressions of these different asymptotic covariance matrices
into rational fraction expressions w.r.t. the ARMA process xt and AR(1) process ϵt coefficients, under the form
of matlab function files. These files allow one to compute the numerical values of these matrices for particular
values of the parameters and are available from the authors upon request. They allow the interested practitioner
to evaluate the performance of third- or fourth-order algorithms by simple computation of the differential G(Θ)
of the algorithm and selection of the Σ(Θ) involved. The programs giving the numerical values of (Cy

i,j)i,j=2,3

and (Cy
i,j ,C

′y
i,j)i,j=2,4 are built along the following steps. First, each polyspectral integral expression obtained in

Section 4 and 5 is symbolically expressed as functions of H(f)
def
=
∑

n hne
−i2πnf and of the transfer function G(f)

of the measurement noise generator driven by the independent Gaussian sequence et of power σ2
e , thanks to the

relations (see e.g., [4, rel. (C-24)]) extended to the complex case:

Sy(f) = σ2
uH

∗(−f)H(−f) + σ2
eG

∗(−f)G(−f),

Sy(f1, . . . , fp) = κp+1uH(f1)H(f2) . . . H(fp)H(−f1 − f2 . . .− fp−1), p > 1 (real case)

Sy(f1, . . . , f2p−1) = κ2puH
∗(−f1)H(f2) . . . H

∗(−f2p−1)H(−f1 − f2 . . .− f2p−1), p > 1 (complex case).
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Second, the transfer functions H(f) and G(f) are expressed in terms of the parameters of the MA process xt and
AR process ϵt (e.g., a and b in Section 6.3) and, finally, the polyspectral integrals are symbolically computed as
functions of the MA and AR parameters for (Li)i=1,...,4 fixed, thanks to the relation∫

△k

∑
α1

. . .
∑
αk

cα1...αk
e−i2π(α1f1+...+αkfk)df1df2 . . . dfk = c0...0,

where
∑

α1
. . .
∑

αk
cα1...αk

e−i2π(α1f1+...+αkfk) are deduced from the polyspectral expressions evaluated as functions
of H(f) and G(f).

6.3 Illustrative numerical examples

As examples, three experiments are proposed for which noisy MA(1) or MA(2) process are considered. The SNR is
defined as SNR(dB) = 10log10(E(x

2
t )/E(ϵ

2
t )). In the two first experiments, the processes are real-valued, the input

ut is exponentially distributed with mean adjusted to zero, power σ2
u and κku = (k − 1)!σk

u and the measurement
noise ϵt is either Gaussian i.i.d. or Gaussian AR(1), (ϵt = et + bϵt−1 where et is Gaussian i.i.d.).

In the first experiment an MA(1) is considered where Θ1 = a and Θ2 = κ3u . Fig.1 shows the
normalized asymptotic lower bound 6 for the asymptotic variance of estimates of a based on the third-
order diagonal 7 cumulants {cyk,k(T ); k = 0, . . . , L − 1} and {cy0,k(T ); k = 1, . . . , L − 1} 8 as a function

of the SNR for different values of L for white noise. For k ≥ 2, the sample cumulants cyk,k(T ) and

cy0,k(T ) are consistent estimates of zero. But nevertheless, Fig.1 shows that they contribute to improve
the performance. This extends to noisy processes an observation shown in the noise-free case in [5].
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Fig.1 Third-order normalized lower bound for the asymptotic variance of estimates of a as a function of the SNR for
different values of L.

Figs.2 and 3 show the lower bound for the asymptotic variance of estimates of a (a = 0.5) based on the sample
third-order cumulants (cy0,0(T ), c

y
0,1(T ), c

y
1,1(T )) and the asymptotic theoretical and empirical variance given by

the so-called C(k, q) formula of Giannakis [3] (a(T ) = cy1,1(T )/c
y
0,1(T )) respectively for white and AR(1) noise

(b = 0.99) as a function of the SNR. Because G(Θ) =
[
− 1

κ3u
, 1
aκ3u

]
= (1+a2)3/2

2σ3
x

[
−1, 1

a

]
, we note that from the

6The normalized asymptotic lower bounds and asymptotic theoretical variances are computed for T = 1. That means
that the actual asymptotic lower bounds and asymptotic theoretical variances are obtained from the results given here by
dividing by T .

7We restrict this example to diagonal cumulants because the off-diagonal third-order cumulants carry almost no additional
information beyond the information in the diagonal ones in the MA(1) process case, as it was shown in the noise-free case
in [5].

8The cumulants in the second set are called diagonal because of the relationship cy0,k = cy−k,−k.

10



expression of Cy
3,3 given in Section 4.2, we get for the C(k, q) estimator:

lim
T→∞

TVar(a(T )) = v0 +

[
β1(

σ2
ϵ

σ2
x

) + β2(
σ4
ϵ

σ4
x

) + β3(
σ6
ϵ

σ6
x

)

]
(6.3)

where v0 does not depend on the powers of xt and ϵt. We see from these two figures that below a
certain threshold (which is typically related to the noise spectrum), the asymptotic variance of the esti-
mate of a grows rapidly with the noise level. Beyond this threshold (for SNR> 10dB [resp. SNR>
20dB] for white noise [resp. AR(1) noise]), the asymptotic variance is approximately constant. This
proves that the AMV3 and the C(k, q) algorithms are insensitive to noise in a large domain. Further-
more, we note that contrary to the asymptotic lower bound, the asymptotic variance given by the C(k, q)
algorithm strongly degrades for sharp resonant AR(1) noise compared to white noise of the same power.

-10 -5 0 5 10 15 20 25 30
10

-5

10
-4

10
-3

10
-2

10
-1

SNR (dB)

as
ym

pt
ot

ic
 v

ar
ia

nc
e 

of
 a

white noise

(1)

(2)

Fig.2 Third-order asymptotic lower bound (1) and asymptotic theoretical and empirical (averaged on 100 independent
Monte Carlo runs) variance given by the C(k, q) formula (2) as a function of the SNR for T = 105.
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Fig.3 Third-order asymptotic lower bound (1) and asymptotic theoretical and empirical (averaged on 100 independent
Monte Carlo runs) variance given by the C(k, q) formula (2) as a function of the SNR for T = 105.

Figs.4 and 5 show the asymptotic lower bound and the asymptotic theoretical and empirical vari-
ance given by the C(k, q) algorithm as a function of the parameter b of the AR(1) noise ϵt and of
the parameter a of the MA(1) process xt, respectively. We see that the performance is very sensi-
tive to the spectrum of the MA(1) process xt, but relatively insensitive to the spectrum of the addi-
tive noise ϵt except when b approaches 1 [see (4.9)] where the performance of any third order-based al-
gorithm dramatically degrades. We note that the asymptotic variance given by the C(k, q) algorithm at-
tains the asymptotic lower bound for a = 1 9 and is inadequate to estimate a parameter a close to zero.
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Fig.4 Third-order asymptotic lower bound (1) and asymptotic theoretical and empirical (averaged on 1000 independent
Monte Carlo runs) variance given by the C(k, q) formula (2) as a function of the noise parameter b for a = 0.5, SNR = 10dB
and T = 104.

9This property has been confirmed for all values of b and SNR, but we have not succeded in proving it analytically.
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Fig.5 Third-order asymptotic lower bound (1) and asymptotic theoretical and empirical (averaged on 1000 independent
Monte Carlo runs) variance given by the C(k, q) formula (2) as a function of the MA parameter a for b = 0.5, SNR = 10dB
and T = 104.

Figs.6a and 6.b show the theoretical asymptotic lower bound and the empirical asymptotic vari-
ance given by the AMV3 and the C(k, q) algorithms as a function of the number T of samples
for two values of SNR. We see that the domain of validity of our asymptotic analysis roughly do
not depend on the algorithm, but is sensitive to the SNR. Naturally this domain of validity in-
creases with increasing SNR (T > 4000 for SNR = 0dB and T > 1000 for SNR = 20dB).
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Fig.6a Third-order theoretical asymptotic lower bound and empirical (averaged on 1000 independent Monte Carlo runs)
asymptotic variance given by the AMV3 (1) and C(k, q) (2) algorithms as a function of T , for a = 0.5, b = 0.5 and SNR=0dB.
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Fig.6b Third-order theoretical asymptotic lower bound and empirical (averaged on 1000 independent Monte Carlo runs)
asymptotic variance given by the AMV3 (1) and C(k, q) (2) algorithms as a function of T , for a = 0.5,b = 0.5 and SNR=20dB.

In the second experiment an MA(2) process is considered where Θ1 = (a1, a2)
T and Θ2 = κ3u . Fig.7a [resp.

7b] shows the normalized asymptotic lower bound and theoretical variance given by the C(k, q) algorithm for
the estimated parameters a1 [resp. a2] as a function of the parameters a2 [resp. a1] of the MA(2) process
xt. As for the MA(1) case, we see that the performance is very sensitive to the value of the MA parameters.
As for MA(1), we see that the performance is very sensitive to the spectrum of xt. We note that contrary to
the MA(1) case, no algorithm is adequate to estimate a parameter a2 close to zero. Furthermore, the perfor-
mance of the C(k, q) algorithm is practically uniformly optimal among the class of third order-based algorithms.
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Fig.7a Third-order theoretical asymptotic lower bound and empirical (averaged on 1000 independent Monte Carlo runs)
asymptotic variance given by the AMV3 and C(k, q) algorithms for the estimated parameter a1 as a function of a2 for
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a1 = 0.8, b = 0.5, SNR = 10dB and T = 105.
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Fig.7b Third-order theoretical asymptotic lower bound and empirical (averaged on 1000 independent Monte Carlo runs)
asymptotic variance given by the AMV3 and C(k, q) algorithms for the estimated parameter a2 as a function of a1 for
a2 = 0.5, b = 0.5, SNR = 10dB and T = 105.

In the third experiment, the processes are complex-valued, the input ut is a 8PSK modulation with power
σ2
u and κ4u = −σ4

u, κ6u = 4σ6
u, κ8u = −33σ8

u
10 and ϵt is either complex circular Gaussian i.i.d. or AR(1)

(ϵt = ϵt−1 + bet where et complex circular Gaussian i.i.d.).
Figs.8 and 9 show the normalized lower bound for the asymptotic variance (Tr(CΘ1))

of estimates of a (a = 0.5ei
π
4 ) based on the sample fourth-order cumulants cy(T )

def
=

{cy0,0,0(T ), c
y
0,0,1(T ), c

y
0,1,0(T ), c

y
0,1,1(T ), c

y
1,0,1(T ), c

y
1,1,1(T )} 11 and the normalized asymptotic variances given

by the so-called C(k, q) formula (1) extended to the complex case and by the following modified C(k, q) formulae
(2)(3):

• a(T ) = cy0,1,1(T )/c
y
0,0,1(T )) (1),

• a(T ) = cy1,0,1(T )
∗
/cy0,0,1(T )

∗
because c1,0,1 = κ4ua

∗2 and c0,0,1 = κ4ua
∗ (2),

• a(T ) = cy1,1,1(T )/c
y
1,0,1(T ) because c1,1,1 = κ4ua

∗|a|2 and c1,0,1 = κ4ua
∗2 (3),

for white and AR(1) noise (b = 0.999) as a function of the SNR. We note that here Θ1 = (ℜ(a),ℑ(a))T and
Θ2 = κ4u . Similarly to the third-order case, we see from these two figures that beyond a certain threshold, the
asymptotic lower bound and the asymptotic variance of the estimate of a grows rapidly with the noise level. Beyond
this threshold (for about SNR> 15dB), the asymptotic variance is approximately constant. Furthermore, we see

10Because for up to fourth-order circular processes κ6u = E|u6
t | − 9 E|u4

t |E|u2
t | + 2 × 6 (E|u2

t |)3 and κ8u = E|u8
t | −

16 E|u6
t |E|u2

t | − 18 E|u4
t |E|u4

t |+ 2× 72 E|u4
t |(E|u2

t |)2 − 6× 24 (E|u2
t |)4.

11Because cyk1,k2,k3

def
= Cum(y0, y

∗
k1
, yk2 , y

∗
k3
), we note that, cy0,0,0(T ), cy0,1,1(T ) = cy1,1,0(T ) are real valued, cy0,0,1(T ) =

cy1,0,0(T ) = cy0,1,0
∗(T ) are complex valued. Consequently the statistic cy(T ) used for the AMV4 estimator is composed of

{cy0,0,0(T ), c
y
0,1,1(T ), c

y
0,0,1(T ), c

y
1,0,1(T ), c

y
1,1,1(T ), c

y
0,0,1

∗(T ), cy1,0,1
∗(T ), cy1,1,1

∗(T )}.

15



that below this threshold, the asymptotic variances given by all the C(k, q) algorithms grow more rapidly than in
the third-order with the noise level as anticipated from the relation (6.3) extented to the fourth-order case

lim
T→∞

TVar(a(T )) = v0 +

[
β1(

σ2
ϵ

σ2
x

) + β2(
σ4
ϵ

σ4
x

) + β3(
σ6
ϵ

σ6
x

) + β4(
σ8
ϵ

σ8
x

)

]
.

We see that the C(k, q) formula outperforms the modified C(k, q) formulae except for small SNR where their per-
formance is similar. Furthermore, we note that contrary to all the C(k, q) formulae whose performance degrades for
AR(1) noise compared to white noise of the same power, the AMV estimate improves for small SNR. Consequently,
there must be fourth-order algorithms much more efficient than the C(k, q) formulae for small SNR.
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Fig.8 Fourth-order normalized asymptotic lower bound (AMV4) and variances given by the C(k, q) formulae (1)(2)(3) as
a function of the SNR.
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Fig.9 Fourth-order normalized asymptotic lower bound (AMV4) and variances given by the C(k, q) formulae (1)(2)(3) as
a function of the SNR.

Fig.10 shows the normalized asymptotic lower bound based on cy(T ) (AMV4), the normalized asymp-
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totic lower bound based on the statistics used in the C(k, q) formula (1) and the modified C(k, q) for-

mula (2), i.e., based on cy
′
(T )

def
= {cy0,1,1(T ), c

y
0,0,1(T ), c

y
1,0,1(T ), c

y
0,0,1

∗
(T ), cy1,0,1

∗
(T )} (AMV4’) and the nor-

malized asymptotic variance given by the C(k, q) formula (1) and by the modified C(k, q) formulae (2)
and (3) as a function of the parameter b of the AR(1) noise ϵt. Because these variances are rela-
tively constant and symmetric w.r.t. zero, we focus on the [0.999 1] domain of b where only the per-
formance of the C(k, q) formulae degrades when b approaches ±1. The AMV4 and the AMV4’ are rel-
atively insensitive to the spectrum of the additive noise ϵt including in the immediate vicinity of ±1.
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Fig.10 Fourth-order normalized asymptotic lower bounds (AMV4) (AMV4’) and normalized asymptotic variance given by
the C(k, q) formulae (1)(2)(3) as a function of the noise parameter b for a = 0.5ei

π
4 and SNR = 10dB.

Fig.11 shows the asymptotic lower bound based on cy(T ) (AMV4) and the asymptotic theoretical and empirical
variance given by the C(k, q) formula (1), by the modified C(k, q) formulae (2) and (3) as a function of the
parameter a′ (a = a′ei

π
4 with a′ ∈ (−2,+2)) of the MA(1) process xt. We see that the performance is very

sensitive to the spectrum of the MA(1) process xt. Furthermore, we note that there is no uniformly minimum
variance estimator among the three C(k, q) formulae which are inadequate to estimate a parameter a close to zero.
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Fig.11 Fourth-order asymptotic lower bound (AMV4) and asymptotic theoretical and empirical (averaged on 100 inde-
pendent Monte Carlo runs) variance given by the C(k, q) formulae (1),(2) and (3) as a function of the MA parameter a′ for
b = 0.999, SNR = 10dB and T = 105.

Finally, Fig.12 shows the normalized asymptotic lower bound for the asymptotic variance of esti-
mates of a computed for three different cases: when the statistic cy(T ) consists of the sample co-
variances only 12 {cy0(T ), c

y
1(T ), c

y
1(T )

∗} (AMV2), when the statistic cy(T ) consists of the sample fourth-
order cumulants only {cy0,0,0(T ), c

y
0,1,1(T ), c

y
0,0,1(T ), c

y
1,0,1(T ), c

y
1,1,1(T ), c

y
0,0,1

∗
(T ), cy1,0,1

∗
(T ), cy1,1,1

∗
(T )} (AMV4)

and when the statistic cy(T ) consists of the preceding sample covariances and sample fourth-order cumu-
lants (AMV24). This figure also exhibits the normalized asymptotic variance given by the C(k, q) formu-
lae (1)(2)(3). In order for the parameter a to be identifiable from the sample covariance only, this fig-
ure is drawn in the noise free case. As we see from this figure, there is a considerable amount of infor-
mation in the fourth-order sample cumulants compared to the information in the sample covariances. Fur-
thermore, we note that contrary to the noisy case, the AMV vanishes for a parameter a close to zero.

12As estimation methods based on the sample covariances only cannot distinguish between non-minimum phase and

minimum phase processes having the same spectrum, the bound for this case applies only to estimators that are based on

prior knowledge of the zero locations within a sufficiently small error.

19



-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
10

-2

10
-1

10
0

10
1

10
2

10
3

10
4

a'

no
rm

al
iz

ed
 a

sy
m

pt
ot

ic
 v

ar
ia

nc
e 

of
 a

AMV4

AMV24

AMV2

(1)

(2)

(3)

Fig.12 Fourth-order normalized asymptotic lower bound based on sample covariances only (AMV2), on sample fourth-
order cumulants only (AMV4) and on sample covariances and fourth-order cumulants (AMV24) and normalized asymptotic
variance given by the C(k, q) formulae (1)(2)(3) as a function of the MA parameter a′.

Naturally, these examples are totally inadequate for predicting the asymptotic performance of a specific third- or
fourth-order algorithm in the presence of additive colored noise. They simply show the potentially large sensitivity
of the asymptotic performance of an arbitrary algorithm to the spectra of the linear process and of the colored
noise.

7 Conclusion

This paper has extended Bartlett’s formula to the third- and fourth-order and to noisy linear processes thanks to
a polyspectral approach and a symbolic calculus akin a high level language. As an application of these closed-form
expressions, the sensitivity of the asymptotic performance of the estimated ARMA parameters by an arbitrary
third or fourth order-based algorithm to the SNR, the spectra of the linear process, and the colored additive
noise is addressed. Such sensitivity analysis has been possible thanks to the numerical expressions derived from
our theoretical expressions, whereas Monte-Carlo simulations have accommodated only particular scenarios until
now. As an example, the asymptotic lower bound for the variances of third- or fourth-order algorithms are
compared to the asymptotic variances given by the so-called C(k, q) algorithms for non-Gaussian first or second-
order MA processes corrupted by a Gaussian first-order AR process with respect to the SNR and to the MA and
AR parameters. In particular we have shown that the performance presents a threshold effect with respect to
the SNR and are very sensitive to the spectrum of the MA process, but relatively insensitive to the AR spectrum
except for sharp resonances.
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A Appendix: Proof of eq. (4.5)

Because
∫
△ ei2πfτdf = 1 if τ = 0 and

∫
△ ei2πfτdf = 0 if τ ̸= 0,

∑
t

Cum(x0, xk, xt, xt+l, xt+m) =

∫
△3

∑
t1

∑
t

∑
t2

∑
t3

cxt1,t,t2,t3e
−i2π[f1(t1−k)+f2(t2−t−l)+f3(t3−t−m)]df1df2df3

=

∫
△3

Sx(f1,−f2 − f3, f2, f3)e
i2π[f1k+f2l+f3m]df1df2df3

and Sx(f1,−f2 − f3, f2, f3) = Sx(f1,−f1, f2, f3) from [4].
Then looking at each term of

∑
t Cum(x0, xk, xt)Cum(xt+l, xt+m)[10], there appears a term cxkc

x
l,m which vanishes

in (4.1), three terms of the form
∑

t c
x
αc

x
β,t+γ and six terms of the form

∑
t c

x
t+αc

x
−t+β,γ which become respectively

∑
t

cxαc
x
β,t+γ = cxα

∫
△

∑
t1

∑
t

cxt1,te
−i2π[f1(t1−β)+0t]df1

= cxα

∫
△
Sx(f1, 0)e

i2πf1βdf1 =

∫
△2

Sx(f1, 0)Sx(f2)e
i2π[f1β+f2α]df1df2,∑

t

cxt+αc
x
−t+β,γ =

∫
△
[Sx(f)

∫
△
Sx(f, f1)e

i2π[fβ+f1γ]df1]e
i2πfαdf =

∫
△2

Sx(f1)Sx(f1, f2)e
i2π[f1(α+β)+f2γ]df1df2

because the second term is a convolution product of cxτ and cxτ+β,γ at the point τ = α, since∫
△ Sx(f, f1)e

i2π[fβ+f1γ]df1 is the Fourier transform of the sequence (cxτ+β,γ)τ∈Z . Combining these groups of terms,

the matrix expression (4.5) is obtained.

B Appendix: Expressions of the different matrices E
(i)
j of Section 4

Our symbolic algorithm gives rels. (4.5) and (4.6) where matrices E
(i)
j are composed of finite sums of

ei2π(f1a1+f2a2+f3a3) defined by the following:

E1,2,3
def
= e1(e

T
2 ⊗ eT3 )

E
(1)
1,2

def
= e∗1(e

T
2 ⊗ eT1 + eT1 ⊗ eT2 + eH1,2 ⊗ eT2 ) + e1(e

T
2 ⊗ eT1 + eT1 ⊗ eT2 + eH1,2 ⊗ eT2 )

E
(2)
1,2

def
= e1(e

T
2 ⊗ eH2 + eT0 ⊗ eT2 + eT2 ⊗ eT0 )

E1,2,3,4
def
= e1e

T
3 ⊗ e2e

T
4

E
(1)
1,2,3

def
= e2e

T
1 ⊗ e∗2,3e

T
3 + e2e

T
3 ⊗ e∗2,3e

T
1 + e1e

T
2 ⊗ e3e

H
2,3 + e3e

T
2 ⊗ e1e

H
2,3

+ e1e
T
3 ⊗ e3e

T
2 + e1e

T
2 ⊗ e3e

T
3 + e3e

T
3 ⊗ e1e

T
2 + e3e

T
2 ⊗ e1e

T
3 + e∗2,3e

H
1,3 ⊗ e2e

T
1

E
(2)
1,2,3

def
= e3e

T
1 ⊗ e∗3e

T
2 + e0e

T
1 ⊗ e3e

T
2 + e3e

T
1 ⊗ e0e

T
2 + e1e

T
3 ⊗ e2e

H
3 + e1e

T
3 ⊗ e2e

T
0 + e1e

T
0 ⊗ e2e

T
3

E
(3)
1,2,3

def
= e1e

H
2,3 ⊗ e2,3e

T
3 + e1e

T
3 ⊗ e2,3e

H
2,3 + e1e

T
2 ⊗ e2,3e

T
3 + e2,3e

H
2,3 ⊗ e1e

T
3

+ e2,3e
T
3 ⊗ e1e

H
2,3 + e2,3e

T
2 ⊗ e1e

T
3 + e1e

T
2 ⊗ e∗1,2,3e

T
3 + e1e

H
2,3 ⊗ e∗1,2,3e

T
3

+ e1e
T
3 ⊗ e∗1,2,3e

H
2,3

E
(3)
1,2

def
= e1e

T
2 ⊗ e0e

H
2 + e1e

T
0 ⊗ e0e

T
2 + e1e

T
2 ⊗ e0e

T
0 + e0e

T
2 ⊗ e1e

H
2 + e0e

T
0 ⊗ e1e

T
2 + e0e

T
2 ⊗ e1e

T
0

+ e1e
T
2 ⊗ e∗1e

H
2 + e1e

T
0 ⊗ e∗1e

T
2 + e1e

T
2 ⊗ e∗1e

T
0

E
(4)
1,2

def
= e∗2e

T
2 ⊗ e1,2e

H
1,2 + e∗2e

H
1,2 ⊗ e1,2e

T
2

+ e∗2e
T
1 ⊗ e1,2e

H
1,2 + e1,2e

T
1 ⊗ e∗2e

H
1,2 + e∗2e

H
1,2 ⊗ e1,2e

T
1 + e1,2e

H
1,2 ⊗ e∗2e

T
1

where e0
def
= (1, . . . , 1)T , ek

def
= (1, ei2πfk , .., ei2π(L−1)fk)T and ek,l

def
= (1, ei2π(fk+fl), .., ei2π(L−1)(fk+fl))T , ek,l,m

def
=

(1, ei2π(fk+fl+fm), .., ei2π(L−1)(fk+fl+fm))T , k, l,m = 1, 2, 3, (L = L2 in the first three eqs. and L = L3 elsewhere).
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C Appendix: Proof of eq. (4.9)

Because Sϵ(f1) =
∑

k σ
2
ϵ b

|k|e−i2πkf1 ,∫
△2

Sϵ(f1)Sϵ(f2)Sϵ(f1 + f2)df1df2 =

∫
△2

∑
k

∑
l

∑
m

σ6
ϵ b

|l|b|k|b|m|e−i2π[(k+m)f1+(l+m)f2]df1df2

=
∑
m

σ6
ϵ b

|3m| = σ6
ϵ

(
1 + 2

∞∑
m=1

b3k

)
= σ6

ϵ

(
1 + b3

1− b3

)
.
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