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Abstract. Self Organizing Maps (SOM) have been successfully applied
in a lot of real world hard problems since their apparition. In this paper
we present new topologies for SOM based on a planar graph. The design
of a specific graph to encode prior information on the dataset topology is
the central question addressed in this paper. In this context, star-shaped
graphs are advocated for health monitoring applications, leading to a new
kind of SOM that we denote by Self Organizing Star (SOS). Experiments
using aircraft engine measurements show that SOS lead to meaningful and
natural dataset representation.

1 Introduction

SOM are well-known data mining tools which are frequently used to project
high-dimensional data into a low-dimensional discrete space for visualization
and exploratory purpose. In the context of dimensionality reduction, SOM can
be thought as a kind of nonlinear but discrete PCA. SOM are classically defined
by two key elements: a set of prototype vectors {m1, . . . ,mK}, which are d-
dimensional vectors, d being the dimensionality of the dataset {x1, . . . ,xn} and
a lattice or grid which defines a neighborhood relation between the prototypes.
This lattice plays the role of the embedding space. Each unit or prototype is
associated with a fixed position in this lattice or grid. Self-organization means
that after convergence prototypes which are close in the lattice (with a small
distance between them) will also be close in the data space. New data can be
projected after learning of the SOM by affecting them to the location on the map
of the best matching unit (BMU): the closest prototype vector to the datapoint.

In this paper we investigate the opportunity of using other lattices different
from regular rectangular or hexagonal grids defined thanks to undirected graphs,
which will have the additional interesting property of being planar. By using
such graphs all the interesting properties of SOM are kept, in particular easy
data visualization and data exploration with the additional freedom of designing
lattices more suited to the expected dataset topology. We also show how such
graph can be designed in the context of a health monitoring application. The
classical lattices for SOM are rectangular or hexagonal grids. Extensions of these
classical topologies have already been investigated by several authors. Toroidal
or spherical maps [1, 2], growing grid with free topology [3], and tree structured



SOM (to speed up computational time required for BMU search) [4, 5], among
others. We follow here a path more similar to [6] which focuses on the use of
graphs to define SOM topologies. Our solution differs from [6] by the nature of
the graph being used for defining the SOM topology. We promote in particular
the star topology, which leads to the method proposed here and called Self
Organizing Star (SOS).

The paper is organized as follow. In Section 2 the basics of SOM will be
reminded and the question of how the neighborhood relationship induced by
a lattice influences the results of the algorithm will be addressed. The use of
undirected graphs to define new lattices will also be investigated. In Section
3, the SOS solution proposed to deal with health monitoring problems will be
advocated and described. Finally, some experimental results on real and sim-
ulated datasets will be given using such a topology; the paper ends with some
concluding remarks.

2 Self-Organizing Maps Background

In its classical presentation [7, 8], the SOM algorithm is an iterative algorithm,
which iterates the two following steps over training patterns xj for computing
the set of prototypes mi, i ∈ {1, . . . , K} which define the map:

• Competitive step, this step aims at finding the best matching unit (BMU)
for sample xj :

c = arg min
i∈{1,...,K}

||xj − mi||. (1)

• Cooperative step, this step aims at moving the BMU and close units, closer
to the training pattern:

mi(t + 1) = mi(t) + α(t)hci(t) [xj − mi(t)] , (2)

with t the time step, α(t) the learning rate of the algorithm and hci(t) the
neighborhood function between units c and i at time t.

Several neighborhood functions are commonly used such as:

hci(t) = 1(dci<σt) (3)

hci(t) = exp(−d2
ci/2σ2

t ). (4)

All of them depend on a radius σt which is classically decreasing during the
learning process. These neighborhood function also depends on dci: the distance
between neuron c and i, which is determined by the map topology. During the
cooperative step the coordinates of the best matching unit c are updated in
order to move it closer to the training pattern. Other prototypes mi are also
moved towards the training pattern according to their distance dci from the BMU
defined by the lattice. Closer units from the BMU will be more affected than the
others. The two steps are iterated over the dataset during several epochs until



convergence. Convergence is being monitored by moves of prototype vectors.
The learning rate is classically decreased during the learning process using an
inverse linear adaptation. Thanks to the cooperative steps, auto-organization is
reached at the end of the algorithm.

Looking at this algorithm, one can clearly see that the distance between units
in the map plays a key role in the auto-organization property of the algorithm;
therefore modifications of this distance will clearly have an impact on the re-
sults of the algorithm. The lattice structure can be a way to incorporate prior
information concerning the dataset topology into the dimensionality reduction
process. In the context of classical SOM, one assumes that the dataset topology
can effectively be represented by a grid or a straight line but other hypotheses
can be interesting and can advantageously be investigated. The key element that
implicitly or explicitly defines the lattice is the distance between map units. It
has been already noted that graph theory can be used to define such distance
[6, 4]. In this case, map units are the nodes of a graph, and distances between
them are defined as the minimum number of edges needed to reach one node
starting from the other, that is the so called shortest path distance.We therefore
propose to modify the SOM algorithm only by taking as input an adjacency
matrix which specifies the graph topology that the user desires. All undirected
graphs can theoretically be used, but a specific class is of interest: the class of
planar graph, because such graphs can easily be represented in a 2-dimensional
setting allowing us to supply the SOM with visualization tools, as seen in the
next section.

3 Star topology

In health monitoring applications, there exists a particular state which corre-
sponds to the normal operation of the component under monitoring. The aim
of health monitoring is to look at departures from this normal state, because
faults lead to deviation of state variables from this normal state. Furthermore,
we may hope that different faults are characterized by different shapes of drifts.
The classical lattices of SOM do not take into account this prior information on

Fig. 1: Planar graph representation of the star topology with 7 rays and 3 units
by rays



the dataset topology: there is no specific unit which takes a central place on the
map. Moreover the users do not easily understand the meaning of the map since
the normal states can for example be represented by codebooks vectors located
on an edge of the map, instead of a central position that would be more natural.
To prevent this difficulty, we propose to use a star-shaped graph as shown in
Figure 1. This graph has a clear natural center from which different arms or
rays grow. Such graph can easily be understood by users if different rays corre-
spond to different faults and distances to the center describe the seriousness of
the problem. These graphs can be characterized by their number of rays and by
the length of the rays. SOM using such topologies will be called Self-Organizing
Stars (SOS).

4 Results

4.1 Toy dataset

The first experiment aims at demonstrating the ability of such topology to rep-
resent a star-shaped dataset. For this purpose a toy dataset was generated in
a 3-dimensional space. One hundred data points have been generated using a
normal distribution with mean (0, 0, 0) and standard deviation 2.I, where I de-
notes the identity matrix of size 3 × 3. Three other sets of one hundred data
points have been drawn, each corresponding to a noisy version of the segment
[0, 15] along one of the three vectors of the R

3 canonical basis. These sets were
obtained by first sampling the location along the vectors using a uniform distri-
bution between 0 and 15 and by adding isotropic noise with standard deviation
equal to 1. A realization of such a dataset is presented in Figure 2 (a) with
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Fig. 2: (a) toy dataset in R
3 and SOS codebook’s position after learning de-

picted by big black dots, (b) Variable 1 component plane; map units colors are
proportional to the first value of their codebooks vectors.

the SOS codebooks positions after learning. These results were obtained using a
SOS with 3 rays of 15 units each. The training was performed using the classical



inverse linear learning rate scheme of SOM algorithms and a decreasing radius
between 5 and 1; the number of epochs of the algorithm was fixed to 5 and the
initialization was performed using random assignments in the data range for all
units. Figure 2 (b) gives a representation of map results in the form of a compo-
nent plane. We can also see on this figure that one ray corresponds to the part of
the dataset simulated along the first canonical vector. This two representations
clearly show that such dataset can be effectively described by a SOS; moreover
using the planar representation of the star graph, such a SOM can be effectively
represented in a 2 dimensional way.

4.2 Health monitoring dataset

The second dataset comes from an health monitoring application which con-
cerns aircraft engines. The data are multi-dimensional measurements on the
engines (9 variables describing engines state and 7 variables describing the en-
vironment). The dataset was simulated using a thermo-dynamical model of the
engine; six different sets of points were simulated, each one starting from a nor-
mal engine and gradually moving to a defective state. Such sets will be denoted
as failure trajectory. Five sets concern progressive failures of different engine
macro-components : fan, booster, high pressure core, high pressure turbine, low
pressure turbine; the last one was generated with progressive degradation of all
macro-components together. Random environmental conditions (external tem-
perature, altitude, Mach, ...) were also simulated for all samples and finally
realistic noise was added to all variables. Each one of the six sets contains 2000
points, leading to a dataset of 12000 multi-dimensional measurements. Rough
engine measurements are inappropriate for direct use; they are indeed influenced
by external conditions. We therefore first processed the data by a Linear Model
(LM), to eliminate the effect of measured environmental conditions (external
temperature, altitude, Mach, rotation speed, air levy, engine variable geometries
positions) on the other 9 variables (temperatures and pressures on different loca-
tions and fuel consumption). Finally, the LM residuals are filtered using a simple
moving average (15 samples) in order to reduce noise. The filtered residuals are
then used as inputs to a SOS for the easy visualization of fault degradations.
The map was trained using an inverse linear scheme for the learning rate, 5
epochs and a neighborhood radius decreased from 5 to 1. The topology of the
map was fixed manually: it contains 6 rays (one for each trajectory) of 20 pro-
totypes each. Figure 3 presents the projection of two trajectories on the map.
As expected each fault corresponds to a ray; similar results were obtained for
the other faults. Once learned, the map is therefore a very interesting tool for
health monitoring as it enables the diagnosis of specific sub-component failures
and the estimation of the failure gravity.

5 Conclusion

The proposed SOM extension (SOS) based on a star shaped planar graph gives
interesting results in the health monitoring application investigated in this paper.



booster deterioration fan deterioration

Fig. 3: Star-shaped map for turbo fan engine health monitoring; projection of
the 2 first failure trajectories on the map; color (from white to black) and size
(from small to big) of the squares indicates the position in the trajectory (from
normal state to defective state).

This approach is interesting when prior information on the dataset topology is
available as in health-monitoring applications. However, several questions are
still open, first including the choice of the number of rays and their lengths which
is left up to now to the user. Classical model selection tools can probably help
for such a task. In addition, in the context of health monitoring applications
we may face multiple simultaneous faults; this is not addressed by the proposed
algorithm and is therefore also a topic for future work.
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