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In this paper, we study the asymptotic behavior of sums of functions of the increments of a given semimartingale, taken along a regular grid whose mesh goes to 0. The function of the ith increment may depend on the current time, and also on the past of the semimartingale before this time. We study the convergence in probability of two types of such sums, and we also give associated central limit theorems. This extends known results when the summands are a function depending only on the increments, and this is motivated mainly by statistical applications.

Introduction

In many practical situations, one observes a random process X at discrete times and one wants to deduce from these observations, some properties on X. Take for example the specific case of a 1-dimensional diffusion-type process X = X θ depending on a real-valued parameter θ, that is: dX s = σ(θ, s) dW s + a(θ, s) ds,

where σ and a are (known) predictable functions on Ω × R + , and where W is a Brownian motion. We observe the values of X at times i∆, i = 0, 1, 2, • • • , n∆, and the aim is to estimate θ. There are two cases: in the first one the observation window is arbitrarily large. In the second case (which is our concern here), the observation window is fixed, and so ∆ = ∆ n goes to 0 and T = n∆ n is fixed. Most known methods rely upon minimizing some contrast functions, like minus the log-likelihood, and those are typically expressed as "functionals" of the form:

n i=1 g n σ(θ ′ , (i -1)∆ n ), X θ (i-1)∆n , X θ i∆n -X θ (i-1)∆n , (1.2) 
2. One could replace X (i-1)∆n by Y (i-1)∆n for another semimartingale Y , say d ′ -dimensional. But those apparently more general functionals are like (1.3) with the (d + d ′ )-dimensional pair Z = (Y, X) instead of X.

When f (ω, s, z, x) ≡ f (x) (f is "deterministic"), (1.3) becomes:

V n (f, X) = [t/∆n] i=1 f X i∆n -X (i-1)∆n , V ′n (f, X) = ∆ n [t/∆n] i=1 f X i∆n -X (i-1)∆n √ ∆n .    (1.4)
When further f (x) = |x| r , the processes V n (f, X) are known as the realized power variations, and of course V ′n (f, X) = ∆ 1-r/2 n

V n (f, X). The convergence of power variations is not new, see for example [START_REF] Lépingle | La variation d'ordre p des semimartingales[END_REF], an old paper by Lépingle. Recently they have been the object of a large number of papers, due to their applications in finance. Those applications are essentially the estimation of the volatility and tests for the presence or absence of jumps.

An early paper is Barndorff-Nielsen and Shephard [START_REF] Barndorff-Nielsen | Realized power variation and stochastic volatility models[END_REF], when X is a continuous Itô's semimartingale. Afterwards, many authors studied these type of processes: Mancini [START_REF] Mancini | Estimating the integrated volatility in stochastic volatility models with Lévy type jumps[END_REF] studied the case where X is discontinuous with Lévy type jumps, in [START_REF] Jacod | Asymtotic properties of power variation of levy processes[END_REF] Jacod studied the general case of a Lévy process, Corcuera, Nualart and Woerner in [START_REF] Corcuera | Power variation of some integral fractional processes[END_REF] studied the case of a fractional process, ..., the list is far from exhaustive. The results appear in their most general form for a continuous semimartingale in [START_REF] Barndorff-Nielsen | A central limit theorem for realised bipower variation of continuous semimartingales[END_REF] and a discontinuous one in [START_REF] Jacod | Asymptotic properties of realized power variations and related functionals of semimartingales[END_REF].

To give an idea of the expected results, let us mention that when X is a 1-dimensional Itô's semimartingale with diffusion coefficient σ and when f is continuous and "not too where ∆X s is the jump of X at time s, and X c denotes the continuous martingale part of X. Moreover, Jacod gives a central limit theorem for V n (f, X), first for Lévy processes in [START_REF] Jacod | Asymtotic properties of power variation of levy processes[END_REF], second for semimartingales in [START_REF] Jacod | Asymptotic properties of realized power variations and related functionals of semimartingales[END_REF].

The difficulty of the extended setting in the present paper is due to the fact that f is not any more deterministic and depends on all the variables (ω, s, z, x), as we have seen in the statistical problem. We want to know to which extent the earlier results remain valid in this setting, and especially the CLTs. Our concern is to exhibit reasonably general conditions on the test function f which ensure that the previously known results extend. Note also that for the CLT concerning V ′n (f, X), and contrary to the existing literature, we do not always assume that f (ω, t, z, x) is even in x, although most applications concern the even case. The reader will also observe that in some cases there are additional terms due to the parameter z in f (ω, t, z, x).

The paper is organized as follows: in Sections 2 and 3 we state the Laws of large numbers and the CLT respectively, and in Sections 4 and 5 we give the proofs.

Laws of large numbers 2.1 General notation

The basic process X is a d-dimensional semimartingale on a fixed filtered probability space (Ω, F, (F t ) t≥0 , P). We denote by ∆X s = X s -X s-the jump of X at time s, and by I the set I = r ≥ 0 :

s≤t ||∆X s || r < ∞ a.s for all t .

Note that the set I always contains the interval [2, ∞).

The optional and predictable σ-fields on Ω × R + are denoted by O and P, and if

g is a function on Ω × R + × R l we call it optional (resp. predictable) if it is O ⊗ R l -measurable (resp. P ⊗ R l -measurable), where R l is the Borel σ-field on R l .
The function f (unless otherwise stated) denotes a function from

Ω × R + × R d × R d into R q ,
for some q ≥ 1 . When f (ω, t, z, x) admits partial derivatives in z or x, we denote by ∇ z f or ∇ x f the corresponding gradients.

If M is a matrix, its transpose is M t . The set of all p × q matrices is M(p, q), and T (p, q, r) is the set of all p × q × r-arrays.

For any σ ∈ M(d, m) we denote by ρ σ the normal law N (0, σσ t ), and by ρ σ (f (ω, s, z, .)) the integral of the function x → f (ω, s, z, x) with respect to ρ σ .

We denote by B the set of all functions φ : R d → R + bounded on compact.

A sequence (Z n t ) of processes is said to converge u.c.p. (for: uniformly on compact sets and in probability) to Z t , and written

Z n u.c.p → Z or Z n t u.c.p → Z t , if P sup s≤t ||Z n s -Z s || > ε → 0 for all ε, t > 0. We write Z n L-(s) → Z or Z n t L-(s)
→ Z t , if the process Z n converge stably in law to Z, as processes (see [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF] for details on the stable convergence).

We gather some important properties of f in the following definition.

Definition 2.1 a) We say that f is of (random) polynomial growth if there exist a locally bounded process Γ (meaning: sup s≤Tn Γ s ≤ n for a sequence T n of stopping times increasing a.s. to ∞), a function φ ∈ B, and a real p ≥ 0 such that

||f (ω, s, z, x)|| ≤ Γ s (ω)φ(z)(1 + ||x|| p ). (2.1)
If we want to specify p, we say that f is at most of p-polynomial growth. b) we say that f is locally equicontinuous in x (resp. (z, x)) if for all ω, all T > 0, and all compacts K, K ′ in R d , the family of functions

(x → f (ω, s, z, x)) s≤T,z∈K ′ (resp. ((z, x) → f (ω, s, z, x)) s≤T ) is equicontinuous on K (resp. K × K ′ ).

Assumptions

Let us start with the assumptions on X. For V n (f, X) we only need X to be an arbitrary semimartingale. For V ′n (f ) we need X to be an Itô semimartingale and a little more. Recall first that the property of X to be an Itô semimartingale is equivalent to the following: there are, possibly on an extension of the original probability space, an mdimensional Brownian motion W (we may always take m = d) and a Poisson random measure µ on R + × R with intensity measure ν(ds, dy) = F (dy) ds with F is a σ-finite measure on R, such that X can be written as

X t = X 0 + t 0 b s ds + t 0 σ s-dW s + t 0 R h (δ(s, y)) (µ -ν)(ds, dy) + t 0 R h ′ (δ(s, y)) µ(ds, dy), (2.2) 
for suitable "coefficients" b (predictable

d-dimensional), σ (optional d × m-dimensional), δ (predictable d-dimensional function on Ω × R + × R)
and h is a truncation function from R d into itself (continuous with compact support, equal to the identity on a neighborhood of 0), and h ′ (x) := xh(x).

Then we set:

Hypothesis (N 0 ):
The process X is an Itô's semimartingale, and its coefficients in (2.2) satisfy the following: b and R (1 ∧ ||δ(ω, s, y)|| 2 ) F (dy) are locally bounded, and σ is càdlàg. 2

For the test function f we introduce the following, where A is an arbitrary subset of R d :

Hypothesis (K[A]): f (ω, t, z, x) is continuous in (z, x) on R d × A and if (t n , z n , x n ) → (t, z, x) with x ∈ A and t n < t, then f (ω, t n , z n ,
x n ) converges to a limit depending on (ω, t, z, x) only, and denoted by f (ω, t-, z, x). 2

Results

The first two theorems concern the processes V n (f ).

Theorem 2.2 Let X be an arbitrary semimartingale, and let f satisfy K(R d ). Suppose there exist a neighborhood V of 0 on R d , a real p > 2, and for any K > 0, a locally bounded process Γ K such that:

z ≤ K, x ∈ V ⇒ ||f (ω, s, z, x)|| ≤ Γ K s (ω) x p . (2.3)
Then V n (f ) converge a.s. for the Skorokhod topology to the process

D(f ) t = s≤t f (s-, X s-, ∆X s ). (2.4) Remark 2.
3 This is one of the rare situations where one has almost sure convergence; see Section 3.1 of [START_REF] Diop | Sur la convergence de certaines fonctionnelles de semimartingales discrétisées[END_REF] for some other ones.

Theorem 2.4 Let X be an arbitrary semimartingale, and let f be optional, satisfy (K(R d )) and f (ω, s, z, 0) = 0, and be C 2 in x on some neighborhood V of 0, and assume also

• For any j, k ∈ {1, • • • , d}, the functions ∂f ∂x j (ω, s, x, z) and

∂ 2 f ∂x j ∂x k (ω, s, x, z) defined on Ω × R + × R d × V satisfy (K[V ]).
• There exist φ ∈ B and a locally bounded process Γ such that

d j=1 ∂f ∂x j (s, z, 0) + d k=1 sup x∈ V ∂ 2 f ∂x j ∂x k (s, z, x) ≤ Γ s φ(z).
Then V n (f ) converge in probability, in the Skorokhod sense, to the process

D(f ) t = d j=1 t 0 ∂f ∂x j (s-, X s-, 0) dX s + 1 2 d j,k=1 t 0 ∂ 2 f ∂x j ∂x k (s-, X s-, 0) d X j,c , X k,c s + 0<s≤t   f (s-, X s-, ∆X s ) - d j=1 ∆X j s ∂f ∂x j (s-, X s-, 0)   , (2.5)
where X c is the continuous martingale part of X.

The two versions (2.4) and (2.5) of D(f ) agree when f satisfies the hypotheses of Theorem 2.2, so Theorem 2.4 extends Theorem 2.2 and gives the results in a more complete form. This result was not known even in the case when f only depends on x.

Remark 2.5 Both theorems remain valid if the discretization grid is not regular, provided the successive discretization times are stopping times and the mesh goes to 0 (see Sections 3.5 and 4.5 of [START_REF] Diop | Sur la convergence de certaines fonctionnelles de semimartingales discrétisées[END_REF] for results of this type). Now we state the result about V ′n (f ).

Theorem 2.6 Let f be optional, satisfy (K(R d )), be locally equicontinuous in x and with p-polynomial growth. Assume further that one of the following two conditions is satisfied:

1. X satisfies (N 0 ) and p < 2.

2. X satisfies (N 0 ) and is continuous.

Then V ′ n (f ) u.c.p. -→ t 0 ρ σ s-(f (s-, X s-, .)) ds.
(2.6)

Remark 2.7 Comparing with [START_REF] Barndorff-Nielsen | A central limit theorem for realised bipower variation of continuous semimartingales[END_REF] or [START_REF] Jacod | Asymptotic properties of realized power variations and related functionals of semimartingales[END_REF], we see that there is no additional term due to the third argument z in f (ω, s, z, x).

In the discontinuous case (Hypothesis 1), the condition p < 2 simplifies the computations but is not optimal. The result remains true valid if there exist φ, φ ′ ∈ B such that:

φ ′ (x) → 0, when ||x|| → ∞, and ||f (ω, s, z, x)|| ≤ Γ s (ω)φ(z)||x|| 2 φ ′ (x).

Central limit theorems

In the framework of the CLT, one needs some additional assumptions both on X and on f , which depend on the problem at hand.

Assumptions on X

Hypothesis (N 1 ): (N 0 ) is satisfied, and there exist a sequence (S k ) of stopping times increasing to ∞ and deterministic Borel functions (γ k ) such that:

||δ(ω, s, y)|| ≤ γ k (y) if s ≤ S k (ω) and R (1 ∧ γ k (y) 2 ) F (dy) < ∞.
2

The next assumption depends on a real s ∈ [0, 2]:

Hypothesis (N 2 (s)): (N 1
) is satisfied, the mapping s → δ(ω, s, y) is càglàd, and R (1 ∧ γ k (y) s ) F (dy) < ∞. Moreover, the process σ in (2.2) satisfies:

σ t = σ 0 + t 0 b u du + t 0 σ u dW u + M t + u≤t ∆σ u 1 {||∆σu||≥1} , (3.7) 
where

• b is predictable and locally bounded.

• σ is càdlàg, adapted with values in T (d, m, m). 

σ t = σ 0 + t 0 b u ds + t 0 σ u dW u + t 0 v u dV s + R t 0 k( δ(u, y)) ⋆ (µ -ν)(du, dy) + R t 0 k ′ ( δ(u, y)) ⋆ µ(du, dy), (3.8) 
where b and σ are like in (N 2 (s)) and

• V is a l-dimensional Brownian motion independent of W .

• v takes its values in T (d, m, l), is progressively measurable and locally bounded.

• k(x) is a truncation function on R d × R m and k ′ (x) := x -k(x). • δ : Ω × R + × R → M(d, m) is predictable and is such that: R (1 ∧ || δ(u, y)|| 2 ) F (dy) is locally bounded.
Of course, a, a, v and δ are related, for example if

k(x) = x1 {||x||<1} , one has v 2 u + {|| δ(u,y)||≤1} δ 2 (u, y) F (dy) = a 2
u and a u = {|| δ(u,y)||>1} F (dy).

Assumptions on the test function f

Hypothesis (M 1 ): f is optional and there exists a neighborhood V of 0 such that

f (ω, s, z, x) is C 1 in (z, x), the functions ∇ x f , ∇ z f are C 1 in x on V , and 
f (ω, s, z, 0) = ∇ x f (ω, s, z, 0) ≡ 0.
Moreover there are a locally bounded process Γ, a real α > 1 2 , and some functions φ, ε and θ belonging to B, with ε(x) → 0 as ||x|| → 0 and θ(x) ≤ x 2 in the neighborhood of 0, such that:

d j,j ′ =1 ∂ 2 f ∂x j ∂x j ′ (ω, s, z, x) + ∂ 2 f ∂x j ∂z j ′ (ω, s, z, x) ≤ Γ s (ω)φ(z)||x||ε(x),
and for all T > 0 and s, t

∈ [0, T ], f (ω, t, z, x) -f (ω, s, z, x) ≤ Γ T (ω)φ(z) |t -s| α θ(x). (3.9) 
2

Hypothesis (M 2 ): f (ω, t, z, x) is optional, C 1 in (z, x)
, with ∇ x f and ∇ z f of (random) polynomial growth and locally equicontinuous in (z, x), and there are Γ, φ, α as in (M 1 ) and some p > 0 such that for all T > 0 and s, t ∈ [0, T ],

f (ω, s, z, x) -f (ω, t, z, x) ≤ Γ T (ω)φ(z)|t -s| α (1 + x p ), (3.10) 
2

Hypothesis (M ′ 2 ): (M 2 ) is satisfied and moreover f (ω, s, z, x) + ∇ x f (ω, s, z, x) ≤ φ(z)Γ s (ω). 2 
The previous hypotheses are fulfilled by most of the test functions used in statistics.

The results

In order to define the limiting processes, we need to expand the original space (Ω, F, (F t ) t≥0 , P), what we do as follows: Consider an auxiliary space (Ω ′ , F ′ , P ′ ), which supports a q-dimensional Brownian motion W and some sequences

{(U k p ) 1≤k≤m ; (U ′ k p ) 1≤k≤m ; (κ p )} p≥1 of random variables,
where the U k p and U ′ k p are normal N (0, 1) and the (κ p ) are uniform on (0, 1). We suppose all these variables and processes mutually independent. Now set:

Ω = Ω × Ω ′ , F = F ⊗ F ′ , P = P ⊗ P ′ .
We then extend the variables and processes defined on Ω or Ω ′ on the space Ω, in the usual way. Let (T p ) be an arbitrary sequence of stopping times exhausting the jumps of X (meaning: they are stopping times such that for all (ω, s) with ∆X s (ω) = 0, there exists a unique p such that T p (ω) = s). We define on Ω the filtration ( F t ) which is the smallest one satisfying the following conditions:

• ( F t ) is right continuous, and F t ⊂ F t , • W is adapted on ( F t ), • the variables U k p , U ′ k
p and κ p are F Tp measurable. Now we are ready to give the results. We start with V n (f ):

Theorem 3.2 Suppose that X satisfies (N 1 ) and f satisfies (M 1 ), then 1 √ ∆ n V n (f ) -D(f ) [t/∆n]∆n L -→ F t ,
where the process F is

F t = p: Tp≤t d j=1 m k=1 √ κ p σ j,k Tp-U k p + 1 -κ p σ j,k Tp U ′ k p ∂f ∂x j T p -, X Tp-, ∆X Tp - √ κ p σ j,k Tp-U k p ∂f ∂z j T p -, X Tp-, ∆X Tp . (3.11) Remark 3.3
The last term in (3.11) is due to the third argument of f , and does not appear in [START_REF] Jacod | Asymptotic properties of realized power variations and related functionals of semimartingales[END_REF]. One could show that the theorem remains valid if, in the formula (3.9), θ(x) ≤ x p near the origin for some p ∈ [0, 2] ∩ I.

It is useful to give some properties of the process F above. For this, under (M 1 ) and (N 1 ), one defines an M(q, q)-valued process C(f ) as follows:

C(f ) t = 1 2 p: Tp≤t d j,j ′ =1 m k=1 σ j,k Tp-σ j ′ ,k Tp-+ σ j,k Tp σ j ′ ,k Tp × ∂f ∂x j ∂f ∂x j ′ t • (T p -, X Tp-, ∆X Tp ) -σ j,k Tp-σ j ′ ,k Tp- ∂f ∂x j ∂f ∂z j ′ t + ∂f ∂z j ∂f ∂x j ′ t • (T p -, X Tp-, ∆X Tp ) +σ j,k Tp-σ j ′ ,k Tp- ∂f ∂z j ∂f ∂z j ′ t • (T p -, X Tp-, ∆X Tp ) , (3.12) 
The following lemma is given without proof, since it is an immediate generalization of lemma 5.10 of [START_REF] Jacod | Asymptotic properties of realized power variations and related functionals of semimartingales[END_REF].

Lemma 3.4 If (M 1 ) and (N 1 ) are satisfied, then C(f ) is well defined and F is a semimartingale on the extended space ( Ω, F , P). If further C(f ) is locally integrable, then F is a locally square-integrable martingale.

Conditionally on F, the process F is a square integrable centered martingale with independent increments, its conditional variance is C(f ) t = E{F 2 t |F}, its law is completely characterized by X and σσ t and does not depend on the choice of the sequence (T p ). Now we turn to V ′n (f ). Under (M 2 ) or (M 3 (r)), one defines a process a taking its value in M(q, q) and satisfying for any j, k ∈ {1, • • • , q}:

q l=1 a j,l t a l,k t = ρ σt (f j f k )(t, X t , .) -ρ σt f j (t, X t , .) ρ σt f k (t, X t , .) . (3.13)
The process a, which may be chosen (F t )-adapted, is the square-root of the symmetric semi-definite positive element of M(m, m) whose components are given by the right side of (3.13).

Theorem 3.5 Suppose f (ω, s, z, x) even in x, and assume that one of the following hypothesis is satisfied:

• X is continuous and satisfies (N 2 (2)) and f satisfies (M 2 ).

• one has (N 2 (s)) for some s ≤ 1 and

(M ′ 2 ). Then 1 √ ∆ n V ′n (f ) t - t 0 ρ σs f (s, X s , .) ds L-(s) -→ L(f ) t ,
where

L(f ) t = t 0 a s dW s . (3.14)
Remark 3.6 Some times, one wants to apply the theorem for functions of the type f (ω, s, z, x) = g(ω, s, z) x r , which are not any more C 1 in x on R d when r ∈ (0, 1]. Specifically, consider the following hypothesis:

Hypothesis (M 3 (r)): f (ω, s, z, x) is optional and there is a closed subset B of R d with Lebesgue measure 0 such that the application x → f (ω, t, z, x) is C 1 on B c
. Moreover there are p ≥ 0 and α, φ and Γ as in (M 1 ) such that for all T > 0 and s, t ∈ [0, T ],

f (ω, s, z, x 1 + x 2 ) -f (ω, s, z, x 1 ) ≤ Γ T (ω)φ(z) (1 + x 1 p ) x 2 r . f (ω, s, z, x) -f (ω, t, z, x) ≤ Γ T (ω)φ(z)|t -s| α (1 + ||x|| p ) . (3.15)
Moreover,

• if r = 1 then ∇ x f defined on Ω × R + × R d × B c is locally equicontinuous in (z, x)
with at most polynomial growth.

• if r = 1, then for any element C ∈ M(d, d) and any N (0, C)-random vector U , the distance from U to B has a density ψ C on R + , satisfying

sup x∈R + , C + C -1 <K ψ C (x) < ∞ for all K < ∞. For any x 1 ∈ B c , ∇ x f (ω, s, z, x 1 ) ≤ Γ s (ω)φ(z)(1 + x 1 p ) d(x 1 , B) 1-r , (3.16 
)

and if ||x 2 || < d(x 1 ,B) 2 , then ∇ x f (ω, s, z, x 1 + x 2 ) -∇ x f (ω, s, z, x 1 ) ≤ Γ s (ω)φ(z)(1 + x 1 p ) x 2 d(x 1 , B) 2-r
. (3.17) 2 Then one can show that the results of theorem 3.5 remain valid if f satisfies (M 3 (r)) for some r ∈ (0, 1] and X satisfies N 2 (2) with σσ t everywhere invertible, if further one of the following condition is satisfied:

• f satisfies (M 3 (r)) and X is continuous,
• f satisfies (M 3 (r)) and the real p in (3.15), (3.16) and (3.17) is always equal 0, while X satisfies (N 2 (s)) and either s ∈ [0, 2 3 ) and r ∈ (0, 1)

or s ∈ ( 2 3 , 1) and r ∈ ( 1- √ 3s 2 -8s+5 2-s , 1). 
Our next objective is to generalize the CLT for V ′n (f ) in the case where f is not even. For this, we need some additional notation.

Let U be an N (0, Id m ) random vector, where Id m is the identity matrix of order m (recall that m is the dimension of the Brownian motion W in (N 2 (s))). We then denote by ρ ′ , the law of U and by ρ ′ (g 1 (.)) the integral of any function g 1 : R m → R q with respect to ρ ′ if it exists. If now g 2 : R d → R q and x ∈ M(d, m), we set: ρ ′ (g 2 (x.)) = E{g 2 (xU )}.

For any j ∈ {1, • • • , m}, we define the projection P j on R m by:

P j (u) := u j if u = (u 1 , • • • , u m ).
Under (M 2 ) we define w(1) and w(2), two adapted processes taking their values respectively in the spaces M(q, m) and M(q, q), and such that for all j, k ∈ {1, • • • , q} and

j ′ ∈ {1, • • • , m} we have w(1) j,j ′ s = ρ ′ f j (s, X s , σ s .)P j ′ (.) , q l=1 w(2) j,l t w(2) l,k t = ρ ′ (f j f k )(s, X s , σ s .) -ρ ′ f j (s, X s , σ s .) ρ ′ f k (s, X s , σ s .) -m l ′ =1 w(1) j,l ′ t w(1) l ′ ,k t .        (3.18)
The process w(2) is the square-root of the matrix whose components are given by the right side of the second equality in (3.18). Finally, under (N 2 (2)) set

b ′ = b - R h(δ(s, y)) F (dy). (3.19)
Theorem 3.7 Assume either one of the following two assumptions:

• X satisfies (N 2 (2)
) and is continuous and f satisfies (M 2 ).

• We have (N 2 (s)) for some s ≤ 1 and f satisfies (M ′ 2 ). If further b ′ ≡ 0 and σ ≡ 0, we have

1 √ ∆ n V ′ n (f ) t - t 0 ρ ′ f (s, X s , σ s .) ds L-(s) -→ L(f ) t ,
where

L(f ) t := t 0 w(1) s dW s + t 0 w(2) s dW s . (3.20)
Remark 3.8 Clearly, when f is even in x, the two versions of the process L(f ) in Theorems 3.5 and 3.7, agree. If X satisfies (N 2 (s)) with s ≤ 1, the hypotheses b ′ = 0 and σ = 0 yield that X has the form:

X t = X 0 + t 0 σ s dW s + s≤t ∆X s . (3.21)
4 Proof of the laws of large numbers 4.1 Theorems 2.2 and 2.4

We start by stating two important lemmas, without proof. The first one is a (trivial) extension of what is done in Subsection 3.1 of [START_REF] Jacod | Asymptotic properties of realized power variations and related functionals of semimartingales[END_REF], and the hypothesis (K(R)) plays a crucial role there. The second one is a generalization of Itô's formula, and its proof can be found for example in [START_REF] Diop | Sur la convergence de certaines fonctionnelles de semimartingales discrétisées[END_REF] (see lemma 3.4.2).

Lemma 4.1 Let X be an arbitrary semimartingale, and f be a function satisfying (K[R]) and such that f (s, z, x) = 0 if ||x|| ≤ ε for some ε > 0. Then

V n (f ) t - s≤[t/∆n]∆n f (s-, X s-, ∆X s ).
converges in variation to 0 when n → ∞, for each ω ∈ Ω.

Lemma 4.2 Let X be a semimartingale and f (ω, u, z, x) be an optional function, C 2 in x. Then for any u, for almost all ω and for any t ≥ u, one has:

f (u, X u , X t ) = f (u, X u , X u ) + d j=1 t u+ ∂f ∂x j (u, X u , X s-) dX s + d j,j ′ =1 1 2 t u+ ∂ 2 f ∂x j ∂x j ′ (u, X u , X s-) d X j,c , X j ′ ,c s + u<s≤t f (u, X u , X s ) -f (u, X u , X s-) - d j=1 ∆X j s ∂f ∂x j (u, X u , X s-) .
Now we are ready to prove the two theorems about V n (f ).

Proof of Theorem 2.2: Since for any càdlàg process Y , the processes Y [t∆n]∆n converge pathwise to Y for the Skorokhod topology, it is sufficient to prove that the processes V n (f ) t -D(f ) [t/∆n]∆n converge u.c.p. to 0. We suppose first that X t ≤ C identically for some constant C. Let t > 0, and

S n = {0 = t n 1 < t n 2 < • • • < t n k n = t} be a sequence of partitions of [0, t] such that sup i |t n i -t n i-1 | → 0, when n → ∞.
According to Théorème 4 of [START_REF] Lépingle | La variation d'ordre p des semimartingales[END_REF], one has:

k n i=1 |X j t n i -X j t n i-1 | p -→ s≤t |∆X j s | p a.s.,
for any j ∈ {1, • • • , d}, and where X j is the jth component of X.

Since the mappings t → s≤t |∆X j s | and t →

[t/∆n] i=1
|∆ n i X j | p are increasing, we deduce that for almost all ω and for any real t > 0, lim sup

n [t/∆n] i=1 ∆ n i X p ≤ d p-1 d j=1 s≤t |∆X j s | p . (4.1) Let now ψ : R → R be a C ∞ function such that 1 [-1,1] (y) ≤ ψ(y) ≤ 1 [-2
,2] (y). We then put for y ∈ R and x ∈ R d and ε > 0:

ψ ε (y) = ψ( y ε ) if ε < ∞ 1 if ε = ∞, Ψ ε (x) = Π d j=1 ψ ε (x j ). (4.2) 
Note that

Ψ ε (x) = 1 if ||x|| ≤ ε 0 if ||x|| > 2dε,
and set, with the notation (2.4):

Z n (f ) t = V n (f ) t -D(f ) t , (4.3) 
Then Z n (f ) = Z n (f Ψ ε ) + Z n (f (1 -Ψ ε )), (4.4) 
lim sup sup t≤T Z n (f ) t ≤ lim sup sup t≤T Z n (f Ψ ε ) t + lim sup sup t≤T Z n (f (1 -Ψ ε )) t , (4.5) 
for any T > 0. By Lemma 4.1, one has

lim ε→0 lim sup n sup t≤T Z n (f (1 -Ψ ε )) t = 0. (4.6)
On the other hand, if q ∈ (2, p) we have by (2.3) and X ≤ C and (4.1):

sup s≤t Z n (f Ψ ε ) t ≤ (2dε) p-q Γ 2C t [t/∆n] i=1 ∆ n i X q + s≤t ∆X s q ≤ 2d p-1 (2dε) p-q Γ 2C t d j=1 s≤t |∆X j s | q .
Since s≤t |∆X j s | q < ∞, by letting ε → 0 we conclude lim sup

n sup s≤t |Z n (f Ψ ε ) s | = 0,
which ends the proof in the case where X is bounded. The general case is deduced by a classical method of "localization", for which we refer to Section 3 of [START_REF] Barndorff-Nielsen | A central limit theorem for realised bipower variation of continuous semimartingales[END_REF] for details.

2

Proof of Theorem 2.4: We use the previous notation, with Z n (f ) is as in (4.3) and D(f ) as in (2.5). Recalling that (2.4) and (2.5) give the same process D(f (1 -Ψ ε )), we still have (4.6), and it is thus enough to prove that:

Z n (f Ψ ε ) -→ u.c.p. 0. (4.7)
Set f ε := f Ψ ε . By the hypotheses on f , the function f ε is C 2 in x if ε is small enough. We then apply lemma 4.2 to each f ε ((i -1)∆ n , X (i-1)∆n , ∆ n i X), which gives

Z n (f ε ) t = 3 l=1 Z n (f ε , l) t
where, with the notation Y n s = X s -X (i-1)∆n and φ n (s) := (i -1)∆ n for s ∈ ((i -1)∆ n , i∆ n ], we have

Z n (f ε , 1) t = d j=1 [t/∆n]∆n 0 ∂fε ∂x j (φ n (s), X φ n (s) , Y n s ) -∂fε ∂x j (s-, X s-, 0) dX j s , Z n (f ε , 2) t = 1 2 d j,k=1 [t/∆n]∆n 0 ∂ 2 fε ∂x j ∂x k (φ n (s), X φ n (s) , Y n s ) -∂ 2 fε ∂x j ∂x k (s-, Z s-, 0) d X c,j , X c,k s , Z n (f, 3) t = s≤t f ε (φ n (s), X φ n (s) , Y n s ) -f ε (s-, X s-, ∆X s ) -f ε (φ n (s), X φ n (s) , Y n s-) -d j=1 ∆X j s ∂fε ∂x j (φ n (s), X φ n (s) , Y n s-)
-∂fε ∂x j (s-, X s-, 0) .

Observe now that ∂fε ∂x j (φ n (s), Z φ n (s) , Y n s-) → ∂fε ∂x j (s-, Z s-, 0). Since ∂fε ∂x j is dominated by a locally bounded processes, Lebesgue's theorem gives:

Z n (f ε , 1) → u.c.p. 0.
The proof of Z n (f ε , j) → u.c.p. 0 for j = 2, 3 is similar, and we thus have (4.7).

Proof of Theorem 2.6

Let us start by strengthening the hypothesis (N 0 ) : Hypothesis (LN 0 ): (N 0 ) is satisfied, and the processes b s , σ s , R (1 ∧ ||δ(ω, s, y)|| 2 ) F (dy) and X s are bounded by a constant. 2
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We also suppose that the process Γ which intervenes in (2.1) is uniformly bounded. Below, we denote all constants by K. Set 

β n i = σ (i-1)∆n ∆ n i W √ ∆ n . ( 4 
Then ∆ n [t/∆n] i=1 E f (i -1)∆ n , X (i-1)∆n , ∆ n i X √ ∆ n -f (i -1)∆ n , X (i-1)∆n , β n i → 0.
Proof: We reproduce the proof of Lemma 4.4 (2) of [START_REF] Diop | Sur la convergence de certaines fonctionnelles de semimartingales discrétisées[END_REF] with some relevant changes. For any A, T, ε > 0, we define the variables

G T (ε, A) = sup s≤T ; ||x||≤A;||z||≤K;||y||≤ε f (s, z, x + y) -f (s, z, x) ζ n i = f (i -1)∆ n , X (i-1)∆n , ∆ n i X √ ∆ n -f ((i -1)∆ n , X (i-1)∆n , β n i ) . Then ζ n i ≤ G t (ε, A) + ζ n i 1 { β n i >A} + 1 { ∆ n i X/ √ ∆n-β n i > ε} . (4.10) 
Let q be a real such that q > p if X is continuous and q = 2 if not. Then (2.1) with Γ a constant yields for all B > 1:

f (ω, s, z, x) ≤ K φ(z) B p-q x q + B p .
Also under (LN 0 ) one knows that:

E ∆ n i X/ ∆ n -β n i q + β n i q ≤ K.
Hence by (4.10):

ζ n i ≤ G t (ε, A) + KB p 1 { β n i >A} + 1 { ∆X n i / √ ∆n-β n i >ε} +KB p-q β n i q + ∆ n i X/ ∆ n -β n i q . It follows that ∆ n [t/∆n] i=1 E{ ζ n i } ≤ t E{G t (ε, A)} + KB p A + KB p-q + KB p ε -2 ∆ n [t/∆n] i=1 E 1 ∧ ∆ n i X/ ∆ n -β n i 2 . (4.11)
Next by lemma 4-1 of ( [START_REF] Jacod | Asymptotic properties of realized power variations and related functionals of semimartingales[END_REF])

∆ n

[t/∆n] i=1 E 1 ∧ ∆ n i X/ ∆ n -β n i 2 -→ 0.
Then coming back to (4.11) and letting successively n → ∞, ε → 0, A → ∞ and B → ∞, we obtain the result. 2

Proof of Theorem 2.6: We first prove the theorem under the stronger assumptions (LN 0 ) and Γ t in (2.1) bounded. Set

U ′n t := ∆ n [t/∆n] i=1 f (i -1)∆ n , X (i-1)∆n , ∆ n i X √ ∆ n - t 0 ρ σs (f (s-, X s , .)) ds.
Then U ′n t = 3 j=1 U ′n t (j), where

U ′n t (1) = ∆ n [t/∆n] i=1 f (i -1)∆ n , X (i-1)∆n , ∆ n i X √ ∆ n -f (i -1)∆ n , X (i-1)∆n , β n i , U ′n t (2) = ∆ n [t/∆n] i=1 f (i -1)∆ n , X (i-1)∆n , β n i -E f (i -1)∆ n , X (i-1)∆n , β n i |F (i-1)∆n , U ′n t (3) = ∆ n [t/∆n] i=1 E f (i -1)∆ n , X (i-1)∆n , β n i |F (i-1)∆n - t 0 ρ σs (f (s-, X s , .)) ds.
Observe first that U ′n t (2) is a martingale with respect to the filtration (F [t/∆n]∆n ) t≥0 , and its predictable quadratic variation is given by: At this stage the theorem is proved under the stronger assumptions announced at the beginning of the proof, and as said in Theorem 2.2, the general case is obtained by a classical localization method.

U ′n (2) t = ∆ 2 n [t/∆n] i=1 E f ((i -1)∆ n , X (i-1)∆n , β n i ) 2 |F (i-1)∆n -E f ((i -1)∆ n , X (i-1)∆n , β n i ) |F (i-
5 Proof of the central limit theorems We start again by strengthening our hypotheses:

Hypothesis (LN 1 ): (N 1 ) is satisfied, and the processes b, σ and X are bounded. The functions γ k = γ do not depend on k and are bounded.

2

Hypothèse (LM 1 ): We have (M 1 ) and the process Γ is bounded. 2

Under (LN 1 ), we have:

X t = X 0 + t 0 b ′ s ds + t 0 σ s dW s + t 0 R δ(s, y)(µ -ν)(ds, dy), (5.12) where b ′ s := b s + R h ′ (δ(s, y)) F (dy). (5.13) 
For ε > 0, set:

E = { y ∈ R, γ(y) > ε } and N t = 1 E ⋆ µ t , (5.14) 
and let T ′ 1 , • • • , T ′ p , • • • be the successive jump times of N . We state two important lemmas, the first of which is due to Jacod and Protter (Lemma 5.6 of [START_REF] Jacod | Asymptotic error distributions for the Euler method for stochastic differential equations[END_REF]), and the second one is Lemma 5.9 of [START_REF] Jacod | Asymptotic properties of realized power variations and related functionals of semimartingales[END_REF].

Lemma 5.1 Suppose (LN 1 ) satisfied, and for each T ′ p , denote by i n p the integer such that

(i n p -1)∆ n < T ′ p ≤ i n p ∆ n . Then the sequence of random variables 1 √ ∆ n σ (i n p -1)∆n (W T ′ p -W (i n p -1)∆n ) , σ T ′ p (W i n p ∆n -W T ′ p ) p≥1 converges stably in law to √ κ p σ T ′ p-U p , 1 -κ p σ T ′ p U ′ p p≥1
,

where U p is such that U t p = (U 1 p , • • • , U m p ) and U ′t p = (U ′1 p , • • • , U ′m p ).
Lemma 5.2 Under the assumptions of lemma 5.1, on has:

1 √ ∆ n (X i n p ∆n -X T ′ p -σ T ′ p (W i n p ∆n -W T ′ p ) P -→ 0, 1 √ ∆ n X T ′ p --X (i n p -1)∆n -σ (i n p -1)∆n (W T ′ p -W (i n p -1)∆n ) P -→ 0.
We are now ready to give the proof of the theorem. The processes

W n (f ) = 1 √ ∆ n   V n (f ) t - s≤[t/∆n]∆n f (s-, X s-, ∆X s )   (5.15) satisfy W n (f ) = W n (f, 1) + W n (f, 2)
, where

W n (f, 1) t = 1 √ ∆ n   V n (f ) t - s≤[t/∆n]∆n f (φ n (s), X s-, ∆X s )   W n (f, 2) t = 1 √ ∆ n s≤[t/∆n]∆n (f (φ n (s), X s-, ∆X s ) -f (s-, X s-, ∆X s )) ,
(φ n (s) is like in the previous section). (3.9) yields W n (f, 2)

u.c.p.
-→ 0, and for all ε > 0 we have

W n (f, 1) = W n (f (1 -Ψ ε ), 1) + W n (f Ψ ε , 1), (5.16)
where Ψ ε is as in (4.2). Then the rest of the proof of Theorem 3.2 is divided in three steps.

Step 1: Here we study the convergence of the process W n (f (1 -Ψ ε ), 1). By subsection 3.1 of [START_REF] Jacod | Asymptotic properties of realized power variations and related functionals of semimartingales[END_REF], for n large enough one has:

W n (f (1 -Ψ ε )) = 1 √ ∆ n p: T ′ p ≤[t/∆n]∆n f (1 -Ψ ε )((i n p -1)∆ n , X (i n p -1)∆n , ∆ n i X) -f (1 -Ψ ε )((i n p -1)∆ n , X T ′ p -, ∆X T ′ p ) , = 1 √ ∆ n p: T ′ p ≤[t/∆n]∆n   d j=1 ∆ n i n p X j -∆X j T ′ p × ∂f (1 -Ψ ε ) ∂x j ((i n p -1)∆ n , X ′n p , X n p ) + d j=1 X j (i n p -1)∆n -X j T ′ p - ∂f (1 -Ψ ε ) ∂z j ((i n p -1)∆ n , X ′ n p , X n p )   , where (X ′n p , X n p ) is between (X (i n p -1)∆n , ∆ n i X) and (X T ′ p -, ∆X T ′ p ).
Then by lemma 5.2 and 5.1, W n (f (1 -Ψ ε ) converge stably in law to the process

F ′ (f (1 -Ψ ε )) t := p: T ′ p ≤t d j=1 m k=1 √ κ p σ j,k T ′ p -U k p + 1 -κ p σ j,k T ′ p U ′ k p × ∂f (1 -Ψ ε ) ∂x j (T ′ p -, X T ′ p -, ∆X T ′ p ) - √ κ p σ j,k T ′ p -U k p ∂f (1 -Ψ ε ) ∂z j (T ′ p -, X T ′ p -, ∆X T ′ p ) ,
which has the same F-conditional law than the process F (f (1 -Ψ ε )) associated with the function f (1 -Ψ ε ) by (3.11).

Step 2: Here we show that

F (f (1 -Ψ ε )) u.c.p.
-→ F (f ) as ε → 0.

(5.17)

Recall the process C(f ) defined in (3.12), and set f Ψ ε = f ε . Under (LN 1 ) there exists a process A such that:

∀ T > 0, C(f ε ) T ≤ A T , and E(A t ) < ∞.
Since C(f ε ) T → 0 when ε → 0, by Lebesgue's convergence theorem we have E(C(f ε ) T ) → 0. Furthermore by lemma 3.4, the process F (f ε ) t is a locally square integrable martingale and Doob's inequality yields that:

P sup t≤T F (f ε ) > η ≤ 4 η E F (f ε ) 2 t = 4 η E (C(f ε ) T ) hence F (f Ψ ε ) u.c.p. -→ 0 when ε → 0. Since F (f ) = F (f (1 -Ψ ε )) + F (f Ψ ε )
, this implies (5.17).

Step 3: In this last step we show that lim ε→0 lim sup

n P sup t≤T W n (f Ψ ε , 1) > η = 0, ∀ η, T > 0. (5.18) 
Using Itô's formula of lemma 4.2, in a similar way than in the proof of theorem 2.4, we have W n (f ε , 1) = 5 l=1 W n (f ε , 1, l), where

W n (f ε , 1, 1) = 1 √ ∆ n d j=1 [t/∆n]∆n 0 b ′ j s ∂f ε ∂x j φ n (s), X φ n (s) , Y n s-ds, W n (f ε , 1, 2) t = 1 2 √ ∆ n d j,j ′ =1 m k=1 [t/∆n]∆n 0 σ j,k s σ j ′ ,k s ∂ 2 f ε ∂x j ∂x j ′ φ n (s), X φ n (s) , Y n s-ds, W n (f ε , 2, 3) t = 1 √ ∆ n d j=1 m k=1 [t/∆n]∆n 0 σ j,k s ∂f ε ∂x j φ n (s), X φ n (s) , Y n s-dW k s , W n (f ε , 1, 4) t = 1 √ ∆ n d j=1 [t/∆n]∆n 0 R 0 δ j (s, y) ∂f ε ∂x j φ n (s), X φ n (s) , Y n s-(µ -ν)(ds, dy), W n (f ε , 1, 5) t = 1 √ ∆ n [t/∆n]∆n 0 R 0 f ε φ n (s), X φ n (s) , Y n s-+ δ(s, y) -f ε φ n (s), X φ n (s) , Y n s-- d j=1 δ j (s, y) ∂f ε ∂x j φ n (s), X φ n (s) , Y n s- -f ε (φ n (s), X s-, δ(s, y)) µ(ds, dy),
with Y n s and φ n (s) as before. Under (LN 1 ) and (LM 1 ), we have:

E(||X t -X s || p ) ≤ K|t -s| p/2 , ∀p ∈ [0, 2]. d j=1 ∂fε ∂z j (s, z, x) ≤ α ε (||x|| ∧ (2dε)) 2 , d j=1 d j ′ =1 ∂ 2 fε ∂x j ∂z j ′ (s, z, x) ≤ α ε (||x|| ∧ (2dε)), d j=1 d j ′ =1 ∂ k 1 +k 2 fε ∂x k 1 j ∂x k 2 j ′ (s, z, x) ≤ α ε (||x|| ∧ (2dε)) 3-(k 1 +k 2 ) ,                  (5.19)
where

α ε → 0 when ε → 0, k 1 + k 2 ∈ {0, 1, 2}, and ∂ 0 (fε) ∂x 0 j = f ε . We also have ∂f ε ∂x j φ n (s), X φ n (s) , Y n s-= d j ′ =1 Y n,j ′ s- ∂ 2 f ε ∂x j ∂x j ′ φ n (s), X φ n (s) , Y n s ,
where Y n s belongs to the segment joining Y n s-and 0, thus

[t/∆n]∆n 0 E b j s Y n,j ′ s- √ ∆ n ∂ 2 f ε ∂x j ∂x j ′ X φ n (s) , Y n s ds ≤ K t 0   E Y n,j ′ s- 2 ∆ n 1/2 E ∂ 2 f ε ∂x j ∂x j ′ φ n (s), Z φ n (s) , Y n s 2 1/2   ds ≤ K t 0 E ∂ 2 f ε ∂x j ∂x j ′ φ n (s), Z φ n (s) , Y n s 2 1/2
ds.

(5.20)

Since ∂ 2 fε ∂x j ∂x j ′ (ω, s, z, 0) = 0, and ∂ 2 fε ∂x j ∂x j ′ (ω, s, z, x) satisfies (K(V )), one deduces by Lebesgue's theorem that (5.20) converge to 0, and thus

W n (f ε , 2, 1) u.c.p. -→ 0. Similarly we show that W n (f ε , 2 , 2) u.c.p. 
-→ 0.

Next, the processes

1 √ ∆ n [t/∆n]∆n 0 ∂f ε ∂x j φ n (s), X φ n (s) , Y n s-σ j,k s dW k s
are martingale with respect to the filtration (F [t/∆n]∆n ), hence by Doob's inequality and (5.19) one has:

P sup t≤T 1 √ ∆ n [t/∆n]∆n 0 ∂f ε ∂x j φ n (s), X φ n (s) , Y n s-σ j,k s dW k s > η 20 ≤ 1 η 2 ∆ n T 0 E ∂f ε ∂x φ n (s), X φ n (s) , Y n s-σ j,k s 2 ds ≤ KT α 2 ε η 2 ,
and lim

ε→0 lim sup n P sup t≤T W n (f ε , 1, 3) t > η = 0.
Similarly, we have:

lim ε→0 lim sup n P sup t≤T W n (f ε , 1, 4) t > η = 0.
Now under (LM 1 ), separating the cases where ||x|| ≤ ||x ′ || and ||x ′ || ≤ ||x||, one shows that: 

f ε (ω, s, z 1 , x + x ′ ) -f ε (s, z 1 , x ′ ) - d j=1 x j ∂f ε ∂x j (ω, s, z 1 , x ′ ) -f ε (ω, s, z 2 , x) ≤ Kα ε ||x|| 2 ||z 1 -z 2 || + ||x ′ || . Then P sup t≤T |W n (f ε , 1, 5) t | > η is smaller than 1 η E [t/∆n]∆n 0 R f ε (φ n (s), X φ n (s) , Y n s-+ δ(s, y)) -f ε (φ n (s), X φ n (s) , δ(s, y)) -f ε (φ n (s), X φ n (s) , Y n s-) -δ(s,
W n (f ε , 1, 5) t > η = 0.
This ends the proof under the reinforced assumptions (LN 1 ) and (LM 1 ). One finishes the proof by a classical localization procedure.

5.2 Proof of theorem 3.5 and 3.7.

As for the previous proofs, we first strengthen the hypotheses, and thanks to Remark 3.1, we adopt the form (3.8) for σ. We denote (LM 2 ) (resp. (LM ′ 2 )) the hypothesis (M 2 ) (resp. (M ′ 2 )) with the additional condition that the process Γ is bounded.

Under (LN 2 (s)) with s ≤ 1, X can be write as:

X t = X 0 + t 0 b ′ s ds + t 0 σ s dW s + R t 0
δ(s, y) µ(ds, dy), (5.21) where b ′ s = b s -R h(δ(s, y)) F (dy), and under (L 2 (2)) the process σ is writen: 

σ t = σ 0 + t 0 b ′ s ds + t 0 σ s dW s + t 0 v dV s + t 0 R δ(s,
∆ n [t/∆n] i=1 E f (i -1)∆ n , X (i-1)∆n , ∆ n i X √ ∆ n -f ((i -1)∆ n , X (i-1)∆n , β n i ) 2 → 0.
(5.23)

Proof: The proof of this lemma is the same as for Lemma 4.4, the condition p < 1 come in because of the the square in (5.23). 2

Set

U n t := ∆ n [t/∆n] i=1 E f (i -1)∆ n , X (i-1)∆n , ∆ n i X √ ∆ n -f (i -1)∆ n , X (i-1)∆n , β n i |F (i-1)∆n (5.24) Lemma 5.4 Suppose (LN 2 (2)
) and (M 2 ) satisfied and X continuous. Assume further that one of the following two conditions is satisfied:

A. The application x → f (ω, s, z, x) is even in x.
B. We have b ′ = 0 and σ = 0.

Then U n u.c.p.

-→ 0.

Proof: A) Set L n i := f (i -1)∆ n , X (i-1)∆n , ∆ n i X √ ∆ n -f (i -1)∆ n , X (i-1)∆n , β n i .
(5.25)

Then L n i = L ′ n i + L ′′ n i ,
where

L ′n i = d j=1 ∂f ∂x j (i -1)∆ n , X (i-1)∆n , γn i - ∂f ∂x j (i -1)∆ n , X (i-1)∆n , β n i × ∆ n i X j √ ∆ n -β n,j i , L ′′n i = d j=1 ∆ n i X j √ ∆ n -β n,j i ∂f ∂x j (i -1)∆ n , X (i-1)∆n , β n i ,
for some random variable γn i between

∆ n i X √
∆n and β n i . For any ε, A > 0, set

G A t (ω, ε) = sup s≤t; y ≤ε; z∈K; x ≤A    d j=1 ∂f ∂x (ω, s, z, x + y) - ∂f ∂x (ω, s, z, x)    .
Then:

L ′n i ≤ K   G A t (ε) + 1 + β n i p + ∆ n i X √ ∆ n -β n i p   ||β n i || A + ∆ n i X √ ∆n -β n i ε     × ∆ n i X √ ∆ n -β n i .
Next, under the assumption (N 2 (s)) (in particular the properties of σ), one shows that for all q ≥ 2:

E(||β n i || q ) ≤ K, E ∆ n i X/ ∆ n -β n i q ≤ K∆ n . (5.26) 
Thus by a repeated use of Hölder inequality:

∆ n

[t/∆n] i=1 E{ L ′n i } ≤ Kt E G A t (ε) 2 1/2 + ∆ 1/4 n ε + 1 A .
(5.27)

Letting successively n → ∞, then ε → 0 and then A → ∞, we obtain

∆ n [t/∆n] i=1 E{ L ′n i } -→ 0.
(5.28)

Let us now turn to L ′′n i . Under (LN 2 (s)) we have:

∆ n i X √ ∆n -β n i = ξ n i + ξ n i ,
where

ξ n i = 1 √ ∆ n i∆n (i-1)∆n (b ′ s -b ′ (i-1)∆n ) ds + i∆n (i-1)∆n s (i-1)∆n b ′ u du + s (i-1)∆n ( σ u -σ (i-1)∆n ) dW u dW s , ξ n i = ∆ n b ′ (i-1)∆n + 1 √ ∆ n i∆n (i-1)∆n σ (i-1)∆n (W s -W (i-1)∆n ) + s (i-1)∆n R δ(u, y)(µ -ν)(du, dy) + s (i-1)∆n v u dV u dW s .
1) Here we show that for any j

∈ {1, • • • , d}, E ξ n,j i ∂f ∂x j (i -1)∆ n , X (i-1)∆n , β n i |F (i-1)∆n = 0.
(5.29)

Since the function x → ∂f ∂x j (ω, s, z, x) is odd, one clearly has:

E b ′ j (i-1)∆n ∂f ∂x j (i -1)∆ n , X (i-1)∆n , β n i |F (i-1)∆n = 0, (5.30) 
and for any k, k ′ ∈ {1, • • • , m}:

E σ j,k,k ′ (i-1)∆n i∆n (i-1)∆n (W k ′ s -W k ′ (i-1)∆n ) dW k s × × ∂f ∂x j (i -1)∆ n , X (i-1)∆n , β n i |F (i-1)∆n = 0. (5.31)
Next consider the σ-field:

F ′ (i-1)∆n = F (i-1)∆n σ(W s -W (i-1)∆n : (i -1)∆ n ≤ s ≤ i∆ n ).
Since W is independent of µ and of V , for any j, k above one has:

E i∆n (i-1)∆n s (i-1)∆n R δ j,k (u, y)(µ -ν)(du, dy) dW k s × × ∂f ∂x j (i -1)∆ n , X (i-1)∆n , β n i |F (i-1)∆n = 0, (5.32) 
and for any j ′ ∈ {1, • • • , l}:

E i∆n (i-1)∆n s (i-1)∆n v j,k,j ′ u dV j ′ u dW k s × × ∂f ∂x j ((i -1)∆ n , X (i-1)∆n , β n i ) |F (i-1)∆n = 0.
(5.33) From (5.30), (5.31), (5.32) and (5.33) we deduce (5.29).

2) In this step, we show that for all j ∈ {1,

• • • , d}, ∆ n [t/∆n] i=1 E ξ n,j i ∂f ∂x j (i -1)∆ n , X (i-1)∆n , β n i |F (i-1)∆n -→ 0. ( 5 

.34)

By Hölder and Doob inequalities we have:

E{|| ξ n i || 2 } ≤ K ∆ 3 n + i∆n (i-1)∆n ||b ′ s -b ′ (i-1)∆n || 2 + || σ s -σ (i-1)∆n || 2 ds . Since E ∂f ∂x (i -1)∆ n , X (i-1)∆n , β n i 2 ≤ K, it follows from a repeated use of Holdër inequality that ∆ n [t/∆n] i=1 E ξ n,j i ∂f ∂x j (i -1)∆ n , X (i-1)∆n , β n i |F (i-1)∆n ≤ Kt∆ n + +Kt 1/2 E [t/∆n]∆n 0 ||b ′ s -b ′ [s/∆n]∆n || 2 + || σ s -σ [s/∆n]∆n || 2 ds 1/2
.

Since b ′ and σ have some continuity properties in s, we deduce by Lebesgue theorem that the last quantity tends to 0 when n → ∞, hence (5.34).

B) The proof is the same than for (A), except for the fact that we have (5.30) and (5.31) because b ′ = σ = 0.

2

We give now another version of Lemma 5.4, in the case where X is discontinuous:

Lemma 5.5 Suppose X satisfies (LN 2 (s)) with s ≤ 1 and f satisfies (LM ′ 2 ). Assume further that either f (ω, s, z, x) is even in x or b ′ = σ = 0. Then U n u.c.p.

-→ 0, when n → ∞.

Proof: Recall that under (LN 2 (s)) with s ≤ 1, X is written as in (5.21). Set

X ′ t := X 0 + t 0 b ′ s ds + t 0 σ s dW s .
Let (ε n ) be a sequence such that: ε n ∈]0, 1] and ε n → 0 when n → ∞, and set

E n = {x ∈ R, γ(x) > ε n } . Then ∆ n i X √ ∆ n = ∆ n i X ′ √ ∆ n + 1 √ ∆ n i∆n (i-1)∆n E c n δ(s, x) µ(ds, dx). + 1 √ ∆ n i∆n (i-1)∆n En δ(s, x) µ(ds, dx). Set ζ n i (1) := 1 √ ∆ n i∆n (i-1)∆n En δ(s, y) µ(ds, dy), ζ n i (2) := 1 √ ∆ n i∆n (i-1)∆n E c n δ(s, y) µ(ds, dy).
Then using the notation (5.25), one has L n i = 3 j=1 L n i (j), where

L n i (1) = f (i -1)∆ n , X (i-1)∆n , ∆ n i X √ ∆ n -f (i -1)∆ n , X (i-1)∆n , ∆ n i X √ ∆ n -ζ n i (1) , L n i (2) = f (i -1)∆ n , X (i-1)∆n , ∆ n i X √ ∆ n -ζ n i (1) -f (i -1)∆ n , X (i-1)∆n , ∆ n i X ′ √ ∆ n , L n i (3) = f (i -1)∆ n , X (i-1)∆n , ∆ n i X ′ √ ∆ n -f (i -1)∆ n , X (i-1)∆n , β n i .
The hypothesis (LM ′ 2 ) gives the existence of a sequence of reals (K m ) such that

z ≤ m ⇒ f (ω, s, z, x 1 ) -f (ω, s, z, x 1 + x 2 ) ≤ K m (1 ∧ x 2 ). Hence ∆ n [t/∆n] i=1 E L n i (1) |F (i-1)∆n ≤ K ∆ n [t/∆n] i=1 E (1 ∧ ζ n i (1) ) |F (i-1)∆n .
By the inequality (5.9) of lemma 5.3 of [START_REF] Jacod | Asymptotic properties of realized power variations and related functionals of semimartingales[END_REF], we deduce:

∆ n [t/∆n] i=1 E { L n i (1) } ≤ Kt∆ 1/2 n ε -1 n . (5.35) 
Next, set θ(y) = {|γ(x)|≤y} |γ(x)| F (dx), which goes to 0 as y → 0. One has -→ 0. Next, the process U ′n (1, 2) is a martingale with respect to the filtration (F [t/∆n]∆n ) and the expectation of its predictable bracket is smaller than Kt∆ n . Hence Doob's inequality yields U n t (1, 2)

∆ n [t/∆n] i=1 E{ L n i (2) } ≤ K ∆ n [t/∆n] i=1 E{ ζ n i (2) } ≤ Ktθ(ε n ). ( 5 
u.c.p.

-→ 0. Finally, if ζ n i (s) denotes the integrand in the definition of U ′n t (1, 3), we have

ζ n i (s) := (σ s -σ (i-1)∆n )
∂F n,i ∂w (σ(i, n, s), X(i, n, s)) -∂F n,i ∂w (σ (i-1)∆n , X (i-1)∆n ) + (X s -X (i-1)∆n ) ∂F n,i ∂z (σ(i, n, s), X(i, n, s)) -∂F n,i ∂z (σ (i-1)∆n , X (i-1)∆n ) , (5.40) with (σ(i, n, s), X(i, n, s)) in between (σ (i-1)∆n , X (i-1)∆n ) and (σ s , X s ). For A, ε > 0, set: Letting n → ∞, then ε → 0, and A → ∞, we obtain U ′n t [START_REF] Barndorff-Nielsen | Realized power variation and stochastic volatility models[END_REF][START_REF] Corcuera | Power variation of some integral fractional processes[END_REF] u.c.p.

G t (
-→ 0, hence (5.39). 2

The next lemmas are very important because they deal with the part of the processes having a non-trivial limit. We use the notation of Subsection 3. The first one is about the "even case" for f . Set f ((i -1)∆ n , X (i-1)∆n , β n i ) -E{f ((i -1)∆ n , X (i-1)∆n , β n i ) |F (i-1)∆n } .

( E{ξ n,j i ξ n,k i |F (i-1)∆n } = ∆ n ρ σ (i-1)∆n ((f j f k )((i -1)∆ n , X (i-1)∆n , .))

ρ σ (i-1)∆n (f j ((i -1)∆ n , X (i-1)∆n , .)) × ×ρ σ (i-1)∆n (f k ((i -1)∆ n , X (i-1)∆n , .))) .

Then as in lemma 4.3, one shows that:

[t/∆n] i=1 E ξ n,j i ξ n,k i |F (i-1)∆n converges u.c.p. to the process t 0 ρ σs ((f j f k )(s, X s , .))ρ σs (f j (s, X s , .))ρ σs (f k (s, X s , .)) ds    (5.43)

Next for any ε > 0, we have: 

[t/

5. 1

 1 Proof of theorem 3.2

Hypothesis (LN 2

 2 (s)): We have (N 2 (s)) and the processes b s , b s , σ s , v s , ∆σ s , R (1 ∧ || δ(s, y)|| 2 ) F (dy) are bounded. The functions γ k = γ do not depend on k and are also bounded. 2

  Suppose (LN 2 (2)) satisfied and assume that f is optional, locally equicontinuous in x and at most with p-polynomial growth. If further, either X is continuous or p < 1, then:

	y) (ds, dy),	(5.22)
	with b ′ s = b s + R k ′ δ(s, y) F (dy).	
	Let us now give some useful lemmas.	
	Lemma 5.3	

  n,i (σ s , X s ) -F n,i (σ (i-1)∆n , X (i-1)∆n ) -(X s -X (i-1)∆n ) ∂F n,i ∂z (σ (i-1)∆n , X (i-1)∆n ) -(σ sσ (i-1)∆n ) ∂F n,i ∂w (σ (i-1)∆n , X (i-1)∆n ) ds. Since b ′ ,b ′ are bounded we have sup s≤t |U ′n t (1, 1)| ≤ Kt∆

			+ b ′ u	∂F n,i ∂z	(σ (i-1)∆n , X (i-1)∆n ) du ds
	U ′n t (1, 2) =	√	1 ∆ n	[t/∆n] i=1	i∆n (i-1)∆n	(σ ′′ s -σ ′′ (i-1)∆n )	∂F n,i ∂w	(σ (i-1)∆n , X (i-1)∆n )
			+(X ′′ s -X ′′ (i-1)∆n )	∂F n,i ∂z	(σ (i-1)∆n , X (i-1)∆n ) ds
	U ′n t (1, 3) =	√	1 ∆ n	[t/∆n] i=1	i∆n (i-1)∆n
									1/2
									.36)
	Finally, lemma 5.5 implies:		
			[t/∆n]				
		∆ n	i=1		E{L n i (3) |F (i-1)∆n } -→ u.c.p. 0, when n → ∞.	(5.37)
	By (5.35), (5.36) and (5.37) we have:
		[t/∆n]						
	∆ n	i=1	E L n i |F (i-1)∆n	≤ Kt ∆ 1/2 n ε -1 n + θ(ε n )
									[t/∆n]
									+ ∆ n	i=1	E L n i (3) |F (i-1)∆n .
	Choosing ε n = (1 ∧ ∆	1/4 n ), we conclude:
							[t/∆n]
				∆ n	i=1	E{L n i |F (i-1)∆n } -→ u.c.p. 0,

F n , hence U ′n t (1, 1)

u.c.p.

  ε, A) = sup ∂f ∂x (s, z 1 , x 1 ) -∂f ∂x (s, z 2 , x 2 ) + ∂f ∂z (s, z 1 , x 1 ) -∂f ∂z (s, z 2 , x 2 ) : s ≤ t; |x 1 |, |x 2 | ≤ A; |x 1x 2 | ≤ ε; |z 1 |, |z 2 | ≤ K; |z 1z 2 | ≤ ε ,then by the properties of f , we have G t (ε, A) → 0 when ε → 0. Therefore it follows from (5.40) that|ζ n i (s)| ≤ K (1 + A)G t (Aε, KA) + |σ sσ (i-1)∆n | + |X s -X (i-1)∆n | ε + + (P(|U | > A/K)) 1/2 × |σ sσ (i-1)∆n | + |X s -X (i-1)∆n | ,where U is a N (0, 1) Gaussian variable. Since under (LN 2 (2)), E |σ tσ s | 2 + |Z t -Z s | 2 ≤ K|t -s|, we deduce:

	1 ∆ n √	[t/∆n] i=1	i∆n (i-1)∆n	E{|ζ n i (s)|} ds ≤ Kt (1 + A)(E{G t (Aε, KA) 2 }) 1/2 + +P(|U | > A/K) 1/2 + √ ∆ n ε .

  .41) Lemma 5.7 Suppose (LN 2 (2)) satisfied and f (ω, s, z, x) even in x with at most polyno--→ L(f ) t , where L(f ) t = t 0 a s dW s is given by(3.14). Proof: Setξ n i = ∆ n f ((i -1)∆ n , X (i-1)∆n , β n i ) -E{f ((i -1)∆ n , X (i-1)∆n , β n i )|F (i-1)∆n } ,For any j, k ∈ {1, • • • , q}, we have:

	mial growth. Then U	n t	L-(s)
	then		
			E{ξ n i |F (i-1)∆n } = 0.	(5.42)

  Kt ε 2 ∆ n . (5.44) Since f is even in x: ∀ j ′ ∈ {1, • • • , m},

	∆n] i=1	E{||ξ n i || 2 1 {||ξ n i ||>ε} |F (i-1)∆n } ≤	1 ε 2	[t/∆n] i=1	E{||ξ n i || 4 |F (i-1)∆n } ≤
		E ξ n i ∆ n i W j ′ |F (i-1)∆n	= 0.	(5.45)
	If now N is a martingale orthogonal to W , by the proof of Proposition 4.1 (see (4.13)) of
	[2],				
	E{ξ n i ∆ n i N |F (i-1)∆n } = 0. By (5.42), (5.43), (5.44), (5.45) and (5.46) we can apply theorem IX-7-28 of [6] which (5.46)
	gives our lemma.				2
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and this ends the proof.

2

Set now

E{f ((i -1)∆ n , X (i-1)∆n , β n i )|F (i-1)∆n } -t 0 ρ σs (f (s, X s , .))ds .

(5.38) Lemma 5.6 If X satisfies (LN 2 [START_REF] Barndorff-Nielsen | A central limit theorem for realised bipower variation of continuous semimartingales[END_REF]) and f satisfies (LM 2 ), we have U ′n u.c.p.

-→ 0.

Proof: We can assume without loss of generality that f is 1-dimensional. We also write the proof when the dimensions of X and σ are 1, since the multidimensional case is more cumbersome but similar to prove. We have

, where

Since f is at most with polynomial growth,

u.c.p.

-→ 0. Otherwise Hypothesis (M 2 ), and in particular (3.10), implies

u.c.p.

-→ 0. It remains to show that:

u.c.p.

-→ 0.

(5.39)

where

Remark 5.8 In the previous lemma, the hypothesis on f is more than what we need, having f (ω, s, z, x) to be optional even in x and satisfying (K(R d )) and with at most polynomial growth would be enough.

Now we deal with the case where f (ω, s, z, x) is not even in x.

Lemma 5.9 Suppose that X and f satisfy respectively (LN 2 (2)) and (LM 2 ), then U

-→ L(f ) t , where L(f ) t is given by (3.20).

Proof: The proof goes as for lemma 5.7, except that (5.45) fails here, since f (ω, s, z, x) is not even in x. However we have

and (as in the proof of lemma 4.3) one has:

-→ t 0 w(1) j,k s ds.

(5.47)

Then taking account (5.47), and using once more theorem IX-7-28 of [START_REF] Jacod | Asymptotic properties of realized power variations and related functionals of semimartingales[END_REF], we get this time Lemma 5.9. 2

5.2.1

Proof of theorems 3.5 and 3.7:

We first prove the theorems under the strong hypotheses stated at the beginning of the Subsection 5.2. Set

ρ σs (f (s, X s , .)) ds .

Then, using the notation (5.24), (5.25), (5.38) and (5.41), we have:

The process

) is a martingale with respect to the filtration (F [t/∆n]∆n ), whose predictable bracket is smaller than ∆ n E{ L n i 2 |F (i-1)∆n }. Hence Lemma 5.3 and Doob's inequality yield that

-→ 0.

Moreover U n u.c.p.

-→ 0 by Lemmas 5.4 or 5.5, depending on the case. Next, Lemma 5.6 yields U ′n u.c.p.

-→ 0. Finally Lemma 5.7 for Theorem 3.5 and Lemma 5.9 for Theorem 3.7 give that U n converges stably in law to the process L(f ) given respectively by (3.14) and (3.20). At this stage, we have proved the theorems under the strong assumptions mentioned above. The general case is deduced by a "localization" procedure.