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Abstract. Independent Factor Analysis (IFA) is used to recover latent
components (or sources) from their linear observed mixtures within an un-
supervised learning framework. Both the mixing process and the source
densities are learned from the observed data. The sources are assumed
to be mutually independent and distributed according to a mixture of
Gaussians. This paper investigates the possibility of incorporating partial
knowledge on the cluster belonging of some samples to estimate the IFA
model. Semi-supervised and partially supervised learning cases can thus
be handled. Experimental results demonstrate the ability of this approach
to enhance estimation accuracy and remove indeterminacy commonly en-
countered in unsupervised IFA such as the permutation of the sources.

1 Introduction

Independent Component Analysis (ICA) defines a generative model for the ob-
served data which are assumed to be linear mixtures of some mutually inde-
pendent latent variables (also called sources) [1, 2]. Furthermore when the In-
dependent Factor Analysis (IFA) model is considered, each latent component is
assumed to be generated according to a mixture of Gaussians [3, 4]. The learning
of the IFA model is often performed within an unsupervised framework. Both
the mixing process and the latent variables are learned from the observed mix-
tures alone. In this paper, we investigate the possibility of incorporating partial
knowledge on the latent variables to estimate the IFA model. In the general
case, this information will be encoded by a Demspter-Shafer mass function over
the set of clusters describing each source density but it can also be adapted
to handle more specific learning frameworks such as the semi-supervised or the
partially supervised cases. In this way, the mixture model of each source density
will be provided by the component origins of a subset of training samples .

The paper is organized as follows. We will first present some background
on the ICA and IFA models. In Section 3, the problem of learning the IFA
model with prior knowledge on cluster memberships will be addressed. Some
simulation results will then be presented in Section 4 illustrating the impact of
using priors. Conclusions are summarized in Section 5.



2 Independent Factor Analysis (IFA)

2.1 Background on Independent Component Analysis (ICA)

ICA aims at recovering independent latent components from their observed lin-
ear mixtures. In its noiseless formulation, the ICA model can be expressed as:

x = A z, (1)

with A a square matrix of size S × S, x the random vector whose elements
(x1, . . . ,xS) are the mixtures and z the random vector whose elements (z1, . . . , zS)
are the latent components.

Assuming the unknown mixing matrix to be non singular, the estimation
of the un-mixing matrix rather than the mixing one is more appropriate since
it allows us to recover the latent variables from the observed ones by simply
computing z = W x, where W = A−1. Furthermore, thanks to (1) a determinist
relationship between the distributions of observed and latent variables can be
expressed as:

fX (x) =
1

| det(A)|
fZ(A−1 x), (2)

The problem consists of estimating both the un-mixing matrix and the real-
izations of the latent variables from the observed variables alone. Considering
random sample of size N, the log-likelihood has the form:

L(W ;X) =

N∑

i=1

S∑

s=1

log
(
fZs ((Wxi)s)

)
+ N log(det(W )). (3)

2.2 Independent Factor Analysis Principle

The ICA model requires the choice of the probability density functions of the
sources. They can be fixed by using prior knowledge, or according to some
indicator which allows switching between sub and super gaussian densities [1].
An alternative solution investigated by several authors, so called Independent
Factor Analysis(IFA), consists to model each source density as a mixture of
Gaussians so that a wide class of densities can be approximated [3, 4].

The noiseless IFA model assumes therefore that each marginal density is
distributed according to a mixture model given by:

fZs(zs) =

Ks∑

k=1

πs
kϕ(zs; µ

s
k, νs

k), (4)

The vector of parameters is ψ = (W,π1, . . . ,πS ,µ1, . . . ,µS ,ν1, . . . ,νS), where
W is the un-mixing matrix, πs the vector of cluster proportions of source s
which sum to 1, µs and νs are the vectors of size Ks containing the means and
the variances of each cluster. Traditional methods for learning these parameters



from an i.i.d learning set use the likelihood function, which can be obtained by
substituting the density function in (3) by its definition given in (4):

L(ψ;X) = N log(| det(W )|) +
N∑

i=1

S∑

s=1

log

(
Ks∑

k=1

πs
kϕ ((Wxi)s, µ

s
k, νs

k)

)
. (5)

The estimation of the IFA model parameters by the maximum likelihood can be
achieved by an alternating optimization strategy. The natural gradient algorithm
[5] is indeed well suited to optimize the log-likelihood function with respect to
the un-mixing matrix W when the parameters of the source marginal densities
are frozen. Conversely, with W kept fixed, an EM algorithm can be used to
optimize the likelihood function with respect to the parameters of each source.
These remarks naturally lead to develop a Generalized EM algorithm (GEM)
able to simultaneously maximize the likelihood function with respect to all the
model parameters.

3 Partially-supervised learning in IFA

The IFA model is often considered within an unsupervised learning framework.
The idea that we investigate here is to incorporate partial knowledge on the
cluster membership of some samples in the learning process. For that purpose,
an objective function generalizing the likelihood function has to be defined and
an EM algorithm dedicated to its optimization has to be set up.

3.1 Generalized likelihood function

The learning set is Xiu = {(x1, m
Y1
1 , . . . , mYS

1 ), . . . , (xN , mY1

N , . . . , mYS

N )}, where

mY1

i , . . . , mYS

i is a set of basic belief assignments or Dempster-Shafer mass func-
tions [6, 7] encoding our knowledge on the cluster membership of sample i for
each one of the S sources, Ys = {c1, . . . , cKs

} is the set of all possible clusters for
a source s. This means that additional information on the value of the cluster
memberships represented by the latent variables Yi1, . . . , YiS will be provided to
the IFA model shown in Figure 1.

s

1

1

1

s

S

S

S

s

...

...

... ...

...

...Observed 
variables

Latent 
variables

Discrete latent 
variables

Fig. 1: Graphic model for the Independent Factor Analysis.

The mass functions (referred to hereafter as soft labels) may represent dif-
ferent kinds of knowledge, from precise to imprecise and from certain to uncer-



tain. Thus, depending on their choice, this formulation can be seen as address-
ing a general framework that encompasses unsupervised, supervised, partially-
supervised and soft supervised paradigms as mentioned in Table 1. The plausi-
bility plsik that the state of variable Ysi for source s and object i is ck can be com-

puted from mass function mYs

i by using the relationship plsik =
∑

C∩ck
mYs

i (C).

Mass function plausibility

Unsupervised ms
i (Ys) = 1, plsik = 1, ∀k

Supervised ms
i (ck) = 1 plsik = 1, plsik′ = 0, ∀k′ 6= k

Partially supervised ms
i (C) = 1 plsik = 1 if ck ∈ C, plsik = 0 if ck /∈ C

Soft supervised ms
i (C) ? plsik ∈ [0, 1]

Table 1: Different learning paradigms and soft labels.

The concept of likelihood function has strong relations with that of possibility
and, more generally, plausibility, as already noted by several authors [6]. Fur-
thermore, selecting the simple hypothesis with highest plausibility given the ob-
servations Xiu is a natural decision strategy in the belief function framework. We
thus propose as an estimation principle to search for the value of parameter with
maximal conditional plausibility given the data: ψ̂ = argmaxψ plΨ(ψ|Xiu).

A previous work on mixture model estimation with belief function based
labels has already been addressed in [7]. In this context, a likelihood criterion
taking account of soft labels has been defined and an EM algorithm dedicated
to its optimization has been detailed. In this article, we propose an extension of
such study to the IFA model in which partial knowledge on cluster memberships
of a subset of samples is incorporated.

Proposition 1 If the labels are assumed to be independent mutually and in-
dependent from the samples X that are i.i.d. generated according to the the
generative IFA model setting, then the logarithm of the conditional plausibility
of the model parameters vector ψ given the learning set Xiu is given by:

log
(
plΨ(ψ|Xiu)

)
= N log(| det(W )|)+

N∑

i=1

S∑

s=1

log

(
Ks∑

k=1

plsikπs
kϕ ((Wxi)s, µ

s
k, νs

k)

)
+ cst. (6)

where plsik is the plausibility that the sample i provides from the cluster k of
the latent variable s, these plausibilities have to be computed from the soft labels
mYs

i , and cst is a constant independent of ψ.

3.2 GEM Algorithm for Partially-Supervised Learning

Once the criterion is defined, the remaining work concerns its optimization which
can be performed by a GEM algorithm. This algorithm is therefore the classical
EM algorithm, except for the E step, where the posterior probabilities tsik are
weighted by the plausibilities and the updating of the un-mixing matrix which
depends not only of the latent variables but also of the labels.



Algorithm 1: Pseudo-code for IFA with prior knowledge on labels.

Input: Centered observation matrix X, Plausibilities plsik
# Random initialization of parameters vector ψ(0), q = 0
while Convergence test do

Z = X.W (q)t
# Source update

forall s ∈ {1, . . . , S} and k ∈ {1, . . . , Ks} # (E-step) do

t
s(q)
ik =

plsikπ
s(q)
k ϕ(zis; µ

s(q)
k , ν

s(q)
k )

∑Ks

k′=1 plsik′π
s(q)
k′ ϕ(zis; µ

s(q)
k′ , ν

s(q)
k′ )

, ∀i ∈ {1, . . . , N}

forall s ∈ {1, . . . , S} and k ∈ {1, . . . , Ks} (# M-step) do

π
s(q+1)
k = 1

N

∑N
i=1 t

s(q)
ik

µ
s(q+1)
k = 1

P

N
i=1 t

s(q)
ik

∑N

i=1 t
s(q)
ik zis

ν
s(q+1)
k = 1

P

N
i=1 t

s(q)
ik

∑N

i=1 t
s(q)
ik (zis − µ

s(q+1)
k )2

G = g(q+1)(Z) # Update of G, gs(zis) =
∑Ks

k=1 t
s(q+1)
ik

(zis−µ
s(q+1)
k

)

ν
s(q+1)
k

,

τ∗ = linearsearch(W (q), ∆W )

W (q+1) = W (q) + τ∗.(I− 1
N

Gt.Z).W (q)t
# Unmixing matrix Update

# Source normalization q ← q + 1

Output: Model parameters : ψ̂
ml

, estimated latent variables : Ẑml

4 Simulations

Several simulated data sets were built as follows. Six latent variables were consid-
ered whose densities are shown in Figure 2. The observations are then generated
by the IFA model given in (1) where each coefficient of the mixing matrix (6×6)
was randomly generated according to a normalized normal distribution. The
experiment aims to illustrate the influence of the number of labeled samples
on the performance. For this, Figure 3 gives the Amari performance index [8]
and the Pearson’s correlation coefficient r2 when the number of labeled samples
over all the sources varied between 5% and 50%. These results were computed
on 30 different learning data sets of 500 samples each. 50 initializations were
performed for the GEM algorithm and only the best solution according to the
likelihood was kept to avoid the problem of local minima. From these figures, we
can see the benefits of incorporating prior knowledge on labels in the estimation
of the IFA model. As expected, when the number of labeled samples increases
(> 20%), the model behaves better since both the mean correlation and the
Amari performance index are significantly improved.
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Fig. 2: Simulated sources densities.
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Fig. 3: Influence of the amount of labeled samples on the estimation of the
semi-supervised IFA model: Boxplot of Amari perfomance index and correlation
coefficient function of the percentage of labeled samples.

5 Conclusion

In this paper we have proposed a partially supervised learning for the IFA model
that offers an interesting way to incorporate partial knowledge on cluster mem-
berships to estimate such model. A generalized maximum algorithm criterion
was defined and a GEM algorithm dedicated to its optimization was given. The
proposed method have been applied to artificial data. The results show that our
approach is able to take advantage of prior information to significantly improve
estimation accuracy and to remove indeterminacy of the unsupervised IFA such
as permutation of sources.
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